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A database management system (DBMS) performs query optimization based on statistical
information about data in the underlying database. Out-of-date statistics may lead to inefficient
query processing in the system. The existing utility method, which collects statistics in batch mode,
suffers from drawbacks such as heavy administrative burden, high system load and tardy updates.
In this paper, we study approaches to performing statistical analysis on the fly during query execution,
taking advantage of data already resident in main memory. We propose a framework for on-the-fly
statistics collection, which we term piggybacking, and analyze the tradeoffs of piggybacking various
statistics collection techniques on top of query execution plans. We present a multiple-granularity
interleaving algorithm to integrate a set of piggyback operations with an execution plan, and
show how the algorithm can be incorporated into an existing query optimizer. Our experiments
demonstrate that useful statistics can be obtained via the piggyback method with a small overhead.
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1. INTRODUCTION

It is well known that query optimization is crucial in achieving
efficient query processing for a database management system
(DBMS), especially for the relational, object-oriented and
distributed DBMSs [1, 2, 3, 4, 5]. There are two types
of query optimizers in DBMSs: heuristic-based and cost-
based. Most query optimizers in commercial DBMSs are
cost-based, i.e. based on the analysis on query costs
[6, 7, 8, 9, 10]. The more accurate the cost analysis is, the
more efficient the query processing. However, accurate cost
analysis requires up-to-date statistics about the underlying
database, which are maintained in the system catalog of
a DBMS.

A typical statistics-collection method, which is widely
used in many commercial DBMS products including
DB2, Oracle, Informix and Sybase, is to invoke a util-
ity that periodically collects and updates statistics about
the underlying database [6, 7, 8, 9, 10]. We term this
method the utility method. The major disadvantages of this
method are:

(i) Heavy system load. The utility competes for
system resources with other components in a

DBMS and, therefore, significantly increases the
system load.

(ii) Out-of-date statistics. To avoid heavy system load,
the utility cannot be invoked very often. As a
result, out-of-date statistics may be used by the query
optimizer frequently, and this leads to inefficient query
processing.

(iii) Incomplete statistics. Some statistics, such as the
costs of user-defined functions (UDFs) in object-
relational DBMSs, cannot be collected by the utility
method. Users are required to update manually such
statistics in the system catalog.

(iv) High cost for analyzing large databases. Unless a user
specifies a data subset to analyze, which is perforce
a subjective assessment, the utility typically analyzes
the whole database. Clearly analyzing statistics for a
large database is very expensive and unnecessary for
data that never changes.

(v) Inconvenience for users. A database administrator
(DBA) has to invoke the utility manually whenever
significant changes have been made to the database.
Otherwise, obsolete statistics may be used by the
query optimizer.
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Due to the problems described above, it is quite common
for a DBA to invoke the utility rarely to update the database
statistics progressively once the database is initialized. As a
result, system performance may become progressively worse
as the data changes and evolves.

Recently, sampling techniques have been employed to
improve the utility method in some DBMSs [9, 10, 11].
The idea is to use sampled data to estimate statistics instead
of analyzing a complete data set. This approach mitigates
some of the above disadvantages. However, the problems
are not completely eliminated. For instance, the overhead for
analyzing statistics for the whole database is still significant,
some statistics are still not obtainable, and DBAs still need
to invoke the utility manually. Furthermore, sampling itself
may involve accessing a significant part of the database.
Note that sampling techniques have been applied not only to
estimate database statistics but also to estimate directly the
sizes of query results that are needed by a query optimizer
for selecting an efficient execution plan [12, 13]. In addition,
people have studied the problem of constructing a random
sample from a query result without computing the full result
[14]. However, we are only interested in the issues for
collecting/estimating database statistics in this paper.

Several on-the-fly approaches to gathering optimization
information/statistics have also been studied in the field.
Yu and Antoshenkov et al. [15, 16, 17, 18] suggested
some dynamic (adaptive) query optimization techniques,
which can be classified into direct and indirect ones. The
direct ones dynamically optimize the current query based on
runtime information, while the indirect ones collect dynamic
information from the current query to optimize subsequent
queries. Greenwald and Gibbons et al. [19, 20, 21, 22] have
studied techniques of self-scaling histograms. The basic idea
of self-scaling histograms is to determine dynamically the
parameters (e.g. the bounds and bucket sizes) of a histogram
and adjust the histogram using the data being processed
during query execution. The refinement to the histogram can
be done either on-line or off-line. In fact, some on-the-fly
approaches to gathering statistics have been adopted in some
commercial systems. For example, both IBM’s DB2 [23] and
iAnywhere Solutions’ SQL Anywhere [24] allow statistics
to be collected during the data loading process for a table.
Furthermore, SQL Anywhere has also incorporated the ideas
of self-scaling histograms in the system to allow histograms
to be adjusted dynamically during query processing.

Clearly, to meet the performance requirement of modern
information processing, a DBMS should employ a statistics-
collection method that (1) collects up-to-date statistics for all
pertinent data; (2) incurs as low an overhead as possible and
(3) reduces the DBA’s burden of invoking a utility manually.
In this paper, we introduce a framework to gather statistics
during query processing. The key idea is to ‘piggyback’
additional side retrievals and statistical analysis tasks on the
execution plan of a user query. Although these side retrievals
are not directly related to the computation of the user query’s
result, and may slow query execution to some extent, the
statistics collected from the results of the side retrievals can
be used by the query optimizer to improve the execution plans

of subsequent queries. We term this on-the-fly approach to
statistics collection as the piggyback method. The piggyback
method meets all the requirements for statistics collection
mentioned above.

Our piggybacking framework generalizes and extends
various statistics collection techniques in a systematic way.
The framework integrates real-time statistics gathering using
both on-the-fly collection and random sampling, which
can be used to estimate a statistic when it would be infeasible
to compute a precise one with a specific execution plan.
Moreover, the framework integrates the automatic invocation
of the utility method to gather initial statistics and update
expensive-to-gather statistics during off-peak hours. By
supporting these techniques, the framework permits the user
significant degrees of freedom in how to approach statistics
gathering systematically for the entire database.

In addition, our framework enables the efficient integration
of piggyback operations with query execution plans,
generalizing existing on-the-fly approaches and overcoming
some of their limitations. For example, our framework
constitutes a generic model of statistics gathering that is more
general than those approaches that center on only self-scaling
histograms (i.e. focusing only on those statistics related to
the distribution of column values). Perhaps more importantly,
unlike known indirect query optimization techniques, our
framework permits the integration of piggybacking operators
that can access a larger set of data than that necessary to
compute the result of a specific query.

To realize our piggybacking framework, we need to
identify (1) useful piggyback side retrievals; (2) obtainable
statistics via piggybacking and (3) efficient ways to integrate
normal query processing operations and piggyback (statistics
collection) operations. These issues will be discussed in
detail in this paper. Another related issue is how a query
optimizer can make use of statistics gathered/updated via
the piggyback method. Since our focus is to study how
to collect statistics, we assume that the collected statistics
are used by query optimizers in the same way as before,
with one exception: that some statistics are used to guide
utility-based statistics collection, and not simply to optimize
subsequent queries. How to make use of statistics in query
optimization, and to what extent statistical accuracy impacts
execution plan quality, varies from one system to another
and depends on several factors. These factors include the
specific implementation of access methods, the accuracy
of employed cost models, the use of system parameters
such as the buffer pool size and the number of concurrent
processes, and the queries themselves. On the other hand,
although no systematic study on the correlation between
accuracy of statistics and quality of query optimization has
been reported in the field, practitioners generally believe
that more accurate statistics usually lead to more effective
query optimization. Our study is also based on this widely
accepted assumption, like other related research in the field
[11, 12, 13, 22, 25]. Although providing a systematic
validation of this assumption is beyond the scope of this
paper, we will give some experimental results to demonstrate
that this assumption is indeed true in a real system.
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The rest of the paper is organized as follows. Section 2
introduces different types of piggyback operations. Section 3
studies the statistics obtainable from different access methods
via piggyback analysis and suggests several piggybacking
levels to meet users’ different performance requirements.
Section 4 discusses issues related to efficient interleaving
of query processing operations and piggyback operations.
Section 5 discusses several related issues when the piggyback
method is incorporated into a DBMS. Section 6 outlines the
architecture of a piggybacking prototype and presents some
experimental results. Section 7 concludes the paper and lists
some future research directions.

2. TYPES OF PIGGYBACK OPERATIONS

Any operation that is not required for processing a given
user query but is performed for other purposes during
query processing is a piggyback operation. Several types
of piggyback operations can be performed during query
processing, such as side data retrieval, data statistics
collection and data access monitoring.1

2.1. Piggyback side data retrievals

One type of piggyback operation is the side data retrievals,
i.e. retrieving additional data that is not required for pro-
cessing the current query. There are several types of such
side data retrievals, which will be discussed in the following
subsections. Among them, vertical piggyback side retrievals
and horizontal piggyback side retrievals form the basic ones.
Using the basic ones, more complex forms of piggyback side
data retrievals can be generated.

2.1.1. Vertical piggybacking
A vertical piggyback side retrieval fetches data for extra
columns from an operand table(s) during query processing.
Performing such a side retrieval during query processing
is called vertical piggybacking. Consider the following
example.

Example 1. Consider the following user SQL query
performed on a DBMS:

Q1: SELECT DISTINCT R1 · a2 FROM R1
WHERE R1 · a3 IN (SELECT R2 · b1 FROM R2);

where R1(a1, a2, a3, a4) and R2(b1, b2) are two tables in
the underlying database. Note that the equivalent relational
algebra expression, which will be used in the subsequent
discussions, for query Q1 is:

π
R1·a2

(R1 ��
R1·a3=R2 ·b1

(π
R2 ·b1

(R2)),

where π and �� denote the project and join operations,
respectively.

One feasible execution plan to execute Q1 is performing
the following subquery Q

(2)
1 = π

R2 ·b1
(R2) first, then per-

forming the join and final project operations by using the

1This paper only considers the piggyback operations related to statistics
collection although other piggyback operations are also possible.

result of subquery Q
(2)
1 . Clearly, the DBMS can collect and

update statistics about column R2 ·b1 by analyzing the result
of Q

(2)
1 during query processing.

To obtain statistics about column R2 · b2, the DBMS can
execute a modified subquery Q

(2)′
1 = π

R2 ·b1,R2 ·b2
(R2) on the

underlying database, instead of Q
(2)
1 and analyze its result.

Since both Q
(2)
1 and Q

(2)′
1 usually scan table R2 once (and

effectively also access R2 ·b2), Q(2)′
1 increases the processing

cost of query Q1 only slightly. In fact, we have piggybacked
the vertical side retrieval: π

R2 ·b2
(R2) during the processing

of user query Q1 to obtain necessary statistics with a small
additional overhead.

In general, consider a user query Q with operand tables
R1, R2, . . . , Rn. To process Q, a DBMS usually performs a
subquery2

Q(i) = π
CLi

(σ
Fi

(Ri)) (1)

on each table Ri (1 ≤ i ≤ n) to retrieve data that is required
to process Q, where σ denotes the select operation in the
relational algebra, Fi is the qualification condition of the
select operation, and CLi is the target list of the project
operation. We call Q(i) an access subquery for table Ri .
For instance, for Q1 in Example 1, two access subqueries are

Q
(1)
1 = π

R1 .a2,R1 .a3
(σtrue(R1))

and
Q

(2)
1 = π

R2 .b1
(σtrue(R2)).

Using intermediate results from the access subqueries, the
DBMS can evaluate query Q. Hence,

Q = F(Q(1), Q(2), . . . , Q(n)), (2)

where F(· · ·) is a query formula that generates the result of
Q by using the results of Q(1), Q(2), . . . , Q(n). For instance,
for Q1 in Example 1,

F(Q(1), Q(2)) = π
Q(1)·a2 (Q

(1) ��
Q(1)·a3=Q(2)·b1

Q(2)) .

Let ω be an operator such that

ω
X
(Q(i)) = π

CLi∪X
(σ

Fi
(Ri)),

where X is a set of columns in Ri . ω
X
(Q(i)) is called a

vertically piggybacked subquery for Q(i) with a piggybacked
column set X, and ω is called the vertical piggybacking
operator. If X − CLi �= ∅, ω

X
(Q(i)) is non-trivial.

Otherwise, it is trivial, For example,

ω
R2 .b2

(Q
(2)
1 ) = π

R2 ·b1,R2 ·b2
(σtrue(R2))

is a non-trivial vertically piggybacked subquery in
Example 1.

2Note that a DBMS may execute such a subquery with other operations
via pipelining. We also assume that the columns referenced in qualification
Fi but not needed in the further processing of the query are still included in
the target list CLi of the project operation, which simplifies the definition
of horizontal piggybacking in the next subsection.
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FIGURE 1. Idea of vertical piggybacking.

Let ω−1 be an operator such that

ω−1
X

(ω
X
(Q(i))) = π

CL′
i

− X
(ω

X
(Q(i))) = Q(i),

where CL′
i = CLi ∪X. As the above equation implies, ω−1 is

called the inverse vertical piggybacking operator of ω. Note
that the net effect of an inverse vertical piggybacking operator
is to keep the original project operation after the vertically
piggybacked subquery. Furthermore, the original project
operation does not have to apply directly to the vertically
piggybacked subquery. In other words, some intermediate
operations can exist in between, as long as the final result
does not change.

For a given query Q = F(Q(1), Q(2), . . . , Q(n)) in (2),
the following query with ω and ω−1 applied to its access
subqueries

Q′ = F(ω−1
X1

(ω
X1

(Q(1))), ω−1
X2

(ω
X2

(Q(2))), . . . ,

ω−1
Xn

(ω
Xn

(Q(n))))

is called a vertically piggybacked query for Q. If
at least one vertically piggybacked subquery ω

Xi
(Q(i))

(1 ≤ i ≤ n) is non-trivial, Q′ is non-trivial. Otherwise,
it is trivial. Note that, unlike a subquery and its
vertically piggybacked counterpart, the original query Q

has the same result as its vertically piggybacked counterpart
Q′, i.e. Q ≡ Q′. However, processing the vertically
piggybacked query may generate more intermediate results
(Figure 1) which can be used to produce useful statistics
that may improve optimization quality for subsequent
queries. How to determine the piggybacked column list X

is to be discussed in Section 3.2.

2.1.2. Horizontal piggybacking
A horizontal piggyback side retrieval fetches extra rows
from an operation table(s) during query processing.
Performing such a side retrieval during query processing

is called horizontal piggybacking. Consider the following
example.

Example 2. For the following user query performed on
a DBMS:

Q2: SELECT DISTINCT R1 · a1, R1 · a2 FROM R1
WHERE R1 · a1 > 3;

(i.e. π
R1·a1,R1·a2

(σ
R1·a1>3(R1))) where R1 ·a1 is indexed while

R1 · a2 is not, a feasible execution plan is to retrieve the
qualified rows from R1 via the index on R1 · a1. Several
statistics on R1 ·a1 can be obtained via analyzing information
contained in the index if the index, which is relatively
small compared with the data file, is completely fetched
into memory. However, statistics on R1 · a2 may not be
accurately known since not all data values of R1 · a2 are
obtained (e.g. if it is a sparse index). An improvement may
be made by utilizing all rows in the retrieved pages from the
data file as sample rows to estimate the statistics on R1 · a2
if the conventional assumptions that the columns in a table
are independent (i.e. the independence assumption) and the
column values are uniformly (randomly) distributed in the
table (i.e. the uniformity assumption) hold. Although it is
possible that some rows in the retrieved pages are not qualified
for the query, they may be usable to improve the accuracy
of statistical estimates. Since the rows in a retrieved page
are available in memory, such horizontal piggybacking may
provide better statistics without incurring much additional
cost. Furthermore, additional random sample pages that
contain no qualified rows may also be fetched into memory
to improve further the sample set. Tradeoffs need to be
made between the overhead and accuracy. Note that if the
independence and uniformity assumptions are not valid for
the underlying table, we have several options to mitigate the
problem. The first option is to use adaptive page sampling
via cross-validation [21]. The key idea is to use all tuples in
the retrieved pages but adjust the amount of sampling (with
additional pages) depending on the correlation of column
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values in retrieved pages. The correlation is tested via cross-
validation from two samples. The second option is to adopt
a revised backing sample approach [20], which, in turn,
is based on reservoir sampling [26]. The basic idea is to
maintain a separate backing sample used to estimate statistics
and choose some, rather than all, tuples in the retrieved pages
to keep the backing sample up-to-date. The last option is to
disallow such horizontal piggybacking, which is not assumed
to be the choice for the rest of this paper.

In general, consider a user query Q with operand tables
R1, R2, . . . , Rn. Let Q(i) be the access subquery for table
Ri (1 ≤ i ≤ n) as in (1) and Q = F(Q(1), Q(2), . . . , Q(n))

as in (2).
Let γ be an operator such that

γ
Y
(Q(i)) = π

CLi
(σ

Fi∨Y
(Ri))

where Y is a qualification condition for the extra rows to be
retrieved from table Ri . γ

Y
(Q(i)) is called a horizontally

piggybacked subquery with a piggyback qualification
condition Y , and γ is called the horizontal piggybacking
operator. If

{x | x ∈ Ri ∧ x satisfies Y ∧ ¬(x satisfies Fi) } �= ∅,

then γ
Y
(Q(i)) is non-trivial. Otherwise, it is trivial. For

example, for query Q
(1)
2 = Q2 in Example 2,

γ
Y
(Q

(1)
2 ) = π

R1·a1,R1·a2
(σ

R1·a1>3 ∨ Y
(R1)),

where Y represents predicate ‘R1 · pid ∈ RB’, R1 · pid

denotes the identifier of the page containing the current row
being examined in R1, and RB denotes the set of identifiers
of the pages containing at least one qualified row.

Let γ −1 be an operator such that

γ −1
Y

(γ
Y
(Q(i))) = σ

Fi
(γ

Y
(Q(i))) = Q(i).

γ −1 is called the inverse horizontal piggybacking operator
of γ . Note that the net effect of an inverse horizontal
piggybacking operator is to keep the original select operation
after the horizontally piggybacked subquery. Furthermore,
the original select operation does not have to apply directly
to the horizontally piggybacked subquery. In other words,
some intermediate operations can exist in between as long as
the final result does not change.

For a given query Q = F(Q(1), Q(2), . . . , Q(n)) in (2),
the following query with γ and γ −1 applied to its access
subqueries

Q′′ = F(γ −1
Y1

(γ
Y1

(Q(1))), γ −1
Y2

(γ
Y2

(Q(2))), . . . ,

γ −1
Yn

(γ
Yn

(Q(n))))

is called a horizontally piggybacked query for Q. If
at least one horizontally piggybacked subquery γ

Yi
(Q(i))

(1 ≤ i ≤ n) is non-trivial, Q′′ is non-trivial. Otherwise it
is trivial. How to select the piggybacking qualification Yi is
to be discussed in Section 3.3.

2.1.3. Mixed vertical and horizontal piggybacking
Note that vertical piggybacking increases the quantity
(number) of statistics to be collected/estimated, while
horizontal piggybacking improves the quality (accuracy)
of statistics to be estimated. Applying only vertical or
horizontal piggybacking alone may be insufficient. More
suitable may be the case in which a mixture of vertical and
horizontal piggybacking is adopted. For example, the vertical
piggybacking operator can be applied to the horizontally
piggybacked subquery in (3) to yield a mixed vertical and
horizontal piggybacked subquery:

ω
R1·a3

(γ
R1·pid∈RB

(Q2))

= π
R1·a1,R1·a2,R1·a3

(σ
R1 .a1>3∨R1·pid∈RB

(R1)),

which can be used to estimate statistics on column R1 · a3 in
addition to columns R1 · a1 and R1 · a2.

For a general query Q = F(Q(1), Q(2), . . . , Q(n)), the
following is a mixed vertical and horizontal piggybacked
query:

Q∗ = F(ω−1
X1

(γ −1
Y1

(ω
X1

(γ
Y1

(Q(1))))),

ω−1
X2

(γ −1
Y2

(ω
X2

(γ
Y2

(Q(2))))), . . . ,

ω−1
Xn

(γ −1
Yn

(ω
Xn

(γ
Yn

(Q(n)))))).

Piggyback analysis is to be performed after γ and ω are
applied and before γ −1 and ω−1 are applied.

2.1.4. Multi-query piggybacking
From Section 2.1.2, we know that the data values obtained via
the horizontal piggybacking can be used as a sample set for
statistical analysis. Extra sample pages besides the retrieved
pages from a data file may be used to improve the sample
set. However, fetching extra sample pages requires additional
overhead.

To improve a sample set without incurring much additional
overhead, another type of piggybacking, called multi-query
piggybacking, may be utilized. The idea is to use the retrieved
data from multiple queries as a sample set. In this way, the
sample size is increased. Note that piggyback analysis may
be performed on a query-by-query basis (i.e. via pipelining)
without waiting for the final sample set to be formed. For
example, consider the average length of values in a column,
which is a statistic used in query optimization. Note that the
length of a value is the number of digits (for an integer) or
the number of bytes/characters (for a character string). Let
Si be the set of values for column R · a retrieved by query
Qi (1 ≤ i ≤ n). Clearly, the total length len(Si) and total
number |Si | of values in sample subset Si can be obtained
via analyzing Si alone without other Sj where j �= i. The
average length avg_len(R · a) of column R · a for the final
sample set S = ∪n

i=1Si can be estimated as follows:

avg_len(R · a) = 1

n

n∑
i=1

len(Si)

|Si | .

Sample subset Si can be discarded after intermediate statistics
len(Si) and |Si | are obtained.
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TABLE 1. Typical statistics maintained in a catalog.

Type Label Description

Column statistics C1 Max. value of a column (or second
max. value)

C2 Min. value of a column (or second
min. value)

C3 Number of distinct values of a
column

C4 Distribution (frequent values and
quantiles)

C5 Average column length (e.g.
average no. of bytes used by values
for a varchar column)

Table statistics T1 Number of rows in a table
T2 Number of pages used by a table
T3 Number of overflow rows

Index statistics I1 Number of leaf pages
I2 Number of B-tree index levels
I3 Number of distinct values for the 1st

k (≥1) columns of index key
I4 Number of distinct values for the

full index key
I5 Percentage of rows in the clustered

order
I6 Average number of leaf pages per

index value
I7 Average number of data pages per

index value

Note that the mixed vertical and horizontal piggybacking
is a general type of piggybacking for a single query, while
the multi-query piggybacking, which combines multiple
individual piggybacked queries, is even more general.
The vertical and horizontal piggybacking operators are the
basic building blocks for all piggybacked queries. For
simplicity, multi-query piggybacking will not be discussed
further in the rest of this paper.

2.2. Piggyback data statistics collection

Retrieving additional data during query processing is not
our ultimate goal. Our goal is to gather useful statistical
information for query optimization. Hence statistics
collection operations need to be piggybacked on query
processing.

Different DBMSs may maintain different types of statistics
in their catalogs for query optimization. Table 1 shows
typical statistics maintained in a DBMS such as DB2. There
are some other statistics not shown in the table, which are
mainly used by a DBA to monitor system performance
and decide how to reconfigure and/or reorganize the
database.

The statistics for query optimization can be partitioned into
logical and physical categories:{

Logical statistics : C1, C2, C3, C4, C5, T1, I3, I4
Physical statistics : T2, T3, I1, I2, I5, I6, I7

Logical statistics can be determined by the data values
in a database, while physical ones are determined by the
properties of physical organization for the database on a
storage medium.

To obtain statistical information, we have three types of
statistics collection operations. The first type of operation
calculates (exact) statistics based on a complete data set.
We use notation ϕs(x) to denote an operation that calculates
statistic s for data object x, where s is a statistic in Table 1.
For example, ϕC1

(R · a) and ϕT1
(R) are to find (calculate)

the exact maximum value of column R · a and cardinality of
table R respectively. The second type of operation estimates
(approximates) statistics based on a sample data set. We use
notation εs(x) to denote an operation that estimates statistic
s for data object x. Although an estimated statistic may not
be as good as an exact statistic from the users’ perspective,
it usually requires less overhead to obtain. The third type of
operation validates whether a statistic is up-to-date or not.
We use notation υs(x) to denote an operation that validates
statistic s for data object x.

There are several methods to validate a statistic. Method I
is to calculate the new statistic and compare it with the
existing statistic in the system catalog. Since the statistic
is calculated, the overhead for υs(x) is about the same as
that for ϕs(x) in this case. Method II for validation is to
compare the updating timestamp t1 of data object x and the
updating timestamp t2 of statistic s. If t1 ≤ t2, s is up-to-date.
Although the validation overhead in this approach is smaller
than that for ϕs(x), we can only get a sufficient condition
for a statistic to be up-to-date. That is, if t1 > t2, we
cannot conclude whether s is up-to-date or not. Method III
for validation is to make use of a sufficient condition for
a statistic to be out-of-date. For example, for statistic C1 in
Table 1, we have the following sufficient condition for it to be
out-of-date:

(∃x ∈ S such that x > C1) ⇒ (C1 is out-of-date), (3)

where S is the set of retrieved values during query processing
and ⇒ denotes logical implication. Similarly, we have the
following sufficient condition for statistic C2 to be out-of-
date:

(∃x ∈ S such that x < C2) ⇒ (C2 is out-of-date). (4)

Clearly Method I is, in fact, making use of a sufficient and
necessary condition for a statistic to be up-to-date. Hence,
in this case, we can conclude either υs(x) = 1 (true) or
υs(x) = 0 (false). For Method II, we can only conclude
υs(x) = 1 but not υs(x) = 0; while for Method III, we can
only conclude υs(x) = 0 but not υs(x) = 1.

We also employ a locality principle for statistics validation.
That is, if a sufficient number of statistics on a given data
object x (e.g. a table) are found to be out-of-date, all the
other statistics for x are assumed to be out-of-date. The
reason to employ such a conservative rule is that updating
a statistic that is already up-to-date will not make the statistic
out-of-date (idempotent property) except some overhead may
be incurred. To complement the limited sufficient conditions
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FIGURE 2. Useful lightweight piggybacking.

we can find for υs(x) = 0, we also use some special validation
statistics (not used in query optimization) for the data objects
being considered such as the average value avg(R · a) of
a column a in a given table R. If the estimated validation
statistic(s) for a given data object x is found to have been
changed significantly, all the statistics for x are assumed to
be out-of-date.

2.3. Piggyback access statistics monitoring

To reduce the overhead for collecting data statistics during
query processing, we can just count the access frequency
(access statistic) of each data object (table, column or index).
No data statistics are directly collected or estimated during
query processing in this case. Based on the access statistics,
we can identify the set S of most frequently accessed data
objects. Clearly, it is important to keep the statistics on data
objects in S up-to-date because they are used frequently to
optimize user queries. This observation is consistent with
the one made by Lynch for incorporating users’ estimates in
query optimization [27]. In fact, there is no need to update
statistics for the data objects that are never accessed by users.
On the other hand, it is possible that the statistics on a data
object x in S are already up-to-date. In this case, there is no
need to update the statistics on x. We can apply the validation
scheme introduced previously to determine the set of data
objects with out-of-date statistics. Let W be the set of data
objects whose statistics are found to be out-of-date, i.e.

W = {x | ∃ s such that υs(x) = 0}.

Then the set V = S ∩ W contains the data objects whose
statistics need to be updated. The statistics collecting utility
is now invoked to collect statistics only for data objects
in V . Since the statistics collecting utility is not invoked
for all data objects indiscriminately or for some data objects
selected subjectively, the utility is used more effectively.
Furthermore, the utility can be invoked automatically by
the system during off-peak hours without DBA interference.
Hence the user’s burden of manually invoking the utility
is relieved. Figure 2 shows such a useful lightweight
piggybacking procedure. In the rest of this paper, we use
ρ(x) to denote the access statistics monitoring operation that
updates the access frequency for object x.

3. PIGGYBACKING LEVELS

Piggybacking can be done at different levels in terms of
quality and quantity of the statistics to be gathered. The
higher quality or larger quantity of the statistics we want,
the greater the piggybacking overhead. On the other hand,
certain levels of piggybacking may not be feasible for a
particular query processing procedure since no common
work exists. In general, if one level of piggybacking is
feasible for a particular query processing procedure, all lower
levels of piggybacking are also feasible. Hence, it is possible
to downgrade piggybacking from one level to a lower level
if a lower overhead is desired.

3.1. Accuracy levels of statistical analysis

The quality of a (data) statistic is reflected in its accuracy
level. We define three levels of accuracy for statistics collec-
tion, i.e. calculation, estimation and validation, corres-
ponding to the three piggyback (data) statistics collection
operations ϕs(x), εs(x) and υs(x) respectively, described in
Section 2.2.

In a DBMS, a user query is implemented by one or more
access methods such as the sequential scan method and the
hash join method. In principle, the access methods involving
more than one table can be implemented by the ones involving
a single table, i.e. the ones used for access subqueries.
We hence mainly consider unary access methods, and the
common ones are:

Sequential scan (SS): scan the rows in a table sequentially.
Index scan (IS): retrieve the qualified rows via an index.
Index-only access (IOA): get all requested values from an

index tree.
Hash access (HA): retrieve the qualified rows via a hash

table.

Statistics can be obtained during the execution of an access
method although not all statistics at any level are obtainable
via every method. Table 2 shows what statistics may be
obtained (at what level) during the execution of different
access methods. Note that: (1) approximate estimation (⊕)
is valid only if the sample size is sufficiently large (e.g. it
meets a minimum percentage threshold value); and (2) not
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TABLE 2. Statistics obtainable via access methods.

C1 C2 C3 C4 C5 T1 T2 T3 I1 I2 I3 I4 I5 I6 I7

SS √ √ √ √ √ √ √ √ × ⊕ √ √ × × ×
IS

(I) Full (√,
√) (√,

√) (√,
√) (√,

√) (√,
√) √ √ √ √ √ √ √ √ √ √

(II) a < β1, a > β2 (
√

, �) (
√

, �) (⊕, ⊕) (⊕, ⊕) (⊕,⊕) ⊕ ⊕ ⊕ ⊕ √ ⊕ ⊕ ⊕ ⊕ ⊕
(III) a < β1 (�, �) (

√
, �) (⊕, ⊕) (⊕, ⊕) (⊕, ⊕) ⊕ ⊕ ⊕ ⊕ √ ⊕ ⊕ ⊕ ⊕ ⊕

(IV) a > β2 (
√

, �) (�, �) (⊕, ⊕) (⊕, ⊕) (⊕, ⊕) ⊕ ⊕ ⊕ ⊕ √ ⊕ ⊕ ⊕ ⊕ ⊕
(V) Multiple ranges (�, �) (�, �) (⊕,⊕) (⊕, ⊕) (⊕, ⊕) ⊕ ⊕ ⊕ ⊕ √ ⊕ ⊕ ⊕ ⊕ ⊕

(VI) a = β1 (�, �) (�, �) (×, ×) (×, ×) (×, ×) × × × × √ × × × × ×
IOA

(I) Full (√,×) (√,×) (√,×) (√,×) (√,×) × √ × √ √ √ √ √ √ √

(II) a < β1, a > β2 (√,×) (√,×) (⊕, ×) (⊕, ×) (⊕, ×) × ⊕ × ⊕ √ ⊕ ⊕ ⊕ ⊕ ⊕
(III) a < β1 (�, ×) (√,×) (⊕, ×) (⊕, ×) (⊕, ×) × ⊕ × ⊕ √ ⊕ ⊕ ⊕ ⊕ ⊕
(IV) a > β2 (√,×) (�, ×) (⊕, ×) (⊕, ×) (⊕, ×) × ⊕ × ⊕ √ ⊕ ⊕ ⊕ ⊕ ⊕
(V) Multiple ranges (�, ×) (�, ×) (⊕, ×) (⊕, ×) (⊕, ×) × ⊕ × ⊕ √ ⊕ ⊕ ⊕ ⊕ ⊕

(VI) a = β1 (�, ×) (�, ×) (×, ×) (×, ×) (×, ×) × ⊕ × × √ × × × × ×
HA (�, �) (�, �) (×, ⊕) (×, ⊕) (×, ⊕) ⊕ ⊕ ⊕ × × × × × × ×

‘√’—accurate stats; ‘⊕’—estimated stats via sampling; ‘�’—validity inf. of stats; ‘×’—no obtainable/applicable stats; ‘a’—an indexed column; ‘β1’,
‘β2’—constants, β1 < β2; ‘(?,??)’—? is for the indexed/hashed column and ?? is for other columns.

all cases for possible validation (�) are listed since:

(i) Although the timestamp approach to validate up-to-
date statistics (i.e. υs(x) = 1) can be applied to any
case, we are more interested in identifying out-of-date
statistics (i.e. υs(x) = 0) as we will see later.

(ii) We do not consider situations in which statistics
are assumed to be out-of-date based on the locality
principle or a validation statistic (see Section 2.2).

For the sequential scan method, since the whole data
file of a table is scanned, all column and table statistics
can be calculated accurately during its execution. However,
since indexes are not accessed, most index statistics cannot
be obtained; only I3 and I4, which are logical statistics,
can be accurately calculated. Based on them I2 can be
estimated.

For the index scan method, there are several cases. Case (I)
occurs when an index tree is used as a means to scan the whole
corresponding table in the sorted order of the indexed column.
Since both the index and the table are fully scanned, all
statistics can be obtained. For cases (II)–(V), if the retrieved
values of an indexed column a from the index tree cover
ranges a < β1 and/or a > β2 (where β1 and β2 are constants),
statisticsC2 and/orC1 can be obtained accurately. Otherwise,
they may be verified based on conditions (3) and/or (4) from
Section 2.2. Since the index tree is accessed in all these cases,
statistic I2 can also be obtained accurately. Other statistics
can be estimated by using the set of retrieved data as a set of
sample data if the sample set is acceptable. For case (VI),
since the number of retrieved values is usually very small, we
assume the retrieved values are not sufficient to form a useful
sample set. Hence most statistics are not obtainable in this
case. Note that a sample set can be improved by applying
horizontal piggybacking or multi-query piggybacking if the
sample size is too small. It should also be pointed out that,
for simplicity, we consider only single-column indexes. If

indexes on multiple columns are considered, Table 2 needs
to be extended.

Obtaining statistics for the index-only access method is
similar to the index scan. However, since the underlying
table is not accessed, statistics for non-indexed columns or
the underlying table (except statistic T2) are not obtainable.
Statistic T2 can be obtained or estimated based on the
block/page id’s in the index tree. In addition, statistic T1 may
also be obtained or estimated when the referenced index(es)
is a unique index.

For the hash access method, conditions (3) and (4) in
Section 2.2 can still be used to validate statistics C1 and C2
respectively. Other column statistics and most table statistics
can be estimated by taking data in the hit bucket(s) of the hash
file as a set of sample data. It is clear that no index statistics
can be obtained in this case.

3.2. Vertical piggybacking levels

Note that, at the low implementation level in a DBMS, a
complete tuple is usually fetched from the data file into
a buffer although only part of the tuple may be needed
for processing the given query. Hence piggybacking side
retrievals for extra columns from a table during the processing
of a user query usually does not incur additional I/O cost.
However, the piggyback analysis on intermediate results
to obtain useful statistics requires some additional CPU
time. Although CPU time is relatively small compared
with I/O cost, it should be kept as low as possible. To
achieve this goal, we propose to allow included extra columns
for piggyback analysis with different levels, depending on
the user’s tolerance for piggybacking overhead. The more
overhead allowed, the greater the number of extra columns
may be included in piggyback analysis.

With regard to different levels of vertical piggybacking, we
divide the columns of an operand table Ri for a given query
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Q into the following four classes:

AC1 = {x | x is a column in Ri ∧ x is referenced in Q},
AC2 = {x | x is an indexed column in Ri} − AC1,

AC3 = {x | x is a column in Ri ∧ (x is part of the primary
key ∨ x is part of a foreign key ∨ x is referenced
by a foreign key ∨ x has a unique constraint)}
− (AC1 ∪ AC2)

AC4 = {x | x is a column in Ri} − (AC1 ∪ AC2 ∪ AC3).

The principle for including piggybacked columns is to
include those columns that are more likely to be referenced
by user queries. Since the columns in AC1 are known to be
referenced in at least one user query, they have the highest
priority to be included in piggyback analysis. Since an
index on a column indicates that users intend to use the
column in their queries quite often, the columns in AC2
have the next higher priority to be included in piggyback
analysis. The next preferred class of columns are those
related to primary, candidate and/or foreign keys, i.e. those in
class AC3. We term such a column a key-related column. The
remaining columns are in class AC4, which may be included
for piggyback analysis if the piggybacking overhead can be
tolerated by the user.

Let

Xk = ∪k
j=1 ACj , (1 ≤ k ≤ 4).

The following subquery

ω
Xk

(Q(i)) = π
CLi∪Xk

(σ
Fi

(Ri))

extended from query Q(i) in (1) is called the vertically
piggybacked subquery at level Vk . A vertically piggybacked
query Q is at level Vk if at least one of its vertically pig-
gybacked subqueries is at level Vk . However, to simplify
implementation, we recommend having all vertically piggy-
backed subqueries in Q at the same level, and this is assumed
in this paper.

Note that there exist some queries whose results may be
obtained completely from the referenced indexes without
accessing the data files of operand tables, i.e. they can be
evaluated via the index-only access method. In this case,
a complete tuple may not be available in memory during
query processing. Therefore, including extra columns in
piggyback analysis may incur additional I/O cost. To deal
with such a situation, class AC2 can be divided further into
two subclasses for given query Q:

AC2 1 = {x | x is a column in Ri with an index referenced

in Q} − AC1,

AC2 2 = {x | x is an indexed column in Ri}
− (AC1 ∪ AC2 1).

An index is said to be referenced in a query if the query
references at least one column on which the index is built.
The values for the columns in subclass AC2 1 may be obtained
from the referenced indexes when they are fetched into

memory during query processing. Since the columns in
subclass AC2 2 only have non-referenced indexes, to obtain
their values may require additional I/O cost. Hence, AC2 1
is assigned a higher priority than AC2 2. The vertical
piggybacking level V2 is then divided into two sublevels.
The other vertical piggybacking levels may also be divided
into sublevels when necessary. For simplicity, we will not
consider the sublevels in the following discussion.

3.3. Horizontal piggybacking levels

To determine a horizontally piggybacked subquery γ
Yi

(Q(i))

from subquery Q(i) in (1), we need to choose the piggyback
qualification condition Y . Condition Y should be chosen in
such a way that the extra rows can be used to derive good
statistical estimates and the piggybacking overhead is kept
as low as possible.

At one extreme Y ⇒ Fi , i.e. Y logically implies Fi . In
this case, no extra rows will be fetched; i.e. the horizont-
ally piggybacked subquery is trivial. Although there is
no piggybacking overhead in this case, statistics that we
obtain may be poor. Such a trivial horizontally piggybacked
subquery is said to be at the level H0. At the other extreme,
Y = true; i.e. all rows in the operand table will be fetched.
Although we can obtain all statistics about the table in
this case, the piggybacking overhead may be high. Such
a full horizontally piggybacked subquery is said to be at the
level H3.

There are two useful cases between the two extremes. Let

RB = {n | ∃y (y ∈ Ri ∧ Fi|y = true ∧ y · pid = n)},
where Fi|y denotes the truth value of condition Fi when
instantiated by row y from table Ri , and y · pid is the
identification number3 of the page that contains row y in
the data file. In other words, RB is the set of identification
numbers of retrieved pages. In the first case, we define the
piggyback qualification condition Y on table Ri as follows:

Y|x = true if and only if x · pid ∈ RB,

where x is a row from table Ri . This condition qualifies all
rows in the retrieved (file) pages for the query. Since the
newly qualified rows are in the retrieved pages, including
them in piggyback analysis does not incur any additional I/O
cost. Such a horizontally piggybacked subquery is said to be
at the level H1.

In the second case, we take a small set SB of extra sample
pages and define the piggyback qualification condition Y as
follows:

Y|x = true if and only if x ·pid ∈ RB ∨ x ·pid ∈ SB.

This condition qualifies not only the rows in the retrieved
pages but also the rows in chosen sample pages. Retrieving
rows in the sample pages requires some additional I/O cost.
However, statistical estimates may be improved by using

3pid can be considered as an implicit attribute (column) of the operand
table stored in a database.
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these additional sample rows. The sample pages can be
chosen randomly from the data file. The number of additional
sample pages depends on the given threshold value for the
required sample size. Note that if a strong correlation
among column values in retrieved pages exists, we can apply
the method of adaptive page sampling via cross-validation
mentioned in Example 2. Such a horizontally piggybacked
subquery is said to be at the level H2.

3.4. Integrated piggybacking levels

In general, piggyback analysis can be performed at different
levels. At one end of the spectrum, no piggyback analysis is
performed during query processing, and statistics for query
optimization are collected by applying the utility method.
There is no piggybacking overhead in this case. However,
as mentioned in Section 1, there are a number of serious
drawbacks with this approach. At the other end of the
spectrum, a full piggyback analysis is performed during query
processing, i.e. all pertinent statistics related to the accessed
data objects are obtained. A full piggyback analysis usually
requires significant overhead since all relevant data for the
accessed data objects must be evaluated, even if that data
is unnecessary to compute the result of the specific query.
As pointed out before, it is possible to perform piggyback
analysis at some level such that useful statistics are obtained
with slightly additional cost because unqualified data may
exist in the retrieved pages of a data file.

Our goal is to obtain as many statistics as possible within
a given tolerance of piggybacking overhead. The more
overhead allowed, the more statistics together with better
accuracy may be obtained. To achieve this goal, we define
the following levels of piggybacking:

(i) Level L0: No piggyback analysis is performed during
query processing.

(ii) Level L1: Frequencies of data objects accessed by
queries are recorded, and the validity of relevant
statistics is checked during query processing.

(iii) Level L2: Statistics on the accessed index(es),
column(s) (i.e. vertical piggybacking level V1) and
table(s) are collected and/or estimated during query
processing.

(iv) Level L3: Statistics at level L2 as well as those
on other indexed columns (i.e. vertical piggybacking
level V2) in a referenced table are collected and/or
estimated during query processing.

(v) Level L4: Statistics at level L3 as well as those on
other key-related columns (i.e. vertical piggybacking
level V3) in a referenced table are collected and/or
estimated during query processing.

(vi) Level L5: Statistics at level L4 as well as those on
the remaining columns (i.e. vertical piggybacking
level V4) in a referenced table are collected and/or
estimated during query processing.

(vii) Sub-level L
j
i : Each level from L2 to L5 can be

divided into four sub-levels based on the horizontal
piggybacking levels, i.e. sub-level L

j
i of level Li

(i = 2, 3, 4, 5) performs piggyback analysis based
on data from horizontal piggybacking at level Hj

(j = 0, 1, 2, 3).

At piggybacking level L0, the piggybacking option of the
system is disabled by a user. Since no piggyback analysis is
performed during query processing, there is no overhead.
To collect statistics, the DBA must invoke the statistics
collecting utility manually.

Piggybacking level L1 corresponds to the useful light-
weight piggybacking depicted in Figure 2. No statistics
on data in the database are actually collected during query
processing at this level of piggybacking.

At piggybacking level L2, statistics are collected and/or
estimated for the data objects (index(es), column(s) and
table(s)) that are referenced in a query.

At piggybacking levels L3–L5, statistics on extra columns
that are included by the vertically piggybacked queries at
levels V2–V4 (respectively, see Section 2.1.1) are collected
and/or estimated.

Note that piggybacking levels L2–L5 can be divided
further into sublevels by using horizontally piggybacked
queries. At sublevel L0

i , only those rows necessary to com-
pute the query result are considered for piggyback analysis.
At sublevel L1

i , each row, whether qualifying or not, from
any retrieved page are considered for piggyback analysis. At
sublevel L2

i , rows in additional sample pages are also used for
piggyback analysis. At sublevel L3

i , rows from all data pages
are used for piggyback analysis. Note that, if the sequential
scan method is invoked, sublevels L1

i –L3
i are the same, i.e.

rows from all data pages is considered since all data pages
are retrieved during query processing.

Usually, the higher the level (sublevel) is, the higher the
piggybacking overhead. A proper piggybacking level and
its sublevel in a system can be determined according to a
user-specified tolerance of overhead.

There are several tradeoffs a user must consider when
deciding on a piggybacking level. First, the overhead of var-
ious piggyback operations varies, sometimes significantly.
For a chosen piggybacking level, performance of most
queries may be affected only slightly, but some queries may
be substantially slower. Second, although piggybacking
techniques minimize additional I/O cost for statistics collec-
tion, they increase CPU consumption, which sometimes may
be significant [28]. Hence the system’s CPU capabilities and
memory resources should be considered when determining
a piggybacking level. Third, piggyback overhead increases
with concurrent requests due to the locking implications of
retrieving additional data in the face of concurrent updates.
Fortunately, locks placed due to piggyback statistics col-
lection operations could be released earlier. Moreover,
execution of some piggyback operations could be done in
the background, since the correctness criterion for statistics
collection is not as high as the one for query processing. How-
ever, additional overhead due to the concurrency control is
inevitable. A user may desire a lower piggybacking level in a
heavily loaded environment, or conversely raise it in a lightly
loaded environment. It would be desirable for the system
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TABLE 3. Example logical query processing operations.

Operation Symbol Description

Select σ Given a set of input rows, produce
qualified rows according to a given
selection criterion

Project π Given a set of input rows, produce rows
with a subset of columns according to a
given set of column names, eliminating
duplicate rows

Join �� For two given sets of input rows,
perform a join based on a given
condition and produce the output rows

Aggregate Varies An aggregation operation is one of
MAX, MIN, AVG, COUNT or SUM that,
given a set of input rows, produces an
appropriate value for the given (set of)
column(s)

to set automatically the piggybacking level, taking into
account system load and system performance criteria set by
the user, but techniques for doing so are beyond the scope of
this paper.

4. EFFICIENT INTERLEAVING OF QUERY
PROCESSING AND PIGGYBACK
OPERATIONS

When a DBMS supports piggybacking level L
j
i for i ≥ 2,

data statistics are analyzed and collected during query
processing. An important issue is how to perform efficiently
the piggyback statistics collection operations in conjunction
with normal query processing in the DBMS. In this section,
we present a multiple-granularity interleaving technique to
integrate efficiently a set of piggyback operations with a given
user query.

4.1. User query and piggyback operations

For a given DBMS, there are a defined set of query processing
primitives/operations at both the logical and physical levels.
Tables 3 and 4 list some example logical and physical query
processing operations. The piggyback (statistics collection)
operations considered here are ϕs(x), εs(x) and υs(x) that
were discussed in Section 2.2.

The operations in Table 3 are most relevant when
query processing is viewed from a design perspective,
whereas those in Table 4 are most relevant during physical
implementation. Also, we recognize that there is a difference
between the semantics of SQL and (classical) relational
algebra for some operations, because the former follows
the semantics that duplicates are not necessarily eliminated
(unless the keyword DISTINCT is specified), while the
latter follows set semantics, in which duplicate elements are
identical. This is why we define both the π and the π ′
operations and consider π ′ to be a ‘physical’ operation, for
example. π ′ followed by unique operation µ is equivalent
to π . If duplicate rows are tolerated in a query result in
practice, π ′ can be used without µ in query processing.

TABLE 4. Example physical query processing operations.

Operation Symbol Description

Duplicate
project

π ′ Given a set of input rows,
produce rows with a subset of
columns according to a given set
of column names without
duplicate elimination (bag
semantics)

Unique µ Remove duplicate values from a
given set

Scan 
 or SCAN Given a set of elements or a
composite input, produce each
element (or sub-component) one
at a time

Index scan ISCAN Produce each element of a given
input one at a time, using an
index

Gather � Collect component elements and
produce an element at a coarser
granularity level

Index
operations

δ, ι, κ , λ, χ These operations take an input
table and implicitly associated
index to produce one of: a set of
ids for qualified blocks (δ), the
index itself (ι), the data blocks
for a set of ids (κ), the set of
nodes along a path from the root
to the first qualified leaf node (λ)
and the set of qualified leaf nodes
via sibling pointers (χ )

Block nested
loop join

BNLJ Produce the join result of the two
given sets of rows using a block
nested loop join strategy

Loop LOOP Produce a number of copies of an
input stream, specified by the
given parameter

Sort SORT Reorder the values of the input
stream according to the specified
sort criterion

Count COUNT Count the number of elements in
the input stream

Example 3. As a concrete example of how we use the
notation to represent these operations, consider the simple
SQL query SELECT DISTINCT a1, a4 FROM R1 WHERE
a3 > 200. This can be written as Q3 = πa1,a4

(σ
a3>200(R1)).

If we would like to compute the maximum value of column
a3 in R1, then our piggyback operation can be represented
as P1 = ϕ

C1
(R1 · a3). The goal of the piggyback method

in this example is to effect an efficient interleaving of the
two operations Q3 and P1. Since the input operands of
both operations are the same, the piggyback method can
take advantage of the data transfer from disk required by the
user query to perform the tasks necessary for the piggyback
operation(s). In the rest of this section, we discuss various
elements of our technique for automating this process.
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resultSet
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FIGURE 3. Example data flow plans.

4.2. Data flow plans

A relational algebra expression4 for a query is often
represented as a query tree. Such a tree diagram implies
a certain flow of data, with the details being left to the
implementation and physical representation, which we refer
to as a high-level data flow plan for the query. When we put
detailed implementation information into the plan, it becomes
a low-level data flow plan, or often called as an execution
plan. As we will see, piggybacking can be integrated with
a data flow plan at various levels. We will use a similar
data flow plan to represent each piggyback operation. For a
query or piggyback operation ⊗, we use D(⊗) to denote
its associated data flow plan being considered. Figure 3
shows some examples of data flow plans. Note that since
the piggyback method encompasses both the physical and
logical views of data for query processing, we must reflect
various data granularities explicitly in our representation of a
data flow plan. We will discuss this aspect of data flow plans
and their representation in Section 4.4.

In order to avoid using extremely complicated diagrams,
we will not indicate the control flow in these plans directly,
but rather take the convention that each of the operations in
a data flow plan such as those shown in Figure 3 represents
an iterator construct that takes an input object and produces
output elements one at a time, as consumed by the next
operation in the data flow path.

Although the graphical representation of Figure 3 is useful
for presenting data flow relationships, space constraints lead
us to use an equivalent algebraic representation that is more
compact. In this notation, A → ⊗ → B indicates that A is
the input to operation ⊗ and B is the output. For operations
that have multiple inputs (e.g. join), we use a notation
similar to the Backus–Naur form of production grammars
to represent the connections between the various nodes in a
data flow plan. For example, D(Q4) (shown graphically in
Figure 3) would be represented by {R1 → α; R2 → α;
α →��

R1 .a1=R2 .b1
→ resultSet}, where the additional symbol

α simply represents a common point in the data flow plan.

4.3. Data semantics of operations

In order to manipulate data flow plans to generate correct
results, we must always guarantee that the semantics of
interleaved operations do not differ from the non-interleaved

4To simplify our discussion, we consider only the relational algebra
operations listed in Table 3 here, which are also the operations that can
be most effectively interleaved with piggyback operations. However, our
integration techniques can be extended to handle many other operations.

operations. For this purpose, we define a number of operation
classes (specifically for transformations on objects consisting
of collections of fixed-size vectors or rows) depending on the
data semantics preserved by the operations.

We say that an operation ⊗ preserves the full semantics
of its data input if there exists an inverse transformation
operation (at least conceptually), ⊗−1, such that X →
⊗ → ⊗−1 → X for any valid data input X. In
other words, the representation of X may change, but no
information is lost from the input to the output of ⊗. If
an operation X → ⊗ → Y preserves the full semantics of
its input X, then we say that its output Y is semantically
equivalent to input X (indicated as Y ≡

S
X). As an

example, the sort operation preserves the full semantics of
its input.

If R is a table, we use notation S(R) to represent its schema,
or set of column identifiers associated with each row in R.
A table R′ is a vertical subset of another table R (written as
R′ ⊆

V
R) if (1) S(R′) ⊆ S(R) and (2) there is a bijective

mapping between the row identifiers of R and R′ such that
each row (value) in R′ is contained in the corresponding
row (value) in R. A table R′ is a strict vertical subset of
another table R (written as R′ ⊂

V
R) if S(R) − S(R′) �= ∅.

R′ is a horizontal subset of another table R (indicated as
R′ ⊆

H
R), if there exists a bijective mapping between the

rows of R and R′ ∪ (R − R′)5 such that each row (value) in
R equals the corresponding row (value) in R′ ∪ (R − R′).
R′ is a strict horizontal subset of R (written R′ ⊂

H
R) if

R − R′ �= ∅.
An operation ⊗ on a set of rows is said to be a vertical

reduction if there exists some input X such that X →
⊗ → Y and Y ⊆

V
X. If an operation ⊗ performs

no strict vertical reduction on any input, it is said to
preserve vertical semantics. An operation ⊗ on a set of
rows is said to be a horizontal reduction if there exists
some input X such that X → ⊗ → Y and Y ⊆

H
X.

Operations which preserve horizontal semantics perform no
strict horizontal reduction on any input. As an example, the
physical project operation π ′ (without duplicate elimination)
preserves horizontal semantics, and the select operation
preserves vertical semantics.

Table 5 shows the semantics-preserving properties of some
relational query and piggyback operations.6 The scan (
)
and gather (�) operations will be described in greater detail
in Section 4.4. The standard aggregate functions of SQL (i.e.
MAX, MIN, AVG, SUM and COUNT), indicated in the table
by aggr , all have the same semantics preservation behavior,
as do all the piggyback statistics collection operations,
represented by stat in the table.

4.4. Data granularities

In order to interleave operations at multiple levels of data
granularity, we introduce a notation for describing explicitly
the granularity at which a given operation is processed. The

5We assume that each row in a table has a unique (row) identifier. R−R′
contains those rows in R whose identifiers are not for any row in R′.

6Assume that the operations in Table 5 are non-trivial.
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TABLE 5. Semantics-preserving properties.

out ≡S in out ⊂H in out ⊂V in

sort Yes No No

 Yes No No
� Yes No No
σ No Yes No
π ′ No No Yes
π No No Yes
µ No Yes No
�� No No No
aggr No No No
stat No No No

TABLE 6. Data granularities.

Data granularity Notation

Scalar value v
Set of distinct scalar values S
Index node n
Set of distinct nodes (e.g. tree, path) T
Vector or row t
Block of rows b
Set of distinct blocks (extent) E
Set of distinct rows (table) R

graphical notation ⊗ g2
g1 indicates that operation ⊗ has an

input granularity of g1 and an output granularity of g2, where
g1 and g2 are not necessarily the same.

Table 6 lists the data granularities that we have identified as
important in the description of data flow for the various user
query and piggyback statistics collection operations. The
table also gives a notational identifier for each level of data
granularity. The vector-based data collections of Table 6 have
a sequential containment relationship to one another. In other
words, a block/page (b) is made up of a collection of rows
(t), a block extent (E) is composed of multiple blocks and a
table (R) consists of multiple extents.

As an example of application for these granularities,
consider a query involving a selection σ operation. Figure 4a
shows explicitly that both the input and output objects are at
the table (granularity) level (as indicated by R). However,
in order for the selection and any piggyback operations to be
interleaved row by row, we must consider an equivalence
between the σ operation at the row level and the table
level.

Figure 4b shows the explicit row-level (t) selection
operation in a way that is logically equivalent to the table-
level σ operation. So, Figure 4b also illustrates the fact that a
table can be converted into a stream of rows ( 


t
R) and that

a stream of rows can be gathered into a single table ( �
R
t ).

Note that the equivalence shown in Figure 4 is bi-directional,
and that we can expand or collapse operations as necessary
to represent them at the appropriate level of data granularity
for efficient interleaving.

As in Section 4.2, the graphical representation of Figure 4
is illustrative, but space constraints lead us to use the

resultSet
|

R
R

|
R1

⇔

resultSet
|

R
t

|
t���� t

|
t

Σ

Γ

R

|
R1

(a) (b)

FIGURE 4. Operations with explicit data granularities.

equivalent algebraic representation, augmented with explicit
indicators of data granularity. In this notation,7 A → ⊗∣∣g2

g1
→

⊕∣∣g3
g2

→ B indicates that A is the input to operation ⊗, which
has an input granularity of g1 and an output granularity of g2.
The output of ⊗ is then the input to ⊕, and B is the output
of the entire process. Note that the output granularity of ⊗
must match the input granularity of ⊕. So, in this notation,
Figure 4a would be represented as R1 → σθ

∣∣R
R → resultSet.

For operations that have multiple inputs (e.g. join) or that
have outputs connected to multiple consumers as a result of
combining multiple data flow plans, we again use the same
notation described in Section 4.2, augmented with explicit
data granularities. For example, a table-level join A �� B

that produces a table-level output C would be represented by

{A → α; B → α; α → ��∣∣RR, R→ C}.

4.5. Multiple-granularity query processing

The basic idea of the piggyback method is to modify
the normal processing of a user query so that statistical
information about relevant data can also be efficiently
collected during its execution. In this subsection, we discuss
how to interleave the operations contained in a query data
flow plan with a set of compatible piggyback operations.

4.5.1. Multiple-granularity interleaving algorithm
Our algorithm for multiple-granularity interleaving integrates
the data flow plan of a user query with a set of piggy-
back operations so that the operations can be processed
efficiently, subject to the performance tradeoffs of the current
piggybacking level. We assume that such a data flow plan
for the user query is determined by the query optimizer
prior to the execution of this algorithm. However, the data
flow plans for the piggyback operations as well as their
integration with the data flow plan for the user query are
to be determined by this algorithm. For each piggyback
operation, there may be multiple feasible data flow plans,
each of which represents one data flow path8 from the
underlying table for the argument to the output. We can
view all the feasible data flow plans (paths) for a piggyback

7Symbols ⊗, ⊕ and � will be used to denote different operations.
8Unlike a data flow plan for a piggyback operation, the data flow plan

for a user query may have multiple data flow paths from its leaves to its root.
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operation together as a non-deterministic data flow plan for
it. The task of our algorithm is to determine a data flow
path in the non-deterministic plan that can be most efficiently
interleaved with the data flow plan for the given user query.
Knowledge is assumed to be embedded in the system itself
about which statistics are possible to collect via piggybacking
and which data flow paths for each piggyback operation
can be instantiated for the current query. In the following
discussion, we use D̃(⊕) to denote the non-deterministic data
flow plan for piggyback operation ⊕.

Note that the data flow plan for a user query from a query
optimizer may not explicitly express all available levels of
data granularity in the system. Hence our algorithm must first
expand the plan to include the implicit levels implemented in
the system.

For each user query over which piggybacking is to take
place, our algorithm runs as follows:

Algorithm I. Multiple-granularity interleaving for query
and piggyback operations

• Input: Data flow plan D(Q) for user query Q, as
produced by the query optimizer

• Output: Integrated data flow plan for query Q and
the relevant piggyback operations

(1) Expand all data flow paths in D(Q) to match
available levels of data granularity and physical
characteristics implemented by the system, using
transformation rules F4, F5 and F7 described in
Section 4.5.3.

(2) Determine the set, O, of data objects (i.e. tables,
indexes and columns) that are referenced in D(Q).

(3) Augment Q (and its D(Q)) vertically to a
piggybacking level Lk (1 ≤ k ≤ 5), according to
the desired overhead tolerance. Denote the vertically
augmented plan as Dk(Q).

(4) If k > 2, determine the set O ′ of additional column
objects according to piggybacking level Lk and let
O = O ∪ O ′.

(5) Based on the objects in O, instantiate the set
P = {P1, P2, . . . , Pn} of potential piggyback
operations for query Q. Note that, unless the
piggybacking level is L1, each piggyback operation
in P is assumed to achieve the highest accuracy level
(i.e. ϕs(x) to calculate an exact statistic s for object
x ∈ O). If the piggybacking level is L1, for each
object x ∈ O, set P contains one or more υs(x)’s
(to validate the data statistics on x) and one ρ(x) (to
update the access statistic/frequency for x).

(6) For each piggyback operation Pi ∈ P , find the table
object oj ∈ O such that the argument of Pi is related
to oj . Note that there may be multiple references to
a single underlying table object in a query data flow
plan, and we must consider each of these references
as possible candidates for piggybacking. For all such
objects oj ’s:

(a) Merge each path (feasible plan) in D̃(Pi) with
a path starting from an instance of oj in Dk(Q)

as far as possible toward the root. If there exists
at least one path in D̃(Pi) that can be merged,
choose the best of these paths (denoted by D(Pi))
and loop to Pi+1. The process of merging and
ranking different possible paths will be discussed
in Section 4.5.2.

(b) If no merging is possible for any instance of
oj in Dk(Q), downgrade Pi to P ′

i (if possible),
and attempt to merge the paths in D̃(P ′

i ) with
a path from an instance of oj in Dk(Q). If
there exists at least one path that can be merged,
choose the best one (denoted by D(Pi)) and loop
to Pi+1.

(c) If no merging for the downgraded operation
P ′

i is possible, augment Q horizontally to a
piggybacking sub-level L

j
k (1 ≤ j ≤ 3) at a

proper point on the paths from an instance of oj

to the root in Dk(Q), according to the overhead
tolerance specified by the user, and attempt to
merge paths in D̃(P ′

i ) with the horizontally

augmented plan D
j
k (Q). If there exists at least

one path that can be merged, choose the best one
(denoted by D(Pi)) and loop to Pi+1.

(d) If no merging for D̃(P ′
i ) and D

j
k (Q) is possible,

further downgrade P ′
i to P ′′

i (if possible), and

attempt to merge paths in D̃(P ′′
i ) with D

j
k (Q). If

there exists at least one path that can be merged,
choose the best one (denoted by D(Pi)) and loop
to Pi+1.

(e) If no merging is possible after downgrading Pi

and augmenting Q, no statistical information will
be collected by Pi . Loop to Pi+1.

(7) Remove useless non-trivial vertical and horizontal
piggybacking operators from D

j
k (Q) if any.

(8) Collapse unnecessary expanding in the integrated
data flow plan, using transformation rules F4, F5,
F6 and F7 described in Section 4.5.3.

(9) Where possible, combine piggyback operations of
the same type connected at the same point into an
equivalent vector operation. For example, if the
maximum values of three different columns in a table
are being collected during the same scan, all should
be collected as a single (vector) operation.

(10) Return the integrated9 data flow plan D
j
k (Q) +

D(P1) + · · · + D(Pn).

In fact, there are three phases in Algorithm I, i.e.
the preparing phase (Steps 1–5), the merging phase
(Steps 6(a)–(e)) and the cleaning phase (Steps 7–10).

The preparing phase identifies the potential piggyback
operations for a given query and prepares the query data
flow plan for piggybacking. Specifically, Step 1 expands
the data flow plan for query Q to the implemented levels
of data granularity and physical characteristics so that more
piggyback operations may have a chance to merge with

9We use the ‘+’ symbol in the algorithm only to indicate that the data
flow plans have been combined in some appropriate way.
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Q. Step 2 identifies the set O of data objects that are
related to query Q. To maximize set O so that more
piggyback operations can be integrated, Step 3 applies
vertical piggybacking to include more column data objects.
Note that additional objects are added into the set only
if the piggyback level is Lk with k ≥ 2. Step 4 adds
such objects into the set. Step 5 determines the set P of
potential piggyback operations that can be performed on
objects in O. Unless the piggybacking level is L1, in which
case the piggyback operations update access frequencies and
validate statistics for the accessed data objects to realize the
lightweight piggybacking depicted in Figure 2, the piggyback
operations are initially set to calculate the relevant statistics.
Note that a piggyback operation may be downgraded to a
lower accuracy level (e.g. estimate rather than calculate a
statistic) later on.

The merging phase tries to integrate each potential
piggyback operation with the given query plan. Step 6(a)
merges the common work between the piggyback operation
and the given query as much as possible. When no merging
is possible, Step 6(b) downgrades the piggyback operation
to a lower accuracy level (if possible). If the downgraded
operation still cannot be merged, Step 6(c) augments the
query (plan) horizontally to increase the chance for merging.
If it still fails, Step 6(d) downgrades the piggyback operation
further (if possible). If no merging is possible after all
downgrading and augmenting efforts, the algorithm skips the
current piggyback operation and moves to the next one.

The cleaning phase cleans up unnecessary augmenting/
expanding done in the previous steps and combines some
operations into one if possible. Note that vertical and
horizontal piggybacking retrieves extra columns and rows
from a table, but does not guarantee that the extra data is
always used for piggyback operations (Step 6(e)). Step 7
removes useless augmenting from the final plan. Similarly,
expanding some paths in the query data flow plan does not
guarantee that the expanded details are useful for piggyback
operations. Step 8 collapses unnecessary expanding in the
query plan. Sometimes several piggybacked operations at
the same point in a path of the data flow plan can be
combined into one vector operation that can be processed
simultaneously to improve efficiency, which is done at
Step 9.

In the following subsections, we elaborate on some more
details of the algorithm. In particular, we describe the three
basic strategies for integrating two data flow plans in Section
4.5.2. In Section 4.5.3, we provide some basic transformation
rules and heuristics that can be used by the algorithm to
determine when a particular integration is possible or more
likely to be efficient. These techniques are demonstrated in
Section 4.5.4, where we give some concrete examples of how
the data flow plans for a user query and a set of piggyback
operations can be integrated.

4.5.2. Integrating data flow plans
We have identified three general classes of techniques to
integrate data flow plans for a user query and its compatible

�a1,a4 �a1,a4

�a1 >200 �a1 >200C1 (a3)

SCAN

R1

�
C1 (a3)

�

SCAN

R1

⇒
SCAN

R1

FIGURE 5. Merged data flow plan for Q3 and P1.

πa1,a4

σa3>200

ISCAN

R1

⇒

πa1,a4

σa3>200

σa3>200 ∨ θ

ISCAN

R1

FIGURE 6. Augmented data flow plan for Q3.

piggyback statistics collection operations:

• Merge (see Step 6(a))—If an initial sequence of sub-
operations from two data flow plans performs the same
set of manipulations on the same data input, they can
be performed at the same time, rather than repeated for
each data flow plan. The reading of data blocks is a good
example of this technique, as shown in Figure 5, using
the data flow plans for Q3 and P1 from Figure 3. Note
that transformation rules F1–F3, which will be discussed
in the next subsection, allow merging to be also done for
two data flow plans with convertible initial sequences
(not necessarily identical).

• Augment (see Steps 3 and 6(c))—This technique applies
only to user queries. A query (and its plan) can
be augmented vertically, i.e. vertical piggybacking
discussed in Section 2.1.1, to obtain more statistics if
the overhead tolerance specified by the user allows.
On the other hand, if a user query retrieves a given
amount of data and a particular piggyback operation
would only be possible with a larger set of data, the
original query plan can be augmented horizontally as
discussed in Section 2.1.2. As an example, an added
node in the plan could permit additional rows to be read
into memory, and a subsequent plan node would filter
these additional rows to return only those rows required
by the query. This is demonstrated in Figure 6, where the
presumption is that the larger set of data introduced by
the additional condition θ would, for example, provide
better estimates of some statistics for columns other
than a3.

• Downgrade (see Steps 6(b) and (d))—This technique
applies only to piggyback operations. When the
available data for a query is not sufficient to perform
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ϕ
C4(a2)

σa3>200

ISCAN

R1

⇒

ε
C4(a2)

σa3>200

ISCAN

R1

FIGURE 7. Downgraded data flow plan for P1.

a more accurate statistical analysis, the given opera-
tion may be downgraded. For example, if a table is not
read by a full scan, but a sufficient number of blocks are
retrieved, a piggyback operation to find the distribution
of a column could be downgraded to an operation to
estimate or verify the distribution. Thus, the plan on the
left in Figure 7 could have been the original piggyback
operation requested, but the plan on the right is the result
of downgrading.

When comparing different ways to merge the paths in the
(deterministic) data flow plan for a query with the paths
in the non-deterministic data flow plan for a piggyback
operation, we must estimate the utility of each choice in
order to determine the ‘best’. Since the benefit of merging
the paths from two data flow plans is to exploit common
processing, paths should be merged ‘as much as possible’. If
we weight the sub-operations in a data flow path according
to the amount of work performed for the path, we can use
the amount of common work divided by the amount of total
work to evaluate the benefit of that choice. The actual values
for the weighting functions associated with different paths
should reflect the relevant heuristics described in the next
section.

For example, one data flow path for finding the maximum
value of a column might perform a sort on that column
(the first sub-operation, representing 99% of the total effort)
followed by a retrieval of the first row from the sorted
result (the second sub-operation, representing 1% of the total
effort). An alternative data flow path might perform a full
scan of the table (the first sub-operation, representing 80%
of the total effort) with a test of each row to determine if
the maximum should be updated (the second sub-operation,
representing 20% of the total effort). If only the first sub-
operation from the two data flow paths for the piggyback
operation can be shared with the paths from a query data
flow plan, merging the first data flow path is preferred since
99% of the work is shared, compared with 80% with the
second path.

4.5.3. Transformations and heuristics
When considering possible interleavings of two or more data
flow plans, it is useful to take advantage of a number of
transformation rules that we have identified, presented in the
following list. We use Sin(⊗) to indicate the input schema
required by an operation ⊗ with a set of rows as input and
Sout(⊗) to indicate the output schema produced.

F1: For X → ⊗ → Y , if Y ≡
S

X, then {X → ⊕} ⇒
{Y → ⊕}
In other words, if an operation ⊗ preserves the full
semantics of its input X, then its output Y may be
connected to another operation ⊕ requiring X as an
input.

F2: For X → ⊗ → Y , if Y ⊆
V

X and Sin(⊕) ⊆ Sout(⊗),
then {X → ⊕} ⇒ {Y → ⊕}
In other words, if an operation ⊗ performs a vertical
reduction, then Y can replace X as an input only to
operations requiring an acceptable vertical subset of X.
For example, if S(X) = {a1, a2, a3} and ⊗ = π ′

a2,a3
,

then Y can only be used as an input to operations ⊕ for
which Sin(⊕) ⊆ {a2, a3}.

F3: For X → ⊗ → Y , if Y ⊆
H

X and Y is an acceptable
subset10 of X for operation ⊕, then {X → ⊕} ⇒
{Y → ⊕}
In other words, if an operation ⊗ performs a horizontal
reduction, then Y can replace X as an input only to
operations requiring an acceptable horizontal subset
of X.

F4: {X → ⊗∣∣g3
g1

→ Y } ⇔ {X → 

∣∣g2
g1

→ ⊗∣∣g3
g2

→ Y }
Scan operations (
) can be added/removed at the input
to make a given operation ⊗ accept an input at a
finer/coarser level of data granularity.

F5: {X → ⊗∣∣g3
g1

→ Y } ⇔ {X → ⊗∣∣g2
g1

→ �
∣∣g3
g2

→ Y }
Gather operations (�) can be added/removed to make a
given operation ⊗ produce an output at a finer/coarser
level of data granularity.

F6: {⊕∣∣g2
g1

→ ⊗∣∣g3
g2

→ ⊗−1
∣∣g2
g3

→ �∣∣g4
g2
} ⇒ { ⊕∣∣g2

g1
→ �∣∣g4

g2
}

In other words, a pair of mutual inverse operations (such
as � and 
) with appropriately matching granularities
can be collapsed and replaced by an identity operation.

There are other transformation rules that are not listed above.
For example,

F7: {X → π
∣∣R
R → Y } ⇔ {X → π ′∣∣R

R → µ
∣∣R
R → Y }

Such rules are mainly used to give more implementation
details (i.e. physical characteristics) of an operation, which
is needed when interleaving at a higher level is impossible.
If no interleaving is eventually done at a lower level, the
implementation details can also be hidden by applying
the reverse transformation. To simplify the algorithm
description, we use label F7 to represent a class of such
transformation rules.

We have also identified a number of heuristics
intended to improve the efficiency of the data flow
plan integration techniques described in Section 4.5.2, which
include:

H1: Prefer finer levels of granularity to piggyback.
Sharing of data between two plans should generally be
done at the finest available levels of data granularity.
So block or block set (extent) levels are preferable to

10Acceptance can be determined, for example, by a threshold value for a
relative sample size.
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table level, and row level is preferred to block level.
Finer levels of granularity allow for a tighter integration
between the query and piggyback operations, sharing
the associated overhead.

H2: Merge as much as possible.
When two plans can be merged, it is most efficient to
merge as many of the common sub-operations along the
path toward the root of the tree as possible. This
maximizes the common work that can be shared.

H3: Merge to the minimum support point.
In other words, operations should share data at the
point where the minimum data requirement of a given
operation is met. For example, given a choice between
merging to before or after a σ operation (implying that
the output of σ is acceptable), merge to beyond the σ ,
so that the smaller set of data will be used to perform
the piggyback operation. The overhead is therefore
minimized.

H4: Minimize augmenting and downgrading.
In general, query plans should be augmented only as
necessary, since augmentation usually implies more
work than the user query in isolation. Piggyback
operations should be downgraded as little as possible,
so as to guarantee the quality of the statistics that can
be collected by piggybacking.

H5: Combine individual piggyback operations into a single
operation if possible.
For example, some column-statistics collection opera-
tions such as finding the maximum and minimum
column values on the same table can be combined into a
single vector operation and performed during one scan
of the table.

4.5.4. Examples of interleaving
To show how Algorithm I makes use of the integra-
tion techniques and transformation rules described in
Sections 4.5.2 and 4.5.3 to interleave the data flow plans for
a user query and the relevant piggyback operations, let us
consider two examples in this subsection. Once a fully inte-
grated data flow plan has been built, it can be mapped into
a set of manipulations to be performed on each data element
as it is made available in memory.

Example 4. Let us again consider the simple query Q3
in Example 3 in Section 4.1 (Figure 3), whose plan can be
represented as

D(Q3) =
{
R1 → σa3>200

∣∣∣RR → πa1,a4

∣∣∣RR → resultSet
}

.

Step 1 in Algorithm I expands the query plan using
transformation rules F4, F5 and F7 as follows:

D(Q3) =
{
R1 → 


∣∣∣ER → 


∣∣∣bE → 


∣∣∣tb → σa3>200

∣∣∣tt → �

∣∣∣bt
→ �

∣∣∣Eb → �

∣∣∣RE → 


∣∣∣ER → 


∣∣∣bE → 


∣∣∣tb
→ π ′

a1,a4

∣∣∣tt → �

∣∣∣bt → �

∣∣∣Eb → �

∣∣∣RE → µ

∣∣∣RR
→ resultSet

}
.

In this example, we focus on illustrating the merging
technique and do not consider non-trivial vertical or
horizontal piggybacking. In other words, Steps 3 and 6(c)
in Algorithm I do not add any additional columns or rows,
assuming the piggybacking level is L0

2. Steps 2–3 identify the
set of relevant data objects O = {R1, a1, a3, a4}, assuming
no index is referenced. Step 5 determines the set of
potential piggyback operations for objects in O. Examples
of such piggyback operations include: P1 = ϕC1

(a3), P3 =
ϕT2

(R1) and P4 = ϕT1
(R1), whose data flow plans are as

follows:

D(P1) =
{
R1 → 


∣∣∣ER → 


∣∣∣bE → 


∣∣∣tb → ϕC1(a3)

∣∣∣vt → C1(a3)
}

,

D(P3) =
{
R1 → 


∣∣∣ER → 


∣∣∣bE → ϕT2(R1)

∣∣∣vb → T2(R1)
}

,

D(P4) =
{
R1 → 


∣∣∣ER → 


∣∣∣bE → 


∣∣∣tb → ϕT1(R1)

∣∣∣vt → T1(R1)
}

.

Note that the data flow plans for the piggyback operations
are specified at the same levels of data granularity and
physical characteristics as those for the query plan to facilitate
interleaving with the query, and we use the same notations
for various statistics in Table 1.

If we merge two plans D(Q3) and D(P1) following
Step 6(a) in Algorithm I, we get a combined data flow
plan of

D(Q3) + D(P1)

=
{
R1 → 


∣∣∣ER → 


∣∣∣bE → 


∣∣∣tb → α;

α → σa3>200

∣∣∣tt → �

∣∣∣bt → �

∣∣∣Eb → �

∣∣∣RE
→ 


∣∣∣ER → 


∣∣∣bE → 


∣∣∣tb → π ′
a1,a4

∣∣∣tt
→ �

∣∣∣bt → �

∣∣∣Eb → �

∣∣∣RE → µ

∣∣∣RR → resultSet;

α → ϕ
C1(a3)

∣∣∣vt → C1(a3)

}
.

D(P3) and D(P4) can also be merged into the combined plan
in a similar way as follows:

D(Q3) + D(P1) + D(P3) + D(P4)

=
{
R1 → 


∣∣∣ER → 


∣∣∣bE → β;
β → 


∣∣∣tb → α;
β → ϕ

T2(R1)

∣∣∣vb → T2(R1);
α → σa3>200

∣∣∣tt → �

∣∣∣bt → �

∣∣∣Eb → �

∣∣∣RE → 


∣∣∣ER
→ 


∣∣∣bE → 


∣∣∣tb → π ′
a1,a4

∣∣∣tt → �

∣∣∣bt → �

∣∣∣Eb → �

∣∣∣RE
→ µ

∣∣∣RR → resultSet;
α → ϕ

C1(a3)

∣∣∣vt → C1(a3);
α → ϕ

T1(R1)

∣∣∣vt → T1(R1)
}

.
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Finally, Step 8 in Algorithm I collapses the plan according
to F4, F5 and F6 to get

D(Q3) + D(P1) + D(P2) + D(P3)

=
{
R1 → 


∣∣∣bR → β;
β → 


∣∣∣tb → α;
β → ϕ

T2(R1)

∣∣∣vb → T2(R1);
α → σa3>200

∣∣∣tt → π ′
a1,a4

∣∣∣tt → �

∣∣∣Rt
→ µ

∣∣∣RR → resultSet;
α → ϕ

C1(a3)

∣∣∣vt → C1(a3);
α → ϕT1(R1)

∣∣∣vt → T1(R1)
}

.

Example 5. Let us consider another example that illus-
trates the techniques of augmenting a user query and down-
grading a piggyback operation. Let R3(d1, d2, d3, d4, d5) be
a table, which has only one index Idx(d2) and two key-related
columns d2 (primary key) and d3 (referenced by a foreign
key). Consider a query Q5 whose data flow plan generated
by the query optimizer is as follows:

D(Q5) =
{
R3 → ISCANd2>300

∣∣∣ER → π ′
d1,d2,d4

∣∣∣EE
→ σd2>300

∣∣∣RE → πd1,d4

∣∣∣RR→ resultSet

}
.

After being expanded by Step 1 in Algorithm I, the plan
becomes:

D(Q5) =
{
R3 → ISCANd2>300

∣∣∣ER → π ′
d1,d2,d4

∣∣∣EE → 


∣∣∣bE
→ 


∣∣∣tb → σd2>300

∣∣∣tt → �

∣∣∣bt → �

∣∣∣Eb → �

∣∣∣RE
→ 


∣∣∣ER → 


∣∣∣bE → 


∣∣∣tb → π ′
d1,d4

∣∣∣tt → �

∣∣∣bt
→ �

∣∣∣Eb → �

∣∣∣RE → µ

∣∣∣RR → resultSet

}
.

Step 2 in Algorithm I identifies the set of relevant data
objects O = {R3, d1, d2, d4, Idx(d2)}. Assume that the user-
specified piggyback level is L2

4. Steps 3–4 add object d3 into
set O, i.e. O = {R3, d1, d2, d3, d4, Idx(d2)}. The vertically
augmented plan is as follows:

D4(Q5) =
{
R3 → ISCANd2>300

∣∣∣E
R

→ π ′
d1,d2,d3,d4

∣∣∣E
E

→ 


∣∣∣b
E

→ 


∣∣∣t
b
→ σd2>300

∣∣∣t
t
→ �

∣∣∣b
t
→ �

∣∣∣E
b

→ �

∣∣∣R
E

→ 


∣∣∣E
R

→ 


∣∣∣b
E

→ 


∣∣∣t
b
→ π ′

d1,d4

∣∣∣t
t

→ �

∣∣∣b
t
→ �

∣∣∣E
b

→ �

∣∣∣R
E

→ µ

∣∣∣R
R

→ resultSet
}
,

which is almost the same as the previous D(Q5) except that
column d3 has been added into the target list of π ′ following
ISCAN.

One of the potential piggyback operations determined by
Step 5 is P5 = ϕ

C5
(d3), i.e. calculate the average column

length of d3. Clearly, no feasible data flow plan of P5 can
be merged with D(Q5) by Step 6(a) in Algorithm I since
there is no full scan for d3. Hence, we downgrade P5 to
P ′

5 = εC5(d3) according to Step 6(b) in Algorithm I, i.e. to
estimate the statistic rather than calculate the exact value.
A feasible data flow plan for P ′

5 is:

D(P ′
5) =

{
R3 → ISCANd2>300 ∨ θ

∣∣∣ER → π ′
d3

∣∣∣EE → �

∣∣∣RE
→ ε

C5(d3)

∣∣∣vR → C5(d3)
}

,

where condition θ makes the index scan ISCAN to return
some extra random sample pages (blocks), assuming the
tuples in the qualified pages are not sufficient to form an
acceptable sample set.

To merge the query plan with D(P ′
5), Step 6(c) in

Algorithm I augments Q5 horizontally to piggybacking
level L2

4. The augmented query plan D2
4(Q5) can be then

merged with D(P ′
5) as follows:

D2
4(Q5) + D(P ′

5)

=
{
R3 → ISCANd2>300 ∨ θ

∣∣∣ER → π ′
d1,d2,d3,d4

∣∣∣EE → α;
α → �

∣∣∣RE → ε
C5(d3)

∣∣∣vE → C5(d3);
α → 


∣∣∣bE → 


∣∣∣tb → σd2>300

∣∣∣tt → �

∣∣∣bt
→ �

∣∣∣Eb → �

∣∣∣RE → 


∣∣∣ER → 


∣∣∣bE
→ 


∣∣∣tb → π ′
d1,d4

∣∣∣tt → �

∣∣∣bt → �

∣∣∣Eb
→ �

∣∣∣RE → µ

∣∣∣RR → resultSet
}

.

Note that this merge utilizes the vertical reduction
transformation rule F2. Finally, Step 8 in Algorithm I
simplifies the combined plan as follows:

D2
4(Q5) + D(P5)

=
{
R3 → ISCANd2>300 ∨ θ

∣∣∣ER
→ π ′

d1,d2,d3,d4

∣∣∣EE → α;
α → �

∣∣∣RE → ε
C5(d3)

∣∣∣vE → C5(d3);
α → 


∣∣∣tE → σd2>300

∣∣∣tt → π ′
d1,d4

∣∣∣tt
→ �

∣∣∣Rt → µ

∣∣∣RR → resultSet
}

.

5. OTHER RELATED ISSUES

In this section, we discuss several related issues that may
occur when the piggyback method is incorporated into a real
system.

5.1. Initial statistics

The piggyback method collects statistics during query
processing, providing a database server with a self-tuning
capability. In other words, the system is expected to generate

The Computer Journal, Vol. 47, No. 2, 2004



Piggyback Statistics Collection for Query Optimization 239

increasingly better execution plans since more accurate statis-
tics can be collected or estimated by the piggyback method
during server operation. A shortcoming of this approach is
that the system may initially produce poor execution plans.
One possible solution is to use ‘default values’ for initial
statistics, though this will almost certainly result in subop-
timal execution plans for some classes of queries. Alterna-
tively, the server may use heuristic query optimization tech-
niques when insufficient statistics are present upon which to
base cost-based optimization. Unfortunately, not all DBMSs
support both heuristic and cost-based query optimization.
Other approaches are to use the utility method to acquire the
initial statistics, or implement piggybacking techniques into
the system’s database load utility to compute a subset of
relevant statistics when the data is first loaded, a technique
employed by IBM’s DB2 and iAnywhere Solutions’ SQL
Anywhere.

5.2. Piggybacking frequency

There is no need to perform piggyback analysis for every
user query, since statistics may already be up-to-date and
also inexact statistics may not be detrimental to execution
plan selection, though poor execution plans may be chosen
if statistics are wildly inaccurate. Our experiments with a
commercial database system demonstrated that, in extreme
cases, accurate statistics can make the difference between
seconds and days for a simple join query over moderately
sized tables. Of course, queries that exhibit this severe skew
are relatively rare. However, inaccurate statistics can lead
to extreme performance degradation in actual practice. A
question then arises: when is the proper time to perform
piggyback analysis?

A straightforward technique is to perform piggyback
statistical analysis periodically, e.g. every 100 queries. This
method may not be effective since statistical change may not
follow a fixed pattern. Another technique is to let the DBA
manually enable/disable piggybacking when appropriate,
though with this approach the self-tuning advantages of
piggybacking now largely vanish.

A better technique is to let the system decide when
piggybacking is advantageous, based on system load and
query performance. When the performance of a query
worsens, the server could activate piggybacking for relevant
statistics to ensure that these are up-to-date. The server
could choose an appropriate piggybacking level based on the
current system load: the heavier the load, the lower the piggy-
backing level. If piggybacking level 1 is activated, the server
can automatically invoke the utility method for the relevant
data objects when the system load is light.

Alternatively, piggybacking level 1 can be set as the
default level. When a significant number of statistics
are found to be inaccurate, the server can raise the
piggybacking level or invoke the utility method to gather the
appropriate statistics. Once accurate statistics are computed
the server can deactivate piggybacking until statistics are
again out-of-date.

5.3. Inconsistent statistics

Invariably, at any given time some database statistics will
be up-to-date, while others will not; this problem exists
whether or not piggybacking is utilized. For systems that only
support a utility method for statistics collection, the DBA
must decide, sometimes subjectively, which data objects
are candidates for re-analysis. With piggybacking, the
opportunity exists for the system to objectively determine
which data objects require re-analysis, and to perform this
analysis automatically. However, there is still a chance
that some statistics required to optimize a given query are
not up-to-date. In this case, we could employ the following
solution. During optimization, the server can analyze the
consistency of those statistics relevant to a specific request.
If an inconsistency is identified, either default statistics
are used, or the utility method is invoked on the fly to
collect up-to-date statistics for the relevant objects. For our
piggybacking framework, an improvement can be made by
recording the corresponding data objects for the lightweight
piggybacking (i.e. piggybacking level 1) illustrated in
Figure 2 if the system chooses to use the default statistics for
optimizing a specific query when an inconsistency occurs.

To reduce the chance for inconsistent statistics to occur
for a specific query, the technique suggested in [29] could
be utilized to identify the essential set of statistics needed
for optimizing the query. These statistics are then used
to guide piggybacking statistics collection during query
processing and/or enhance the lightweight piggybacking to
update statistics off-line automatically. It is not necessary
to maintain statistical consistency for all data objects in
the entire database, as long as those statistics needed for
optimizing frequently used queries are consistent. Another
technique to reduce the chance for an inconsistency to occur
is to apply cascading statistics updates during piggybacking
statistics collection. With cascading statistics updates, if
one statistic is updated, other related statistics may also be
updated. For example, if statistic C3 (Table 1) for a primary
key column is updated, the corresponding statistic T1 is
updated as well. In case an inconsistency is identified and
cannot be resolved during on-line piggybacking, the relevant
data objects are recorded for the lightweight piggybacking to
update statistics off-line automatically. On the other hand, as
a practical note, statistics are not required to be very accurate
and a certain degree of inconsistency is usually tolerated in
real systems.

From the above discussion, it should be clear that the
piggyback method cannot completely replace the utility
method; rather, they complement each other. Piggybacking
can reduce the invocation frequency of the statistics collecting
utility and, moreover, such collection should occur only for
frequently accessed data objects. On the other hand, the
utility method can be used to collect statistics that cannot
be collected via piggyback analysis or when it may be too
expensive to do so. Using each method effectively can
generally improve system efficiency and reduce the need for
intervention by a DBA. When systems provide only a utility
method, our experience tells us that DBAs are reluctant to
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FIGURE 8. Architecture of query processing with piggybacking.

invoke it, due to its effect on system performance, unless
absolutely necessary. The piggyback method provides a
remedy to this problem.

5.4. Piggybacking for user-defined functions

Some types of statistics can be collected with piggybacking
but not the utility method. Examples of such statistics are
those for user-defined functions, e.g. the estimated number
of read/write requests executed each time a UDF is executed
and the estimated number of machine instructions executed
when each function is executed. Since the utility method can
only be used to gather statistics on the underlying database,
it cannot be used to collect statistics about UDFs. However,
such statistics are useful for query optimization. The way to
collect them in existing commercial systems is to ask users
to input them manually [30]. An obvious drawback for this
approach is that users may not have sufficient knowledge
about compilers and operating systems, and hence their
estimates of such statistics may be far from being accurate.
With piggybacking, the system can automatically collect such
statistics while the relevant UDFs are executed, resulting in
more accurate statistics.

6. PIGGYBACKING PROTOTYPE AND
EXPERIMENTS

To provide a proof of concept and examine the overhead
of piggybacking, we developed a prototype database
management system using the piggyback method to collect
statistics for query optimization. The architecture of the
prototype system is shown in Figure 8. Each of the blocks
represents a functional component and the paths between
them represent an exchange of information in the indicated
direction. The dotted portions of the figure show the main
extensions to the architecture of a conventional DBMS. More
specifically, when the parser reads schema information from
the system catalog to check the semantics of a user query,
statistics are also read for verification and possible update.
The user query is parsed, and the parse tree is given to the
query optimizer. An optimized query execution plan is then
generated. If possible, the query execution plan is modified to
integrate any relevant piggyback operations. The integrated
execution plan is processed by the database execution engine.
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FIGURE 9. Overhead percentage by granularity level.

The database engine performs piggyback operations on the
retrieved data during query processing, while the data is
in main memory. If needed, the results from the database
engine are filtered after statistics have been analyzed, so that
the correct result for the original query is returned to the
user. Finally, as warranted by the statistics collected and
other factors such as system load, the system catalog will
be modified to reflect the updated statistics. The prototype
system was implemented with the C programming language
in a Unix environment.

With the piggybacking prototype, we conducted extensive
experiments and obtained promising results. Some typical
experimental results are reported below. For our experiments,
we randomly generated (uniformly distributed) data for nine
tables with the number of columns ranging from 5 to 25
and the number of rows ranging from 10 to 10,000. User
queries are expressed in SQL with predicates involving
a comparison operation ∈ {=, <, >}. The experimental
environment is a Pentium II 300 PC running Linux 2.2.12.
Overhead for piggyback operations was measured in terms
of the increase in query response time, which reflects both
CPU and I/O costs.

Our experiments have demonstrated that the amount
of overhead for a set of piggyback operations increases
substantially as they are interleaved with a user query at
coarser levels of data granularity (i.e. less tightly integrated
with individual plan operators). Figure 9 shows that the
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overhead of a set of piggyback operations (e.g. ϕC1
(x)

and ϕC2
(x)) is about the same (83%) as that of the user

query when piggybacking is performed at the table level
(i.e. piggybacking is performed after query processing is
completed), while the piggybacking overhead becomes
almost negligible (0.001%) when piggybacking is performed
at the row level. Clearly, the piggybacking overhead dramati-
cally decreases as the level of data granularity becomes finer
and finer. Hence, piggybacking should be performed at
the finest possible granularity level for the statistics to be
gathered.

From our experiments, we observed that the percentage of
overhead incurred for a given piggyback operation decreases
as the size of the available data buffer increases. Figure 10
shows a typical effect of buffer size on piggybacking
overhead for a piggyback operation.

We also verified that piggybacking overhead increases as
the piggybacking level increases. In the experiments, we
examined the percentage of piggybacking overhead at
representative piggybacking levels L0, L

1
3 and L1

5 for both
the sequential scan access method and the index scan
access method. To avoid a biased observation from an
individual execution of a query, we ran a set of queries using
different buffer sizes for a given table, access method and
piggybacking level. We then took the average of piggy-
backing overhead percentages observed for each table,
access method and piggyback level. Figure 11 shows how
the average percentage of piggybacking overhead changes
with different piggybacking levels for the sequential scan
access method on different tables; Figure 12 illustrates the
piggybacking overhead for the index scan access method
on different tables. From the figures, we can see that
piggybacking overhead increases as the piggybacking level
increases for queries using either SS or IS on all tables.
In fact, the overall average overhead percentage for SS is
1.23% at piggybacking level L1

3 (containing level L1
2) and

is 4.90% at piggybacking level L1
5 (containing level L1

4).
The overall average overhead percentage for IS is 1.85%
at piggybacking level L1

3 and is 6.49% at piggybacking
level L1

5. Given the possible improvements to execution
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FIGURE 11. Piggybacking overhead in percentage (average) for
SS at different piggybacking levels.
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FIGURE 12. Piggybacking overhead in percentage (average) for
IS at different piggybacking levels.

plan quality when the query optimizer can utilize up-to-
date statistics, we feel this level of piggybacking overhead
is acceptable: note that the most practical piggybacking
levels L1

2 and L1
3 require only less than 3% overhead in our

experiments.
As mentioned previously, our study is based on the widely

accepted assumption that more accurate statistics usually
lead to more efficient query processing. To verify this
assumption, we conducted an experiment on a commercial
DBMS running under SunOS 5.1 on SUN UltraSparc 2
workstation. In the experiment, a query to join four tables
with randomly generated data and cardinalities ranging from
80,000 to 157,000 was executed. We considered different
scenarios in which the statistics in the database catalog
reflected varying degrees of accuracy (e.g. accurate statistics,
statistics with 30% relative error, statistics with 60% relative
error and so on). Figure 13 shows the experimental results,
where the performance degradation is measured by the

The Computer Journal, Vol. 47, No. 2, 2004



242 Q. Zhu et al.

0%

25%

50%

75%

100%

125%

150%

175%

200%

225%

250%

stats
accurate stats stats

30% err 60% err

0%

Pe
rf

or
m

an
ce

 D
eg

ra
da

tio
n 

(a
vg

. %
)

245.1%

no
stats

stats
90% err

Statistics Accuracy

83.6%

68.0%

41.6%

FIGURE 13. Impact of statistics accuracy on query performance.

percent increase of the (average) execution time at each
statistics accuracy level with respect to the execution time
with accurate statistics. The experiment demonstrates that
query performance indeed degrades as accuracy of statistics
decreases. Hence a technique such as piggybacking to
gather/maintain up-to-date statistics is important in achieving
efficient query processing.

In summary, our experiments have demonstrated that
the piggyback method is quite promising in automat-
ically maintaining statistics for query optimization in
a DBMS.

7. CONCLUSION

Providing a query optimizer with up-to-date statistics on
frequently changing data is challenging. While the utility
method for statistics collection is widely used by commercial
DBMSs, it has three significant disadvantages: it requires
intervention on the part of the DBA, it suffers from often
lengthy execution times, and it has a negative effect on system
load. In this paper, we proposed a framework to incorporate
on-the-fly statistics collection, which we term piggybacking,
into query execution plans.

The key idea of the piggyback method in our framework
is to piggyback some additional work such as side retrievals
and statistical analysis on the processing of a user query.
Although the additional piggyback work is not necessarily
related to the processing of the current query and may incur
a small additional overhead, the updated statistics can be
utilized to optimize subsequent queries.

We have characterized several types of side piggyback
retrievals. Vertical side piggyback retrievals (i.e. vertical
piggybacking), which retrieve extra unrequested columns
from an operand table, can increase the quantity of

obtainable statistics; while horizontal side retrievals (i.e.
horizontal piggybacking), which retrieve extra unrequested
rows from an operand table, may improve the quality of
obtained statistics. Typically, mixed vertical and horizontal
piggybacking should be employed to provide good statistics
in terms of both quantity and quality. Multi-query
piggybacking, which makes use of data retrieved by multiple
(piggybacked) queries in piggyback analysis, can be used to
provide quality statistics with low overhead.

We can perform piggyback analysis at different accuracy
levels—precise measurement, estimation or validation—
and at one of several piggybacking levels. Accuracy is
usually determined by the statistic to be gathered and the
execution plan chosen for the user query. The piggybacking
level is determined according to a user-specified tolerance
of piggybacking overhead. The higher the piggybacking
level, the greater the piggybacking overhead, although
additional statistics, with higher quality, could be obtained.
A useful, lightweight piggyback technique is to count the
access frequencies of data objects and check the validity of
their statistics without actually updating the statistics during
query processing. The statistics collecting utility is then
automatically invoked, when the system load is low, for
those frequently accessed data objects whose statistics are
out-of-date.

We introduced a multiple-granularity interleaving
algorithm to integrate efficiently a set of piggyback opera-
tions with a given user query at different levels of granu-
larities. Integration techniques employed include merging
shared work, augmenting user queries, downgrading pig-
gyback operations and applying a set of heuristics and
transformations.

We developed a prototype database system that
incorporates piggybacking to verify the practicality of the
piggyback method. Our experiments with this prototype
demonstrated that the piggyback method offers a reasonable
tradeoff between the advantages of up-to-date statistics ver-
sus the cost of collecting them. Useful statistics can usually
be obtained via the piggyback method with a small additional
overhead.

Note that the piggyback method does not eliminate the
overhead of statistics collection altogether; rather, it merely
takes advantage of data resident in main memory during query
processing, and amortizes this overhead across multiple user
queries. On the other hand, without piggybacking, the utility
method has to read the relevant data from the disk into
memory even though the data may have been in memory
before. Therefore, the piggybacking approach can reduce
the overall statistics collection overhead, compared with
the utility method. Furthermore, applying the lightweight
piggyback analysis mentioned previously, it is possible to
perform the actual statistics collection during the light system
load period when the system resources are not fully utilized.

The other advantages of the piggyback method are:

(i) The user’s burden for manually invoking a utility to
update statistics is relieved, since statistics are updated
during query processing or automatic execution of the
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statistics collecting utility. This advantage offers a
great convenience to users.

(ii) The cost of maintaining statistics about rarely used
data is reduced, since the piggyback method updates
statistics only for the data accessed by or related to a
user query. This advantage saves the time wasted by
the utility method for maintaining useless statistics.

(iii) More statistical information is collected, since extra
unrequested data are considered and user-defined
functions, which cannot be handled via the utility
method, can also be handled via piggybacking.

(iv) Up-to-date statistics are maintained, since statistics
are updated promptly. This advantage reduces the
chance for the system to be jammed with the tasks of
re-optimizing queries.

It is expected that a DBMS incorporating the piggyback
method can better meet users’ satisfaction in terms of
performance and convenience. However, our research is
just the beginning of our ongoing work to achieve a truly
‘self-maintaining’ DBMS. Our future research work includes
investigating parallel piggybacking, studying the effect of
CPU capability on piggybacking efficiency, developing
efficient strategies for managing CPU and memory resources
for piggybacking, better managing and handling statistics
inconsistency and exploring piggybacking via other non-
query processing such as database reorganization.
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