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There is an increasing demand to efficiently process emerging types of queries, such as progressive
queries (PQs), from contemporary database applications including telematics, e-commerce and social
media. Unlike conventional queries, a PQ consists of a set of step-queries (SQ).A user formulates a new
SQ on the fly based on the result(s) from the previous SQ(s). Existing database management systems
were not designed to efficiently process such queries. In this paper, we present a novel technique
to efficiently process a special type of PQ, called monotonic linear PQs, based on dynamically
materialized views. The key idea is to create a superior relationship graph for SQs from historical PQs
that can be used to estimate the benefit of keeping the current SQ result as a materialized view. The
materialized views are used to improve the performance of future SQs. A new storage structure for
the materialized views set is designed to facilitate efficient search for a usable view to answer a given
SQ. Algorithms/strategies to efficiently construct a superior relationship graph, dynamically select
materialized views, effectively manage the materialized views set and efficiently search for usable
views are discussed. Experiment results demonstrate that our proposed technique is quite promising.
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1. INTRODUCTION

In recent years, we have witnessed the emergence of
many contemporary database applications such as telematics,
e-commerce, bioinformatics, business intelligence and decision
support. Such data-intensive applications raise new challenges
to process advanced types of queries [1–5]. A new type of
query, called the progressive query (PQ), was presented in Zhu
et al. [5]. It was observed that in many applications, users
routinely perform queries step by step. In each step, the query
uses the result(s) returned from the previous step(s). The desired
query result is gradually reached in multiple steps under the
user’s direction. Hence, unlike a conventional query, a PQ is
formulated in several steps, i.e. a set of inter-related step-queries
(SQ). A user formulates his/her SQs on the fly based on the
result(s) returned by previous SQ(s).

Let us consider the following example.Assume that a traveler
wanted to select a set of songs from a worldwide song database
containing millions of songs and lyrics to burn some CDs to be

played on his/her next trip. He/she first issued a query on the
database to list all the songs released in the last 3 years. He/she
found that there were too many such songs in the database.
He/she then narrowed down the list by adding a condition on
the genre. However, he/she found that the list was still too
long. Thus, he/she further narrowed down the list by adding
another condition to restrict songs to those sung by several
his/her favorite singers and with a length <4 min. Finally,
he/she found a reasonable (not too large) set of songs he/she
liked to enjoy for his/her trip. Some other examples of PQs:
an on-line shopper searches for a product to purchase from
the web via several SQs (e.g. searching for related products,
checking their reviews, comparing their features and prices, etc.)
to optimize the quality/cost within his/her budget; a biologist
identifies an unknown DNA sequence via a sequence of tasks
(e.g. alignment, validation, and comparison); a geo-scientist
accesses massive volumes of earth science data via a number of
complex multi-step queries and a decision maker explores and
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analyzes the relevant information from multiple data sets and
in multiple steps.

The previous examples demonstrate two main characteristics
of a PQ. First, the SQs of a PQ cannot be known beforehand.
Each SQ, which can be a full-fledged query on its own, is
formulated dynamically by the user. The user needs to know
the result(s) of the previous SQ(s) to determine the next SQ.
Second, a PQ is frequently used to access large data sets, and
the intermediate result returned from a SQ may not be held in
memory.

These characteristics of a PQ raise new challenges to
processing such a query efficiently. For example, because of
the second characteristic, an efficient access method such as
an index-based one is desired. However, many conventional
indexes (e.g. the B+-tree [6]) that are typically created on base
relations may not be directly applicable because a SQ that is not
for the first step of a PQ uses the intermediate result(s) from the
previous SQ(s). To tackle this challenge, an effective collective
index technique was introduced in Zhu et al. [5]. The main idea
of this technique is to construct a special index structure that
allows a collection of member indexes on an input relation of
a SQ to be efficiently transformed into indexes on the result
relation, which can be used to speed up the subsequent SQs.
This work was the first to address efficient processing issues
for PQs.

It is well known that utilizing materialized views to efficiently
process queries is one of the important optimization techniques
for conventional queries. However, the first characteristic of a
PQ presents a challenge for relevant issues like selection of
promising materialized views that can be used to efficiently
process such queries. Although a non-initial step-query sq in
a given progressive query pq is performed on the result(s) of
the previous SQ(s) of sq in pq (and maybe on other external
data sets as well), which appears to have some similarity with a
conventional query performed on predefined views, the previous
SQ(s) as well as sq itself in pq cannot be determined in
advance before pq is started due to the dynamic nature of
a PQ. Hence, SQs in a PQ are different from (predefined)
views. On the other hand, if some views that can be used to
answer some SQs of PQs are selected (defined) and materialized
beforehand, a user may utilize such materialized views (instead
of the previous SQs) to evaluate a relevant step-query sq ′.
There are two cases in which the efficiency of processing
the corresponding PQ could be improved in this way. In the
first case, evaluating sq ′ using the materialized views is more
efficient than using the results of the previous SQs of sq ′.
In this case, the previous SQs are still issued and processed
although some of them are replaced by materialized views when
evaluating sq ′. In the second case, some previous SQs (and their
own possible previous ones) may never be issued since the user
may be able to determine sq ′ based on the materialized views
without those previous SQs. Therefore, processing of such
previous SQs is avoided. Now the questions are: how to select
promising materialized views for optimizing PQs and how to

search for feasible materialized views for answering/evaluating
SQs.

In this paper, we present a novel materialized-view-based
technique to process a special type of PQ, called monotonic
linear PQs. To tackle the challenge for selection of promising
materialized views for PQ optimization, we utilize the unique
properties of monotonic PQs to dynamically construct a so-
called superior relationship graph (SRG) for SQs from the PQs
that have been executed. When the execution of the current SQ
of a PQ is completed, a chance for its result to be saved as a
materialized view is given. The SRG is used to estimate the
benefit of such a materialization. If it is beneficial, the result
of the current SQ is kept as a materialized view. Since we
utilize the results of executed SQs, there is not much cost for
materialization. The materialized views are used to optimize
the SQs of future PQs. To facilitate the search for a usable
view for answering a given SQ, we suggest a new storage
structure, called the relationship-linked structure (RLS), for
the set of materialized views (SMVs). The RLS maintains the
superior relationships among the materialized views. Utilizing
the maintained relationships, our view search can achieve both
efficiency in processing and quality for the result. Relevant
algorithms and strategies/heuristics to efficiently create and
maintain a SRG, dynamically select materialized views (SQs),
search for a usable materialized view to answer a given SQ
and manage the SMVs are presented. A framework to apply the
presented technique to optimize PQs is also discussed.

The work that is most related to PQs in the literature includes
query processing for continuous queries [7–10], adaptive
(dynamic) query optimization [11–15] and ETL processing
[16–19]. Continuous queries require the repeated execution of a
query over a continuous stream of data [8]. The main difference
with PQs is that a continuous query is formulated at once
(although data are dynamic), while a PQ is formulated in several
steps. The idea in adaptive query optimization is to exploit
information that becomes available at query runtime and adapt
the query plan to changing environments during execution.
While the adaptive query optimization problem may be seen
as ‘progressive’ (performed at compile-time and run-time),
queries are, however, formulated at once (‘non-progressive’).
Extraction–Transformation–Loading (ETL) processes are used
to extract data from multiple sources, cleanse them, integrate
them and propagate them to a data warehouse incrementally.
In an ETL workflow, activities/operators are chained together.
One operator uses the results of previous operators. However,
all the activities/operators in an ETL workflow are programmed
in advance, which is different from a PQ, although new data
are incrementally added to a data warehouse. In addition, an
operator in an ETL workflow tends to be much simpler than a
SQ in a PQ. The latter can be a full-fledged query on its own. The
only previous work that directly studied efficient processing of
PQs is the collective index technique proposed by Zhu et al. [5].

Applying materialized views to speed up query processing
has been well studied in the literature [20–24]. Different
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710 C. Zhu et al.

types of database systems were considered, including
relational databases [23–25], object-oriented databases [26],
data warehouses [27, 28], XML databases [29, 30] and
others [31, 32]. Various issues were studied, including
materialized view selection [33–36], materialized view
maintenance [37–39], materialized view matching [40],
materialized view concurrency control [41, 42] and materialized
view indexing [43, 44]. For the materialized view selection
problem, which is the main issue studied in this paper, a number
of techniques have been suggested in the literature. Liang
et al. [35] introduced heuristic-based algorithms to solve the
view selection problem under the maintenance time constraint
for data warehouses. Lee and Hammer [34] suggested a genetic
algorithm to compute a near-optimal set of views to minimize
the total query response time over all queries. Ezeife proposed
a method for selecting and materializing views, which selects
and horizontally fragments a view and recomputes the size of
the stored partitioned view while deciding further views to
select [45]. Mistry et al. [36] presented algorithms that can
be used to efficiently select materialized views to speed up
workloads by exploiting common subexpressions and indices.
Hung et al. [46] derived a cost model and efficient view
selection algorithms that effectively exploit the gain and loss
metrics. Agrawal et al. [47] described an industry-strength
tool for automated selection of materialized views for SQL
workloads. Chirkova et al. [33] presented techniques for finding
a minimum-size view set for a single query without self-joins by
using the shape of the query and its constraints. Tang et al. [48]
developed a heuristic method to identify a minimal view set for
a given XPath query. Aouiche et al. [49] proposed a framework
to exploit a clustering technique to solve the materialized
view selection problem. Gupta and Mumick [50] presented
polynomial-time heuristics for selection of views using anAND
view graph, an OR view graph or an AND–OR view graph for
different scenarios. Although much work on materialized view
has been done in the past, no work on studying how to apply
materialized views to efficiently process PQs, as we report in this
paper, has been found in the literature. The approach to utilize
the unique properties of monotonic PQs to effectively select
materialized views and efficiently search for feasible views is
our novel idea.

The remainder of this paper is organized as follows. The
preliminaries and properties of PQs are introduced in Section 2.
The materialized-view-based PQ processing procedure, two
algorithms to construct the SRG, the strategy to select
materialized views, the storage structure and management for
the SMVs and the view-search algorithms are presented in
Section 3. Experimental results are reported in Section 4. The
conclusions and future work are summarized in Section 5.

2. PRELIMINARIES

In this paper, we focus on discussing how to apply a dynamic
materialized view technique to process a specific type of PQ,

called the monotonic linear PQ, on a relational database. In
this section, an overview of different types of PQs is given.
Especially, the monotonic linear PQ is introduced. A SRG that
is used in our technique is defined. The main properties of the
monotonic linear PQ are discussed.

2.1. Types of PQ

A PQ is formulated in several steps. Each step, referred to as
a SQ, is executed over one or more relations and returns one
relation as a result. Result(SQ) and Domain(SQ) represent the
result relation of the SQ and the set of relations on which the SQ
is executed, respectively. A SQ can be executed on either the
result relation(s) returned by the previous SQ(s) and/or other
external base relation(s). Zhu et al. [5] classified the PQs into
the following three types:

Type 1: single-input linear PQs. A single-input linear PQ has
the following characteristics. Each SQ in such a PQ uses a single
relation as its input. If the SQ is the initial (first) SQ, then the
input is an external relation. Otherwise, the input is the result
relation returned by its previous SQ. The relationship among
the SQs of such a PQ demonstrates a linear structure.

Type 2: multiple-input linear PQs. A multiple-input linear
PQ has the following characteristics. At least one SQ takes
more than one relation as its input. If this SQ is the initial SQ,
its domain includes multiple external relations. Otherwise, its
domain includes at least one external relation. Each step uses
the result returned by its previous SQ. Hence, the relationship
among SQs is also linear.

Type 3: non-linear PQs. A non-linear PQ has the following
characteristic: at least one SQ has the results returned by more
than two other SQs (and possibly external relations as well) as
inputs. Thus, the relationship among SQs demonstrates a non-
linear structure.

In this paper, we consider an extended type of single-input
linear PQ that allows the initial SQ to have multiple external
relations. Since the result size of each SQ is monotonically
decreasing as the processing of the query progresses, we call
this type of PQ the monotonic linear PQ.

2.2. Superior–inferior relationship and SRG

In our dynamic materialized view technique, we utilize a so-
called SRG to determine whether the result of a SQ under
consideration should be materialized as a view. A SRG captures
the superior (or inferior) relationships among the SQs for
historical PQs.

Let sq1 and sq2 be two (distinct) SQs belonging to the same
or different historical PQs. The superior relationship from sq1

to sq2 is defined as follows. For every tuple t2 in Result(sq2), if
there exists tuple t1 in Result(sq1) such that t2 can be completely
derived from t1, we say there is a superior relationship from sq1

to sq2, where sq1 is called a superior of sq2 and sq2 is called an
inferior of sq1.
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Optimization of Monotonic Linear Progressive Queries 711

Consider the following example. Let Result(sq1) =
{〈a1, a2, a3〉, 〈b1, b2, b3〉, 〈c1, c2, c3〉}, Result(sq2) =
{〈a1, a3〉, 〈b1, b3〉} and Result(sq3) = {〈a1, a4〉}. Since
every t2 in Result(sq2) can be derived from a tuple in
Result(sq1), sq1 is a superior of sq2 (i.e. sq2 is an inferior of
sq1). However, a4 of 〈a1, a4〉 in Result(sq3) cannot be derived
from any tuple in Result(sq1). Hence, there is no superior or
inferior relationship between sq1 and sq3.

Intuitively, a superior relationship indicates that, if we select
the superior SQ as a materialized view, its inferior SQ can
be evaluated by utilizing this materialized view. Hence each
superior relationship represents a benefit case for the superior
SQ to be materialized. However, there is an exception. When
two SQs with a superior relationship belong to the same PQ,
the inferior SQ usually does not directly use the result of its
superior SQ unless the latter is its immediate previous step. The
SRG captures those useful superior relationships among SQs
for the historical PQs.

An SRG is defined as a digraph with three components
G = (V , E, B), where V is a set of nodes representing the
set of SQs in the given historical PQs; E is a set of directed
edges 〈sq ′, sq ′′〉 representing the superior relationships from
SQ sq ′ to SQ sq ′′ with the constraint that either sq ′ and sq ′′ do
not belong to the same PQ or sq ′ is the immediate previous step
of sq ′′; B is a set of pairs 〈n, id〉 indicating the identifier id of
the PQ to which the SQ represented by node n belongs. Note
that the benefit of materializing the result of an SQ represented
by a node in an SRG can be measured by the number w of out-
going edges that n has. We call w the weight of n, which can
be calculated for a given SRG.

Example 1. Given the following four relations:

PAPER(P#, Title, FirstAuthor, PublishYear),
AUTHOR(A#, A_Fname, A_Lname, Area),
EDITOR(E#, E_Fname, E_Lname, Area),
REVIEW(E#, P#, Date),

assume that every paper has been reviewed by an editor. Let us
consider the following three PQs.

Progressive Query 1 (pq1):
sq1: πT itle, PublishYear, A_Lname(PAPER

��
FirstAuthor=Aid AUTHOR),

sq2: πT itle, A_Lname(σPublishYear=2009(Result(sq1))),
sq3: πT itle(σA_Lname=′Smith′(Result(sq2))).

Progressive Query 2 (pq2):
sq4: πE_Lname, T itle, PublishYear (PAPER

��
PAPER.P #=REV IEW.P #

(REVIEW
��

REV IEW.E#=EDIT OR.E# EDITOR)),
sq5: σPublishYear>2008((Result(sq4)),
sq6: πT itle(σPublishYear=2009(Result(sq5))).

Progressive Query 3 (pq3):
sq7: πT itle, PublishYear (σPublishYear>2008(PAPER)),
sq8: πT itle(σPublishYear=2009(Result(sq7))).

FIGURE 1. Superior relationship graph of Example 1.

Figure 1 shows the SRG for these three PQs. From the figure,
we can see that four SQs would benefit from materializing the
result of sq1. The number of out-going edges for a node v is
the weight of v, which is not shown in the figure. Clearly, the
weights of the nodes in an SRG can be calculated once the graph
is given.

2.3. Main properties of monotonic linear PQs

As we will see, the following two properties of the monotonic
linear PQs are useful in developing an efficient processing
technique.

Property 1. Result(sqi) � Result(sqj ) if i < j and sqi , sqj

are two SQs belonging to the same PQ, where � indicates that
the right operand can be completely derived from the left one.
According to the definition, the current SQ only uses the result
relation returned by the previous SQ. Hence, if sqj is one of
the subsequent SQs of sqi , every tuple in Result(sqj ) must be
derivable from Result(sqi).

Property 2. Weight(sqi) ≥ Weight(sqj ) if i < j and sqi, sqj

are two SQs belonging to the same PQ.

As defined earlier, the weight of an SQ is the number of
out-going edges in the SRG, which represents the benefit of
materializing the result of the SQ. Based on Property 1, sqi must
be a superior of sqj . As mentioned before, we do not consider
the superior relationships between two non-consecutive SQs
within the same PQ when we construct the SRG. All the other
superior relationships (out-going edges) for sqj must also be
valid for sqi .

In the following section, we will discuss how to apply the
above properties to improve the efficiency of processing this
type of PQ.
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712 C. Zhu et al.

FIGURE 2. PQ processing procedure based on dynamic materialized views.

3. DYNAMIC MATERIALIZED-VIEW-BASED PQ
PROCESSING

To efficiently process PQs, we introduce a dynamic
materialized-view-based processing procedure for PQs in
Section 3.1. Efficient strategies to create and update a SRG
are discussed in Section 3.2. The algorithm to decide whether
to materialize a view is discussed in Section 3.3. The stor-
age structure and algorithms to manage the SMVs are given
in Section 3.4. The view-search algorithms are described in
Section 3.5.

3.1. PQ processing procedure

The view materialization techniques have become popular in
query optimization, as mentioned in Section 1. The decision for
view materialization is typically based on statistic information
such as access frequency. However, unlike a conventional query,
a PQ is formulated as a number of inter-related SQs. Each SQ
cannot be known beforehand. No one can predict what the next
SQ could be. Hence, there is no prior knowledge about future
user (step) queries when deciding view materialization. This
situation raises a challenge to applying a materialized-view-
based technique to efficiently process PQs.

To tackle the challenge, we present a dynamic materialized-
view-based approach to processing PQs. Figure 2 depicts
the processing procedure. There are several components
involved in the procedure. The user submits one SQ at each

step for the current progressive query (CPQ). The current
step-query (CSQ) is the one that is currently being processed
in the system. The underlying database management system
(DBMS) coordinates the PQ processing based on the dynamic
materialized-view approach. This DBMS has all the typical
modules such as the parser, catalog, query optimizer and
concurrency control that a conventional DBMS has. However,
these modules are enhanced to handle a PQ based on
dynamically materialized views as follows. A SRG is
dynamically constructed by the system. Initially, the SRG is
empty. When more and more completed PQs are dynamically
added to it, it grows larger and larger. This graph is used
to determine whether materializing the result of the CSQ is
beneficial. If so, the CSQ is materialized as a view to be used for
future SQs. If an SQ of the CPQ is chosen to be materialized, the
CPQ is put into a set of used PQs (SUPQ) rather than added into
the SRG when it is completed.The reason for this is that, if one of
the SQs of a PQ has been materialized, the SQs of this PQ should
not be used in the SRG to estimate the benefits of materializing
another SQ. Otherwise, the benefits of a materialized SQ may
be double counted. A PQ in the SUPQ can be added to the SRG
later on when its materialized SQ is removed from the set of the
materialized views because of the space limitation. The result
of the previous SQ (RPSQ) is always saved for the possible
use of evaluating the CSQ. The CSQ is evaluated either on a
materialized view (if beneficial) or on the base relation(s) in
the database (for the first SQ) or on the RPSQ. The set of the
materialized views (SMV) is managed. Each materialized view
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Optimization of Monotonic Linear Progressive Queries 713

mv is associated with its corresponding SQ mv.sq as well as its
access frequency mv.f req (note that mv itself represents the
materialized view).

The details of the PQ processing procedure are given in the
following algorithm.

Revised Algorithm Segment 3.1. Dynamic materialized-view based PQ
processing procedure (DMVPQ)
Input: (1) current step-query (csq); (2) current progressive query (cpq); (3) set
of materialized views (smv); (4) result of previous step-query (rpsq); (5) set
of used progressive queries (supq); (6) superior relationship graph (srg).
Output: (1) the result of csq; (2) a revised srg; (3) a revised cpq; (4) a revised
smv; (5) a revised supq.
Method:

1. if the domain of csq consists of a base relation(s) then
/* csq is the 1st SQ, i.e., user starts a new PQ */

2. if cpq is not empty then /* cpq contains a completed previous PQ */
3. for each step-query sqi of cpq from 2nd to the last do
4. merge sqi and sqi−1, and replace sqi by merged query;
5. end for
6. if any step-query sqi in cpq is found as mv.sq for some view mv in smv

then
7. add cpq into supq;
8. else AddtoSRG(cpq, srg) end if
9. end if

10. set cpq as a new PQ with csq as the 1st SQ;
11. mv=SearchView(csq, smv, size of Domain(csq) );
12. if mv is not null then
13. evaluate csq on mv;
14. mv.f c++;
15. else
16. evaluate csq on base relation(s) in the database;
17. end if
18. let mcsq = csq;
19. else /* csq is not the 1st SQ and cpq is ongoing */
20. add csq to cpq;
21. merge csq with all its previous SQs in cpq and save the merged query in
mcsq;
22. mv=SearchView(mcsq, smv, size of rpsq );
23. if mv is not null then
24. evaluate mcsq on mv;
25. mv.f c++;
26. else
27. evaluate csq on rpsq;
28. end if
29. end if
30. if (CheckWeight(srg, mcsq)) then
31. create a materailzed view mv for mcsq;
32. AddtoSMV (mv, smv, srg, supq);
33. end if.

There are two phases in Algorithm 3.1. The first phase
(lines 1–29) evaluates the current SQ and updates the SRG.
The second phase (lines 30–33) decides whether the result of
the current SQ should be materialized for the future use and
updates the SMVs.

In the first phase, the algorithm first checks whether the given
SQ (csq) is the first (initial) SQ (line 1) of a new PQ. If so, the
user is actually starting a new PQ and the previous PQ (i.e. the
one saved in cpq if any) is completed. In this case, the previous
PQ in cpq needs to be added into either the SRG srg or the set
supq of used PQs (lines 2–9). Lines 3–5 convert each SQ in

cpq into one that is operated directly on the base relation(s) in
the database, which can be then compared with the SQs for the
materialized views. If one of SQs in cpq is found to have been
materialized, cpq is put into supq (lines 6–7). Otherwise, cpq is
added into srg by algorithm AddtoSRG() (line 8).After having
processed the previous PQ in cpq, cpq is reset to a new PQ with
csq as the first (initial) SQ (line 10). If a materialized view whose
associated SQ is a superior of csq and whose size is smaller
than the size of the relation(s)1 in Domain(csq) is found from
the materialized view set smv by algorithm SearchView(), we
evaluate csq on the found materialized view instead of its (base)
operand relation(s) (lines 11–14). Otherwise, we evaluate csq

on its base operand relation(s) in the database directly (lines 15–
16). If csq is not the first SQ, cpq holds the previous SQs of the
current/ongoing PQ. In this case, csq is added to cpq (line 20).
To check if csq can be evaluated on a materialized view, it
needs to be converted into a SQ, mcsq, on the base relation(s)
in the database (line 21). If there exists a materialized view
whose associated SQ is a superior of mcsq and whose size is
smaller than the size of the result of the SQ directly preceding
csq, we evaluate csq on the materialized view (lines 22–25).
Otherwise, we evaluate csq on the result of its previous SQ
(rpsq) (lines 26–28).

Note that mcsq and csq have the same result. However, the
former is specified on the base relation(s), while the latter is
specified on the (temporary) RPSQ (if not the first SQ). For
example, when merging SQs sq1 and sq2 from pq1 in Example
1, we have the following merged SQ:

msq2 : πT itle, A_Lname(σPublishYear=2009

× (PAPER
��

FirstAuthor=Aid AUTHOR))

on base relations PAPER and AUTHOR, which has the same
result as sq2.

In the second phrase, the algorithm checks to see whether
saving the result of the current SQ mcsq (i.e. csq) as
a materialized view is beneficial by invoking algorithm
Checkweight() (line 30). If so, it creates an entry for the relevant
information (e.g. result, query expression and access frequency)
on the materialized view for mcsq and invokes an algorithm
AddtoSMV () to add the entry into smv (lines 31–33).

The invoked algorithms: AddtoSRG(), SearchV iew(),
CheckWeight () and AddtoSMV () are to be discussed in the
following subsections.

3.2. SRG construction

The SRG is a key component for our dynamic materialized-
view-based PQ processing technique. It allows us to
dynamically accumulate information about executed PQs and
effectively use it to select materialized views for efficient
execution of future PQs. To efficiently construct such a graph,

1The Cartesian product is considered if there is more than one relation.
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we apply several heuristic rules derived from the properties of
the monotonic linear PQs that were discussed in Section 2.3.

We present two constructing algorithms: generating based
and pruning based. The former automatically generates as many
other superior (inferior) relationships as possible once one is
found, while the latter prunes as many other impossible cases
as possible once a superior (inferior) relationship is not found
between two nodes. Both can significantly reduce the cost for
testing the existence of superior (inferior) relationships among
nodes.

An SRG starts from an empty one and is constructed in an
incremental way as more and more PQs are added into the graph
gradually. An isolated new PQ npq can be represented by a set
of nodes (one for each SQ in npq), a set of edges (connecting
interrelated SQs in npq) and a set of node-identifier pairs (one
for each SQ in npq). To add npq into the SRG, the above nodes,
edges and node-identifier pairs are inserted first. The system
then finds the set of edges representing the superior or inferior
relationships between the (new) SQs in npq and the (old) SQs
in the current SRG. This can be done in two stages: the superior
stage and the inferior stage. In the superior stage, all the superior
relationships from the new SQs to the old SQs are identified.
In the inferior stage, all the inferior relationships from the new
SQs to the old SQs are identified. The edges representing these
relationships are added into the SRG. The aforementioned two
algorithms apply heuristic rules in the above two stages to
improve the constructing performance.

The generating-based algorithm applies the following two
heuristic rules:

Heuristic Rule 1: If there exists an edge from sqi to sqj

(sqi , sqj are two SQs /∈ the same PQ) in the SRG, then there
exist edges from sqi to all sqk’s if sqk satisfies the following
conditions: (1) k > j ; (2) sqk , sqj ∈ the same PQ.

Heuristic Rule 2: If there exists an edge from sqi to sqj

(sqi , sqj are two SQs /∈ the same PQ), then there exist edges
from all sqk’s to sqj if sqk satisfies the following conditions:
(1) k < i; (2) sqk , sqi ∈ the same PQ.

The details of the algorithm are specified as follows.

Revised Algorithm Segment 3.2. Generating-Based AddtoSRG1(npg,
srg)
Input: (1) new progressive query (npg); (2) superior relationship graph (srg).
Output: revised superior relationship graph (srg).
Method:

1. if srg is empty then startempty = true;
2. else startempty = false end if

/* Adding an isolated PQ npq into srg */
3. add the node and the node-identifier pair for each SQ of npq into sets V

and B of srg, respectively;
4. add an edge from each SQ of npq to its immediate subsequent SQ (if any)

of npq into edge set E of srg;
5. if not startempty then
/* Stage 1: finding external superior relationships */

6. for each PQ opq (other than npq) in srg do
7. for each SQ nsq of npq from the last to the first do
8. for each SQ osq of opq from the first to the last do
9. if there exists an edge from nsq to osq then

10. break;
11. else if there exists a superior relationship from nsq to osq then
12. add an edge from nsq to osq into edge set E of srg;
13. for each subsequent SQ osq ′ in opq do
14. if edge from nsq to osq ′ does not exist then;
15. add an edge from nsq to osq ′ into edge set E of srg;
16. end if
17. end for
18. for each previous SQ nsq ′ in npq do
19. if edge from nsq ′ to osq does not exist then;
20. add an edge from nsq ′ to osq into edge set E of srg;
21. for each subsequent SQ osq ′ in opq do
22. if edge from nsq ′ to osq ′ does not exist then;
23. add an edge from nsq ′ to osq ′ into edge set E of srg;
24. end if
25. end for
26. end if
27. end for
28. break;
29. end if
30. end for
31. end for
32. end for

/* Stage 2: finding external inferior relationships */
33. for each PQ opq (other than npq) in srg do
34. exchange the roles of opq and npq in lines 7–31 to find the superior
relaltionships from an SQ in opq to an SQ in npq;

/* i.e., finding the inferior relationships from an SQ in npq to an SQ in
opq */
35. end for
36. end if.

In this algorithm, lines 1 and 2 set a flag to indicate whether
the given SRG is empty or not. If it is empty, neither stage 1
nor stage 2 needs to be considered. Lines 4–5 add the nodes,
node-identifier pairs and internal edges for the SQs from the
given PQ into the SRG. The edges between a node for the PQ
and an external node that has already existed in the given SRG
are added in two stages. Stage 1 adds the edges for the superior
relationships (lines 6–32), while stage 2 adds the edges for the
inferior relationships (lines 33–35).

In stage 1, the algorithm considers one old (existing) PQ in
the SRG at a time (line 6). It then scans the SQs of the new
PQ backwards and the SQs of the old PQ under consideration
forwards and examines each pair of SQs from the two PQs
(lines 7–8). If there exists a superior relationship between the
pair, an edge connecting the corresponding nodes is added
into the SRG (lines 11–12). The algorithm then automatically
generates more superior relationships based on Heuristic Rule
1 (lines 13–17 and 21–25) and Heuristic Rule 2 (lines 18–20).
The relevant edges representing these superior relationships
are added into the SRG (see Fig. 3). Because of the above
automatic generation, it is possible that a relevant edge has
already been added when a pair of SQs from the two PQs
under consideration is examined. Such situations are considered
by the algorithm to avoid duplicate additions (lines 9, 14, 19
and 22).

In stage 2, the new PQ and the old PQ under consideration
play the opposite roles, compared with stage 1, because an
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Optimization of Monotonic Linear Progressive Queries 715

FIGURE 3. Superior relationships automatically generated in Stage
1 of AddtoSRG1().

inferior relationship is opposite to its superior counterpart. With
this observation in mind, the algorithm behaves in a similar way.

In contrast to Algorithm 3.2, the pruning-based SRG
construction algorithm applies the following two heuristic rules
to eliminate the pairs of SQs that cannot have superior or
inferior relationships, i.e. considering impossible cases rather
than possible cases.

Heuristic Rule 3: If there exists no edge from sqi to sqj (sqi ,
sqj are two SQs /∈ the same PQ), then there exists no edge
from sqi to any sqk if sqk satisfies the following conditions:
(1) k < j ; (2) sqk , sqj ∈ the same PQ.

Heuristic Rule 4: If there exists no edge from sqi to sqj (sqi ,
sqj are two SQs /∈ the same PQ), then there exists no edge from
any sqk to sqj if sqk satisfies the following conditions: (1) k > i;
(2) sqk , sqi ∈ the same PQ.

The details of the algorithm are given below.

Revised Algorithm Segment 3.3. Pruning-Based AddtoSRG2(npg, srg)
Input: (1) new progressive query (npg); (2) superior relationship graph (srg).
Output: revised superior relationship graph (srg).
Method:

1. if srg is empty then startempty = true;
2. else startempty = false end if;

/* Adding an isolated PQ npq into srg */
3. add the node and the node-identifier pair for each SQ of npq into sets V

and B of srg, respectively;
4. add an edge from each SQ of npq to its immediate subsequent SQ (if any)

of npq into edge set E of srg;
5. if not startempty then
/* Stage 1: finding external superior relationships */

6. for each progressive query opq in srg do
7. let m = 1;
8. for each SQ nsq of npq from the first to the last do
9. for each SQ osq of opq from the last to the m-th do

10. if there exists a superior relationship from nsq to osq then
11. add an edge from nsq to osq into edge set E of srg;
12. else
13. let m = index number of osq in opq + 1;
14. break;
15. end if
16. end for

FIGURE 4. Impossible superior relationships automatically pruned
in Stage 1 of AddtoSRG2().

17. end for
18. end for

/* Stage 2: finding external inferior relationships */
19. for each progressive query opq in srg do
20. exchange the roles of opq and npq in lines 7 - 17 to find the superior
relationships from an SQ in opq to an SQ in npq;

/* i.e., finding the inferior relationships from an SQ in npq to an SQ in
opq */
21. end for
22. end if.

Lines 1–4 are the same as those in Algorithm 3.2. There
are also two stages in this algorithm. In stage 1, the algorithm
considers one old (existing) PQ in the SRG at a time (line 6).
It then scans the SQs of the new PQ forwards and the SQs
of the old PQ under consideration backwards and examines
each pair of SQs from the two PQs (lines 8–9). If there exists
a superior relationship between the pair, an edge connecting
the corresponding nodes is added into the SRG (lines 10–11).
Otherwise, the algorithm prunes the remaining SQs of opq
(Heuristic Rule 3) and resets the scan boundary of the SQs
in the old PQ under consideration (Heuristic Rule 4). Figure 4
illustrates the ideas of pruning in this stage. In stage 2, the
algorithm behaves similarly except that the new PQ and the old
PQ under consideration play the opposite roles.

As an illustration, let us consider the example in Fig. 1.
Assume that we already have pq1 (containing sq1, sq2 and sq3)
and pq2 (containing sq4, sq5 and sq6) in the SRG. Our goal is to
addpq3 (containing sq7 and sq8) into the graph. Both algorithms
first add the nodes, node-identifier pairs and internal edges for
pq3 into the graph. In the superior stage, the algorithms find all
the out-going edges (representing superior relationships) from
sq7 or sq8 to other nodes. In the inferior stage, the algorithms
find all the incoming edges (representing inferior relationships)
from other nodes to sq7 or sq8.

For Algorithm 3.2, in the first iteration, we pick up pq1 from
the graph and consider its SQs in the ascending order (from
sq1 to sq3) while we consider SQs from pq3 in the descending
order. For the first pair [sq8, sq1], we find that there is no superior
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relationship from sq8 to sq1. We then move to consider the pair
[sq8, sq2]. There exists no superior relationship either. Now
we consider the pair [sq8, sq3]. In this case, we find a superior
relationship here. We add an edge from sq8 to sq3. According to
Heuristic Rule 1, another edge from sq7 to sq3 is automatically
added. In such a way, we continue to process-remaining node
pairs: [sq7, sq1], [sq7, sq2], [sq7, sq3], but find no edges for
the first two pairs and find that an edge already existed for
the third pair. In the second iteration, we handle pq2 in the
same way and find the edges from sq7 to sq6 and sq8 to sq6.
In the inferior stage, we add the incoming edges for sq7 or sq8

into the SRG. The details are omitted here due to the space
limitation.

For Algorithm 3.3, in the first iteration, we pick up pq1 from
the graph and consider its SQs in the descending order (from
sq3 to sq1) while we consider SQs from pq3 in the ascending
order. For the first pair [sq7, sq3], there is a superior relationship
from sq7 to sq3. So we add an edge from sq7 to sq3 and move
to consider the pair [sq7, sq2]. There is no superior relationship
in this case. According to Heuristic Rule 3, we remove [sq7,
sq1] from consideration, and according to Heuristic Rule 4,
we remove [sq8, sq2] and [sq8, sq1] from consideration. We
then directly move to consider pair [sq8, sq3] and add an edge
from sq8 to sq3, since such a superior relationship exists. In the
second iteration, we handle pq2 in the same way. We find edges
from sq7 to sq6 and sq8 to sq6. In the inferior stage, we add
the incoming edges for sq7 or sq8 into the SRG. The details are
omitted here.

Assume that an SRG is composed of N PQs and each PQ
is formulated by m SQs. When applying either the generating-
based algorithm or the pruning-based algorithm to construct the
SRG, the worst-case time complexity (i.e. the number of pair-
wise SQ comparisons) is O(N ∗ (N − 1)∗m2) = O(N2 ∗m2),
and the best-case time complexity is O(N ∗(N −1)) = O(N2).
In general, the time complexity of constructing the SRG by
applying either algorithm is between these two complexities.
Since the complexities are polynomial, the algorithms are
efficient.

To compare the two algorithms, let us consider two different
situations, i.e. the given SRG is a dense graph or a sparse graph.
In the dense graph case, Algorithm 3.2 could automatically
generate many edges by applying Heuristic Rules 1 and 2. In this
case, Algorithm 3.2 is more efficient. In the sparse graph case,
Algorithm 3.3 efficiently prunes many useless pairs without
checking them individually. In this case, Algorithm 3.3 is better.
As a result, two algorithms can be used in different situations.
This observation is validated through experiments reported in
Section 4.

3.3. Weight checking

As mentioned before, the candidates for materialized views in
our technique are those executed SQs from user PQs. After the
current SQ for a given PQ is executed, we need to decide whether

its result should be saved as a materialized view. The following
strategy is adopted in our technique for this decision. The SRG
provides the necessary information.

For a given SQ x, a node y in the SRG that satisfies the
following conditions is searched for:

(1) The query represented by node y is an inferior of x.
(2) Node y has a sufficient weight (i.e. greater than a given

threshold).

If such a node exists, x (its result) is selected as a materialized
view.

As we know, the weight of a node in the SRG represents
the benefit of materializing this node (i.e. how many SQs from
historical PQs can be evaluated by using the result of the node).
The above condition (1) ensures that any query that can benefit
from node y can also benefit from x. Condition (2) guarantees
a sufficient benefit.

The algorithm to search for node y can also utilize Heuristic
Rule 3 to improve the search performance. It runs as follows:

Revised Algorithm Segment 3.4. Checkweight(srg, csq)
Input: (1) superior relationship graph srg; (2) current step-query csq.
Output: true or false.
Method:

1. if srg is empty then
2. return false;
3. else
4. for each progressive query pq in srg do
5. for each step-query sq of pq from the last to the first do
6. if sq is an inferior of csq then
7. weight = number of out-going edges of sq;
8. if weight exceeds a given threshold then
9. return true;

10. end if
11. else break end if
12. end for
13. end for
14. return false
15. end if.

In the algorithm, if it is found that no information is available
in the SRG yet, the given SQ is not selected for materialization
(lines 1–2). Otherwise, it checks each SQ in every PQ in the
given SRG to see whether any of them satisfies Conditions (1)
and (2) discussed above (lines 4–14). If so, return true (line 9).
Otherwise, return false (line 14). Heuristic Rule 3 is applied to
prune impossible cases (line 11).

3.4. Storage structure and management of materialized
view set

As mentioned earlier, the materialized views and their relevant
information (e.g. associated SQs and access frequencies) are
kept in a SMVs. However, how to efficiently manage and search
for the SMV becomes an important issue.
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3.4.1. Storage structure
A straightforward way to implement the SMV is to store
materialized views in a linear queue. A new materialized view
is always added to the end of the queue. Thus, when an SQ
to be evaluated arrives, the system has to scan the view set
sequentially to search for an appropriate view to use for the
SQ. Clearly, if the number of views in the SMV is large, the
process to find a usable view can be slow, yielding a low system
performance. On the other hand, the views in the SMV may have
superior–inferior relationships among themselves, the linear
structure cannot guarantee that the first usable view found is
the best one for the given SQ. For example, assume that A and
B are materialized views in the SMV, A’s associated query is
superior to B’s associated query, and B’s query is superior to the
given SQ. If A contains 10 000 tuples and B contains 100 tuples,
B is clearly a better view to use for the SQ than A. However,
in the linear structure, if A is placed before B, the sequential
scanning method may return A as a chosen view unless the
entire queue is examined.

To overcome the limitations of the linear storage structure, we
introduce a new storage structure, called the RLS, to store and
manage the materialized views in order to improve the view-
searching performance and quality.

In our new storage structure RLS, we classify views into four
types2:

Type 1: top-view. A top-view satisfies the following
conditions: (1) there exists no other view in the SMV that is
superior to this view and (2) there exists at least one other view
in the SMV that is inferior to this view.

Type 2: middle-view. A middle-view satisfies the following
conditions: (1) there exists at least one other view in the SMV
that is superior to this view and (2) there exists at least one other
view in the SMV that is inferior to this view.

Type 3: bottom-view. A bottom-view satisfies the following
conditions: (1) there exists at least one other view in the SMV
that is superior to this view and (2) there exists no other view in
the SMV that is inferior to this view.

Type 4: independent-view. An independent-view satisfies the
following condition: there exists no other view in the SMV that
is superior or inferior to this view.

As a result, four view sets (i.e. the top-view, middle-view,
bottom-view and independent-view sets) are maintained within
the SMV. Each view set is represented by a linked list.

For the storage structure RLS of the SMV, we also use the
following concepts3. Node A is called a direct parent node of
node B if the following conditions are satisfied: (1) A is superior
to B and (2) there exists no node C that is superior to B and
inferior to A. A direct child node A of node B can be defined
in a similar way. Node A is called an ancestor node of node B

2In the remaining discussion, we say a view is superior–inferior to another
view if their associated queries have the corresponding superior–inferior
relationship.

3In our discussion, we use terms ‘view’ and ‘node’ (in the SMV)
interchangeably.

node1 node2

node7node6

node5node4node3

Top-view set:

node8 node9

Middle-view set:

Bottom-view set:

Independent-
view set:

...

...

...

...
Set link

Direct parent pointer

Direct child pointer

FIGURE 5. An example of the storage structure RLS of the SMV.

ID SQ NV PPS CPS FC STR dataP

FIGURE 6. The data structure of each node in the SMV.

if A is superior to B (allow transitive superior relationships).
Node A is called a descendant node of node B if A is inferior
to B (allow transitive inferior relationships). Two nodes A and
B are equivalent if A is both superior and inferior to B. Note
that we only need to keep one view/node among its equivalents
in the SMV.

Figure 5 shows an example of the storage structure RLS of
the SMV. In the figure, each node represents a view, which
belongs to one of the four view sets. Nodes are connected by
three types of links. Dotted links are used to connect views in the
same view set. Dash links are used to represent direct (parent)
superior relationships, while solid links are used to represent
direct (child) inferior relationships. In other words, if node A

is a direct parent of node B, then a solid link from A to B is
assigned and, at the same time, a dashed link from B to A is
also assigned.

In the RLS of the SMV, each node (view) has a special data
structure (see Fig. 6) to keep the relevant information, which
includes the node id (ID) to identify the node, the associated
SQ expression for the represented view, the next view pointer
(NV) to point to the next node in the same (top, middle, bottom
or independent) set, the direct parent pointer set (PPS) to store
the addresses/pointers of all the direct parent nodes of this node,
the direct child pointer set (CPS) to store the addresses/pointers
of all the direct child nodes of this node, a frequency counter
(FC) to indicate the use frequency of the represented view, a
STR to keep the previously discovered relationships and the
address/pointer of the view (DataP) to point to the materialized
view data.

When a new view/node N (corresponding to the current
SQ) is to be added to the SMV, it is compared with the
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TABLE 1. Discovered superior–inferior relationship indicator.

N ′.STR.REL
value meaning

00 N ′ has no relationship with M

01 N ′ is superior (but not inferior) to M

10 N ′ is inferior (but not superior) to M

11 N ′ is equivalent (both superior and inferior) to M

existing views/nodes in the SMV to discover its superior–
inferior relationships with them. To improve the processing
performance, as done before, we apply heuristic rules to
automatically derive new relationships with more nodes in the
SMV once a relationship with one node is discovered. We also
try to avoid a duplicate comparison if the relationship of N

with an existing node has already been discovered or derived
previously. STR is a temporary storage for an existing nodeN ′ to
record the previously discovered or heuristic-derived superior–
inferior relationships with a new node being inserted. STR
consists of a node id (ID) and an indicator (REL). The node
id identifies the node M (i.e. N or a previously inserted node)
with which the relationship(s) has been discovered/derived
previously. The indicator is a two-bit binary value, where the
lower bit indicates the existence of an inferior relationship from
N ′ to M and the higher bit indicates the existence of a superior
relationship from N ′ to M . The possible values of REL and their
meanings are summarized in Table 1.

3.4.2. RLS storage structure construction
The following heuristic rules are applied by the algorithm to
construct the SMV with the RLS structure:

Heuristic Rule 5 : If new node (view) N is superior to a node
N ′ in the SMV, then N is superior to all descendant nodes of
N ′. If N is not superior to a node N ′ in the SMV, then N cannot
be superior to any ancestor node of N ′.

Heuristic Rule 6 : If new node (view) N is inferior to a node
N ′ in the SMV, then N is inferior to all ancestor nodes of N ′.
If N is not inferior to a node N ′ in the SMV, then N cannot be
inferior to any descendant nodes of N ′.

Heuristic Rule 5 is similar to Heuristic Rules 1 and 3, while
Heuristic Rule 6 is similar to Heuristic Rules 2 and 4. The only
difference is that the ancestor and descendant nodes of a given
node from the SMV in Heuristic Rules 5 and 6 may not belong
to the same PQ.

Now let us discuss how to construct the SMV with the
aforementioned RLS storage structure. In brief, we need to
consider how to insert a new view/node N into an appropriate
view set, discover all the direct child nodes of N in the SMV, and
find all the direct parent nodes of N in the SMV. The insertion
process can be done in three stages. In the first stage, all the
direct child nodes of N in the bottom-view set, the middle-view
set and the top-view set are discovered. In the second stage, all

TABLE 2. Status flag values and their indicated status.

status_f lag

value determined status

−1 nothing determined yet
0 N belongs to the independent-view set
1 N belongs to the bottom-view set
2 N belongs to the middle-view set
3 N belongs to the top-view set
4 N has no direct child in the top-view, middle-view or

bottom-view set
5 N has at least one direct child found
6 N has an equivalent view found in the current SMV

the direct parent nodes of N in the bottom-view set, the middle-
view set and the top-view set are found. In the third stage, all
the direct parent nodes or the direct child nodes of N in the
independent-view set are discovered, and N is inserted into an
appropriate view set based on its discovered relationships with
existing nodes in the SMV.

During the above process, we use a status flag (status_f lag)
to indicate the status of determining the view set to which the
new node N belongs. The flag is initially set to −1. The values
of this status flag and their meanings are summarized in Table 2.
Values 0–3 indicate that the view set to which N belongs to has
been determined; while values 4–5 indicate that only partial
information, which is insufficient to determine the view set
membership of N , is obtained. In fact, when the flag value is
4, there are three cases. First, N has a direct child node M in
the independent-view set. In this case, N belongs to the top-
view set. Note that N cannot have a direct parent node in any
view set in this case. Otherwise, M could not belong to the
independent-view set in the first place due to the relationship
transitivity. Second, N has a direct parent node in a (any) view
set. In this case, N belongs to the bottom-view set. Note that
N cannot have a direct child M in the independent-view set
in this case. Otherwise, it violates the fact that M belongs to
the independent-view set due to the transitivity. Third, N has
no relationship with any view in the current SMV. In this case,
N belongs to the independent-view set. When the flag value is
equal to 5, there are two cases. First, N has a direct parent node
in a (any) view set. In this case, N is a middle-view node, since
it also has a direct child. Second, N has no direct parent node in
any view set. In this case, N belongs to the top-view set. When
the flag value equals to 6, there is no need to insert N into the
SMV, since it has already been represented by an existing node
in the SMV.

The construction algorithm that incorporates a new
view/node into the RLS storage structure of the SMV runs as
follows:

Revised Algorithm Segment 3.5. InsertViewIntoSMV (N, smv)
Input: (1) new materialized view node N ; (2) set of materialized views (smv)
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with the RLS structure.
Output: updated smv.
Method:

1. initialize status_f lag to -1 and the fields of N to NULL or ∅;
/*Stage 1: find direct child nodes of N in the bottom-view, middle-view and

top-view sets */
2. if the bottom-view set is not empty then
3. for each node S in the bottom-view set do

/* find direct child nodes of N that lie on each upward path of S and try to
determine the view set membership of N from bottom up */

4. status_f lag=AddFromBottom(N, S, smv, status_f lag);
5. if status_f lag == 6 then /* N already has an equivalent in smv */
6. return; /* no need to insert N */
7. end if
8. end for
9. if status_f lag == -1 then

/* no direct child node was found for N in the bottom-view, middle-view
or top-view set */
10. set status_f lag=4; /* record partial information */
11. end if
12. end if

/*Stage 2: find direct parent nodes of N in the bottom-view, middle-view
and top-view sets */
13. if status_f lag �= 3 then

/* N has not been determined to be in the top-view set */
14. if the top-view set is not empty then
15. for each node T in the top-view set do

/* find direct parent nodes of N that lie on each downward path of T and
try to determine the view set membership of N from top down */
16. status_f lag=AddFromTop(N, T , smv, status_f lag);
17. if status_f lag == 6 then /* N already has an equivalent in smv */
18. return; /* no need to insert N */
19. end if
20. end for
21. if N is not inferior to any node T in top-view set then
22. if status_f lag==5 then /* N is known to have at least one child */

/* undetermined situation can be determined now */
23. set status_f lag = 3; /* N is determined to be in the top-view set */
24. end if
25. end if
26. end if
27. end if

/*Stage 3: find direct child or parent nodes of N in
independent-view set, and place N in a proper view set * /

28. if status_f lag �= 2 then
/* N is not in the middle-view set */

29. if the independent-view set is not empty then
30. for each node W in the independent-view set do
31. find the relationship between N and W and record the information in
W.ST R;

/* i.e., set W.ST R.REL to 00, 01, 10 or 11 accordingly and W.ST R.ID

= N.ID

32. if N and W are equivalent then /* i.e., W.ST R.REL = 11 */
33. return; /* no need to insert N */
34. else if N is superior to W then /* W.ST R.REL == 10 */
35. set status_f lag = 3; /* i.e., N is determined to be in the top-view set */
36. move W from the independent-view set to the bottom-view set;
37. link W and N together with a direct child/parent relationship;

/* i.e., update W.PPS and N.CPS to indicate W is a direct child of N */
38. else if N is inferior to W then /* W.ST R.REL == 01 */
39. set status_f lag = 1;

/* i.e., N is determined to be in the bottom-view set */
40. move W from the independent-view set to the top-view set;
41. link N and W together with a direct child/parent relationship;

/* i.e., update N.PPS and W.CPS to indicate N is a direct child of W */
42. end if
43. end for

44. end if
45. if status_f lag == 4 or status_f lag == -1 then

/* N has no relationship with any existing view node or smv is empty */
46. set status_f lag = 0;

/* N is determined to be in the independent-view set */
47. end if.
48. end if
49. if status_f lag == 0 then
50. put N into the independent-view set and return;
51. else if status_f lag == 1 then
52. put N into the bottom-view set and return;
53. else if status_f lag == 2 then
54. put N into the middle-view set and return;
55. else /* status_f lag == 3 */
56. put N into the top-view set and return;
57. end if.

In Algorithm 3.5, before the first stage, the relevant fields for
new node N are initialized to be ready for the node data structure
in smv, and flag status_f lag is initialized to −1 (line 1).

In the first stage, if the bottom-view set B is not empty,
this algorithm invokes a recurive function AddFromBottom()
to discover all the direct child nodes of N in smv by following
the ancestor (upward) paths of each node in B. The goal is to
find the largest (highest) direct child of N along each upward
path. Depending on how high the algorithm can climb up along
the paths, the information about the view set membership of
N may be obtained. For example, if the top node of a path is
found to be a direct child of N , then N is determined to be
in the top-view set. The details of AddFromBottom() will be
discussed later on. It is possible that N is found to be equivalent
to a node in smv during the procedure (line 5). In such a case,
there is no need to add N into smv and the algorithm returns
(line 6). If N is found not to be superior to any node in the
bottom-view set, status_f lag is set to be 4 (lines 9–11). At the
end of the first stage, the possible values of status_f lag are 3,
4, 5, 6 (algorithm exits) and −1 (only if the bottom-view set is
empty).

At the beginning of the second stage, the algorithm first
checks whether N has been determined to be a top-view
(line 13). If it is true (i.e. status_f lag = 3), the second
stage is skipped, since N has no direct parent node in such
a case. Otherwise, if the top-view set D is not empty (line 14),
the algorithm invokes a recurive function AddFromTop() to
discover all the direct parent nodes of N in smv by following
the descendant (downward) paths of each node in D. The goal
is to find the smallest (lowest) direct parent of N along each
downward path. Depending on how low the aglorithm can
go down along the paths, the information about the view set
membership of N may be obtained. For example, if the lowest
node of a path is found to be a direct parent of N , then N is
determined to be in the bottom-view set. In conjunction with
some partial information obtained from the first stage, there
are more cases in which the view set membership of N can
be determined. The details of AddFromTop() will be discussed
later on. It is possible that N is found to be equivalent to a node
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in smv during the procedure (line 17). In such a case, there is no
need to add N into smv and the algorithm returns (line 18). If N

is found not to be inferior to any node in the top-view set and
known to have at least one direct child (from the first stage), N

is determined to be in the top-view set (lines 21–25). At the end
of the second stage, the possible values of status_f lag are 1,
2, 3, 4, 6 (program exits) and −1 (the bottom-view set—hence,
the middle-view and top-view sets as well are empty).

At the beginning of the third stage, the algorithm first checks
if N has already been determined to be in the middle-view set
(line 28). If it is true (i.e. status_f lag = 2), the third stage is
skipped, since N cannot have a superior or inferior relationship
with any independent-view node in such a case due to the
property of an independent-view. Otherwise, if the independent-
view set is not empty (line 29), the algorithm compares N

with each node W in the independent-view set (lines 30–43).
The relationship between N and W can be discovered only
on site (lines 31), since no derived relationships exist for an
independent-view. If N is equivalent to any node W in the
independent-view set, the algorithm returns (lines 32–33), since
there is no need to add N into smv. Note that, in such a case,
N must have not been linked to any node in smv (otherwise, W
would not have belonged to the independent-view set). Hence,
no clean-up work is needed before the return. If N is superior
to any node W in the independent-view set, N is determined to
be a top-view node (lines 34–37). This is because N cannot be
inferior to any node in the bottom-view set, the middle-view set
or the top-view set in this case. Otherwise, W would not have
belonged to the independent-view set. Similarly, if N is inferior
to any node W , N is determined to be a bottom-view node
(lines 38–42). After N is compared with every independent-
view, if status_f lag = 4, it implies that N has no direct
child node found in the first stage (so status_flag was set to
4), N has no direct parent node found in the second stage (so
status_flag was unchanged) and N is not superior or inferior
to any independent-view node in the third stage (so status_flag
remains the same). In this case, N must be an independent-
view node (line 46). If status_f lag = −1 at line 45, it implies
that all the top-view set, the middle-view set, the bottom-view
set and the independent-view set are empty. N is clearly an
independent-view node in this case (line 46). At the end of stage
3, N is inserted into a proper view set in smv according to the
value of determined status_flag.

Two invoked functions AddFromBottom() and AddFrom-
Top() are shown as follows:

Revised Algorithm Segment 3.6. AddFromBottom(N , S, smv,
status_f lag)
Input: (1) new materialized view node (N ); (2) a compared node (S); (3) set
of materialized views (smv) with the RLS structure; (4) a status flag for the
view set membership determination (status_f lag).
Output: (1) updated status_f lag; (2) updated smv.
Method:

1. superior_relationship = false;
2. if relationship between N and S was found before then

/* i.e., S.ST R.ID == N.ID */
3. if N is superior to S then /* i.e., S.ST R.REL==10 */
4. superior_relationship = true;
5. end if
6. else /* relationship between N and S has never been explored before */
7. find the relationship between N and S and record the information in

S.ST R;
/* i.e., set S.ST R.REL to 00, 01, 10 or 11 accordingly and S.ST R.ID

= N.ID */
8. if N and S are equivalent then /* i.e., S.ST R.REL = 11 */
9. set status_f lag = 6;

10. clean N from smv if N was linked in smv via a direct child/parent
relationship previously;
11. return status_f lag; /* no need to insert N */
12. else if N is superior to S then /* i.e., S.ST R.REL == 10 */
13. superior_relationship=true;
14. propagate the superior relationship to each descendant of S;

/* i.e., set X.ST R.ID = N.ID and X.ST R.REL = 10 for each (unset)
descendant X of S */
15. else if N is inferior to S then /* i.e., S.ST R.REL == 01 */
16. propagate the inferior relationship to each ancestor of S;

/* i.e., set X.ST R.ID = N.ID and X.ST R.REL = 01 for each (unset)
ancestor X of S;
17. end if
18. end if
19. if superior_relationship = true then /* N is superior to S */
20. if S is a top-view then
21. set status_f lag = 3; /* N is determined to be in the top-view set */
22. move S from the top-view set to the middle-view set;
23. link S and N together with a direct child/parent relationship;

/* i.e., update S.PPS and N.CPS to indicate S is a direct child of N */
24. else /* S is a middle-view or a bottom-view */
25. for each direct parent node K in S.PPS do

/* find direct child nodes of N on each upward path from S recursively
and try to determine the view set membership for N from bottom up */
26. status_f lag=AddFromBottom(N, K, smv, status_f lag);
27. if status_f lag == 6 then /* N already has an equivalent in smv */
28. return status_f lag; / * no need to insert N */
29. end if
30. end for
31. if N is not superior to any direct parent node of S then
32. if status_f lag == -1 then
33. set status_f lag = 5; /* N has at least S as a direct child node */
34. end if
35. link S and N together with a direct child/parent relationship;

/* i.e., update S.PPS and N.CPS to indicate S is a direct child of N */
36. end if
37. end if
38. end if
39. return status_f lag.

Algorithm 3.6 is used to find the direct child nodes of N in the
bottom-view set, the middle-view set and the top-view set that
lie on the upward paths from S and determine the membership
of a view set for N from bottom up if possible. It traverses
up from S in smv by recursively following the parent links of
S (lines 25–26). The algorithm first identifies the relationship
between N and S, which could be found previously (lines 2–
5) or is discovered in the current invocation (lines 6–18). If
N and S are found to be equivalent, there is no need to insert
N into smv (lines 8–11 and 27–29). Note that, when such an
equivalence is found (line 8), the algorithm has to clean up
the possible direct child–parent links added for N from its
direct child nodes discovered so far before it returns. If N is
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found to be superior or inferior to S for the first time, such
a relationship needs to be propagated to the descendants or
ancestors of S based on Heuristic Rule 5 or 6, respectively
(lines 12–18). If N is superior to S, there are two cases in
which S becomes a direct child of N . The first case is when
S was in the top-view set before N is added (lines 20–23),
i.e. S had at least one child but no parent. After N is added,
N becomes the only (direct) parent of S. In this case, it is
determined that N belongs to the top-view set (line 21), and
S has to be moved to the middle-view set (line 22). The second
case is when N is found to be not superior to any direct parent
of S (lines 31–36). Since it is unknown whether N has its own
direct parent in this case, the view set membership for N cannot
be determined (line 33). When the algorithm returns, status_flag
has one of the following values: 3, 5, 6 and −1 (no direct child
so far).

Revised Algorithm Segment 3.7. AddFromTop(N ,T , smv, status_f lag)
Input: (1) new materialized view node (N ); (2) a compared node (T ); (3) set of
materialized views (smv) with the RLS structure; (4) a status flag for the view
set membership determination (status_f lag).
Output: (1) updated status_f lag; (2) updated smv.
Method:

1. inf erior_relationship = false;
2. if relationship between N and T was found before then

/* i.e., T .ST R.ID == N.ID */
3. if N is inferior to T then /* i.e., T .ST R.REL==01 */
4. inf erior_relationship = true;
5. end if
6. else /* relationship between N and T has never been explored before */
7. find the relationship between N and T and record the information in T .ST R;

/* i.e., set T .ST R.REL to 00, 01, or 11 accordingly and T .ST R.ID =
N.ID */

8. if N and T are equivalent then /* i.e., T .ST R.REL = 11 */
9. set status_f lag = 6;

10. clean N from smv if N was linked in smv via a direct child/parent
relationship previously;
11. return status_f lag; /* no need to insert N */
12. else if N is inferior to T then /* T .ST R.REL == 01 */
13. propagate the inferior relationship to each ancestor of T ;

/* i.e., set X.ST R.ID = N.ID and X.ST R.REL = 01 for each (unset)
ancestor X of T ;
14. end if
15. end if
16. if inf erior_relationship = true then
17. if T is a bottom-view then
18. if status_f lag != 1 then
19. status_f lag = 1; /* N is determined to be in the bottom-view set */
20. end if
21. move T from the bottom-view set to the middle-view set;
22. link T and N together with a direct parent/child relationship;

/* i.e., update T .CPS and N.PPS to indicate T is a direct parent of N */
23. else /* T is a middle-view or top-view */
24. for each direct child node K in T .CPS do

/* find direct parent nodes of N on each downward path from T recursively
and determine the view set membership for N from top down */
25. status_f lag=AddFromTop(N, K, smv, status_f lag);
26. if status_f lag == 6 then /* N already has an equivalent in smv */
27. return status_f lag; /* no need to insert N */
28. end if
29. end for
30. if N is not inferior to any direct child node of T then
31. if status_f lag ==4 then /* N is known to have no direct child */
32. set status_f lag = 1;

/* N is determined to be in the bottom-view set */
33. else /* status_f lag = 5; i.e., N has at least one direct child */
34. set status_f lag = 2;

/* N is determined to be in the middle-view set */

35. end if
36. link T and N together with a direct parent/child relationship;

/* i.e., update T .CPS and N.PPS to indicate T is a direct parent of N */
37. end if
38. end if
39. end if
40. return status_f lag.

Algorithm 3.7 is used to find the direct parent nodes of N

in the bottom-view set, the middle-view set and the top-view
set that lie on the downward paths from T and determine the
membership of a view set for N from top down if possible. It is
similar toAlgorithm 3.6, except that it traverses down (instead of
up) from T in smv by recursively following the direct child links
of T (lines 24–25). The algorithm first identifies the relationship
between N and T , which could be found previously (lines 2–5)
or is discovered in the current invocation (lines 6–15). If N and
T are found to be equivalent, there is no need to add N into
smv (lines 8–11 and 26–28). If N is found to be inferior to T

for the first time, such a relationship needs to be propagated to
the ancestors of T based on Heuristic Rule 6 (lines 12–14). Note
that it is impossible for a new superior relationship from N to
T (i.e. T .ST R.REL = 10) to be discovered at this time, since
all possible superior relationships from N to an existing node
in smv have been discovered in the first stage. If N is inferior
to T , there are two cases in which T becomes a direct parent of
N . The first case is when T was in the bottom-view set before
N is added (lines 17–22), i.e. T had at least one parent but no
child. After N is added, N becomes the only (direct) child of T .
In this case, it is determined that N belongs to the bottom-view
set (lines 18–20), and T has to be moved to the middle-view
set (line 21). The second case is when N is found to be not
inferior to any direct child of T (lines 30–37). In this case, N

is determined to be in the bottom-view set (lines 31–32) or the
middle-view set (lines 33–34), depending on whether a direct
child of N has been found in the first stage or not. Note that
status_flag cannot be −1 at line 33 since when this algorithm
is invoked at line 16 in Algorithm 3.5, the top-view set must
not be empty, which implies that the bottom-view set cannot be
empty. As mentioned earlier, status_f lag = −1 at the end of
the first stage only if the bottom-view set is empty. When the
algorithm returns, status_f lag may have one of the following
values: 1, 2, 4, 5 and 6.

3.4.3. Examples
Now let us use some insertion examples to illustrate how
the SMV construction algorithm works in different scenarios.
Assume that we have a partially constructed SMV as shown in
Fig. 7.

In Fig. 7, the nodes from n1 to n5 are the top-views, the nodes
from n6 to n11 are the middle-views, the nodes from n12 to n16
are the bottom-views, and the nodes from n17 to n20 are the
independent views. We use a pair (N , M) to denote that node
N is superior to node M . All the superior relationships in Fig. 7
are shown as follows: (n1, n9), (n9, n12), (n2, n13), (n3, n6),

The Computer Journal, Vol. 57 No. 5, 2014

 at U
niversity of M

ichigan on June 3, 2014
http://com

jnl.oxfordjournals.org/
D

ow
nloaded from

 

http://comjnl.oxfordjournals.org/


722 C. Zhu et al.

n1 n2

n13n12

n7n6

n9

Top-view
set:

n17 n18

Middle-view
set:

Bottom-view
set:

Independent-
view set:

Set link

Direct parent pointer

n3 n4 n5

n8

n10 n11

n14 n15 n16

n19 n20

Direct child pointer

FIGURE 7. A partially constructed SMV.

(n6, n10), (n10, n14), (n3, n7), (n7, n11), (n11, n14), (n4, n7),
(n5, n8), (n8, n11), (n11, n16).

Suppose we want to add the results of five SQs sq1, sq2,
sq3, sq4 and sq5 as new (materialized) views into the SMV.
Assume that the superior (inferior) or equivalent relationships
between the new views and the existing nodes in the SMV are
as follows:

sq1: (n3, sq1), (sq1, n10), (sq1, n14);
sq2: (sq2, n2), (sq2, n13);
sq3: (n12, sq3), (n9, sq3), (n1, sq3);
sq4: (n20, sq4);
sq5: (sq5, n14), sq5 is equivalent to n11 (i.e. (s5, n11) and

(n11, s5)).
To add sq1 into the SMV, the bottom-view set is checked

first. The algorithm wants to find those nodes to which sq1 is
superior in the SMV. Nodes n12 and n13 are passed because
sq1 is superior to neither of them. When the algorithm finds
that sq1 is superior to n14, it traverses up through the direct
parent node links of n14 to visit n10 and n11. Again, the
algorithm finds that sq1 is superior to n10. Therefore, the
algorithm continues to traverse up through the direct parent
node link of n10 to visit n6. Since node sq1 is not superior
to n6, the algorithm stops traversing up and links sq1 directly
above (superior to) n10 (status_f lag = 5; lines 31–35 in
AddFromBottom()). Since sq1 has no relationship with n11,
the algorithm does not pursue further along that path. The
algorithm then goes back to check the rest of bottom-view
nodes n15 and n16. No superior relationship is found. After
the bottom-view nodes have been checked, all the top-view
nodes are examined one by one. The algorithm wants to find
those nodes that are superior to sq1 in the SMV. Nodes n1 and
n2 are passed because they are not superior to sq1. Since n3
is superior to sq1, the algorithm traverses down though the
direct child node links of n3 to visit n6 and n7. However,

neither n6 nor n7 is superior to sq1. Thus, the algorithm
stops traversing down and links sq1 directly below (inferior
to) n3 (status_f lag = 2; lines 33–35 in AddFromTop()). The
algorithm also goes back to check the rest of top-view nodes
n4 and n5, but no superior relationship is found. Finally, sq1
is added into the middle-view set and the insertion process
ends.

To add sq2 into the SMV, the same algorithm is applied. First,
the bottom-view set is checked and n13 to which s2 is superior
is found. The algorithm then traverses up through the direct
parent link of n13 to visit n2 and finds that sq2 is also superior
to n2. Since n2 is a top-view node, sq2 must be a top-view
node. Hence, the algorithm moves n2 to the middle-view set and
links sq2 directly above (superior to) n2 (status_f lag = 3;
lines 20–23 in AddFrombottom()). The algorithm then goes
back to check the rest of bottom-view nodes n14, n15 and n16
and finds that sq2 is not superior to any of them. Hence, the
algorithm determines that sq2 is a top-view node since no node
in the SMV is superior to it. As a result, the second stage is
skipped. The algorithm directly checks the independent-view
nodes to see whether sq2 is superior to any of them and finds
none. Finally, sq2 is inserted into the top-view set and the
insertion process ends.

To add sq3 into the SMV, the algorithm checks the bottom-
view set first as before. It is found that sq3 is not superior to
any bottom-view node. The top-view set is then checked. It is
found that n1 is superior to sq3. Hence, the algorithm traverses
down through the direct child node link of n1 to visit n9. It
is found that n9 is also superior to sq3. Thus, the algorithm
continues to traverse down through the direct child node link
of n9 to visit n12. Node n12 is still superior to sq3. Since n12
is a bottom-view node, the algorithm determines that sq3 is
a bottom-view node. Therefore, it moves n12 to the middle-
view set and links sq3 directly below n12 (status_f lag = 1;
lines 17–22 in AddFromTop()). The algorithm then goes back
to check the rest of top-view nodes n2, . . . , n5 and finds no
superiors.After that, the independent-view set is also checked to
see if there exists any independent-view node which is superior
to sq3 and none is found. Finally, sq3 is put into the bottom-
view set and the insertion process ends.

To add sq4 into the SMV, a similar work is done. First,
the bottom-view set is checked. But sq4 is not superior to
any bottom-view node. Second, the top-view set is checked.
However, no top-view node is superior to sq4. Third, the
independent-view set is checked. It is found that n20 is superior
to sq4. Hence, n20 is moved to the top-view set and sq4 is
linked directly below n20 (status_f lag = 1; lines 38–41 in
InsertViewIntoSMV()). Finally, the algorithm puts sq4 into the
bottom-view set and the insertion process ends.

To add sq5 into the SMV, the bottom-view set is checked
first as before. The algorithm finds that sq5 is superior to n14.
It then traverses up through the direct parent node links of n14
to visit n10 and n11. Node n10 is passed, but n11 is found
to be equivalent to sq5 (status_f lag = 6; lines 8–11 in
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FIGURE 8. The modified SMV after inserting the nodes from
sq1 to sq5.

AddFromBottom()). In this case, no need to add sq5 into the
SMV. Therefore, the algorithm stops the insertion process and
makes no change for the SMV. Figure 8 shows the SMV after
inserting the nodes sq1, sq2, sq3 and sq4 (sq5 is not added).

Now let us consider another insertion example to illustrate
how the information in the superior–inferior relationship testing
record (STR) helps the algorithm improve its efficiency. As
mentioned before, STR is a temporary storage for an existing
node N in the SMV to record the previously discovered or
heuristic-derived superior–inferior relationships with a new
node being inserted. The algorithm can make use of the STRs
of the existing nodes to avoid some duplicate or unnecessary
comparison work.

In this example, we still consider the SMV shown in Fig. 7.
Assume that the new node sq6 has the following superior
relationships with the existing nodes in the SMV: (sq6, n14),
(n10, sq6), (n6, sq6), (n3, sq6). To add sq6 into the SMV, in
the first stage, the bottom-view set is checked. Nodes n12 and
n13 are passed since they have no relationship with sq6. After
it is found that sq6 is superior to n14, the algorithm traverses
up to check n10 and n11. After two pair-wise comparisons, it
is found that sq6 is superior to neither n10 nor n11. However,
another relationship ( i.e. n10 is superior to sq6) that is supposed
to be found in the second stage is discovered (line 15 in
AddFromBottom()). This information is saved in the STR of
n10. Based on Heuristic 6, we also can derive (without pair-
wise comparisons) the superior relationship from each ancestor
node of n10 to sq6, i.e. the STRs of n6 and n3 are also
updated (line 16 inAddFromBottom()).After that, the algorithm
links sq6 directly above (superior to) n14 (status_f lag = 5;
lines 31–35 in AddFromBottom()) and goes back to check the
other bottom-view nodes. In the second stage, the top-view set
is checked. Nodes n1 and n2 are passed since they have no
relationship with sq6. From the STR of n3, it is found that n3 is

superior to sq6 (the actual pair-wise comparison is avoided) and
the algorithm directly traverses down to visit n6 and n7. Again,
from the STR of n6, it is found that n6 is superior to sq6. Hence,
the algorithm keeps traversing down through n10 until n14
is reached (lines 2–5 and 24–25 in AddFromTop()), then sq6
is linked directly below (inferior to) n10 (status_f lag = 2;
lines 33–36 in AddFromTop()). The third stage is skipped since
sq6 has already been determined to be in the middle-view
set and no relationship with an independent view is possible
(otherwise, the independent view could not be independent,
since it would have relationships with existing top-view(s) and
bottom-view(s)). Finally, the algorithm inserts sq6 into the
SMV. From this example, we can see that, using the STR, many
duplicate (previously compared) and/or unnecessary (derived)
pair-wise comparisons can be avoided.

3.4.4. Materialized view set maintenance
Algorithm 3.5 can be used to insert a view into the SMV.
However, the number of views that can be saved in the SMV
is not unlimited. There is a space constraint for the SMV. We
assume that (1) there is a space limit (SL) for the SMV and
(2) the SL is large enough to hold the largest materialized view.
When the SMV overflows (i.e. its size exceeds the SL), we need
to delete some materialized views from it to create enough free
space for accommodating a new materialized view.

The algorithm RemoveViewFromSMV(M , smv) to delete
a given materialized view (node) M from the SMV smv

is relatively straightforward. The main idea is to remove
the relevant child–parent links for M from its direct child–
parent nodes, adjust the view set memberships (after deletion)
for the direct child–parent nodes when necessary, transfer
the relationships of M with its direct child–parent nodes to
other relevant nodes in smv when necessary and remove M

from the corresponding top/bottom/independent-view set in
smv. The details of this algorithm are omitted due to space
limitation.

To decide which materialized views in the SMV should
be replaced when space is not enough to accommodate a
new materialized view, we utilize the access frequencies of
materialized views in the SMV. The replacement policy is to
simply remove the materialized view with the least access
frequency one at a time until sufficient free space becomes
available for the new materialized view. One way to efficiently
find the materialized view with the least access frequency is
to employ an auxiliary sorted list of the nodes in the SMV
in the ascending order of their access frequencies. Note that,
when a materialized view v is removed from the SMV, the
corresponding PQ for the SQ associated with v (i.e. v.sq)
needs to be checked to see whether none of its SQs is used for
materialized views. If so, this PQ is removed from the SUPQs
and added into the SRG. The following algorithm integrates
all the previous algorithms to maintain the SMV, the SUPQ
and the SRG while inserting a new materialized view into
the SMV.
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Revised Algorithm Segment 3.8. InsertViewWithMaintenance(N , smv,
srg, supq)
Input: (1) new materialized view node (N ) to be inserted; (2) set of material-
ized views (smv) with the RLS structure; (3) superior relationship graph (srg);
(4) set of used PQs (supq).
Output: (1) updated smv with N added; (2) revised srg; (3) revised supq.
Method:
1. while smv does not have enough space to accommodate N do
2. find a view M to be removed from smv according to the access frequencies;
3. RemoveViewFromSMV(M , smv);
4. if the corresponding PQ x containing M.sq has no SQ represented in smv

then
5. remove x from supq;
6. AddtoSRG(x, srg);
7. end if
8. end while;
9. InsertViewIntoSMV(N , smv).

Note that the above replacement strategy could be extended
to take more factors such as the sizes and ages of materialized
views in smv into consideration. Such a discussion is beyond
the scope of this paper.

3.5. View search

With our RLS structure for the SMV, when a new SQ sq arrives,
the process to search for a materialized view that can be used to
evaluate sq is efficient and effective. This is because only a small
part of the SMV is usually examined and some optimization
(i.e. minimizing the materialized view size) for improving the
searched result is performed. For example, once a top-view v is
found to be superior to sq, i.e. v is usable, an improved (smaller)
usable view may be found by recursively following its direct
child links until a descendant node is no longer superior to sq.
On the other hand, if a top-view is found not superior to sq, all
its descendants can be pruned.

4. EXPERIMENTS

To evaluate the performance of the proposed technique,
we conducted extensive simulation experiments. Experiment
programs were implemented in Matlab 2007 on a PC with
Intel� dual core (1.5 GHz) CPU and 2 GB memory running on
the Windows� Vista operating system. The experimental data
set consisted of 10 external tables of randomly generated data
with sizes ranging from 0 to 1000 disk blocks. Hundred random
PQs were used for each experiment. Each PQ was composed
of two or more SQs, where the number of steps was randomly
chosen between 2 and 5. The result size of each SQ also ranged
from 0 to 1000 disk blocks. The experiments were grouped into
three sets. Their typical experimental results are reported in the
following subsections, respectively.

4.1. Performance of dynamic materialized-view-based
PQ processing approach

The first set of experiments was conducted to evaluate
the efficiency of our dynamic materialized-view-based PQ

processing approach (DMVPQ). The SRG and the SMVs using
the RLS structure were initially set to empty. In experiments,
we compared the performance between the (conventional)
consecutive sequential scan-based PQ processing technique
(CSSPQ) and our DMVPQ technique. PQs were processed
one by one. When the execution of a PQ is completed, if
no SQ in the PQ was selected as a materialized view, the
PQ was added into the SRG. We maintained two parameters
IPR and WPR for each node in the SRG. IPR denotes the
probability with which a node has an inferior relationship with
a SQ under consideration. WPR denotes the probability with
which a node satisfies a weight threshold for the result of an
SQ to be selected as a materialized view. Both parameters were
considered together to decide whether to materialize a SQ or
not. If an SQ under consideration is estimated to be beneficial,
it is materialized and added into the SMVs. Two parameters
SPR and SIZE are maintained for each materialized view in
the set. SPR denotes the probability with which the view has
a superior relationship with a SQ under consideration. SIZE
denotes the size of the materialized view. Each of IPR, WPR
and SPR was randomly chosen between 0 and an upper bound,
without violating the definition and properties of a monotonic
linear PQ. SIZE was directly acquired from the corresponding
PQ. In the experiments, the pruning-based SRG construction
algorithm was adopted. Since the objective of our experiments
was to evaluate the performance of the DMVPQ technique, the
space constraint was not considered.

In the first experiment, the upper bounds for IPR, WPR

and SPR were set to 0.1, 0.5 and 0.1, respectively. Figure 9
shows the performance comparisons between the CSSPQ and
the DMVPQ techniques.The x-axis represents the total number
of SQs executed in the system, and the y-axis represents the
I/O cost (i.e. the number of disk block accesses). From the
figure, we can see that the two performance curves are very
close to each other when the number of SQs processed is small.
The performance of DMVPQ is increasingly better than that of
CSSPQ when the number of SQs increases. The reason for this
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FIGURE 9. Performance comparison between DMVPQ and CSSPQ.
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FIGURE 10. Performance comparison between DMVPQ and CSSPQ
with IPR being changed to 0.3.

is as follows.At the beginning, both SRG and SMV are empty—
no view could be utilized to improve the query performance. As
more and more PQs are executed, the SRG and MVC grow larger
and larger. In other words, more and more materialized views
become available for improving the query performance. As a
result, the performance of DMVPQ is significantly improved.

In the second experiment, we increased the upper bound for
parameter IPR to 0.3 and kept the other parameters unchanged.
The experimental results are shown in Fig. 10. From the figure,
we can see that the performance of DMVPQ is significantly
improved. The reason for this is that IPR plays an important
role in deciding whether to materialize the result of a SQ. A
larger upper bound for IPR implies that a SQ has a higher
chance of being materialized. Hence, the SMV grows faster, and
the subsequent queries have more views to utilize to improve
their performance.

Another crucial factor to affect the query performance is
parameter SPR. In the third experiment, we changed the
upper bound for SPR to 0.3 and kept the other parameters
unchanged. Experimental results are shown in Fig. 11. A
significant performance increase for DMVPQ is also observed.
The reason for this improvement is that SPR is the factor to
determine whether a materialized view would be usable for a
SQ under consideration. A larger upper bound for SPR implies
that a materialized view has a better chance of being usable for
a given SQ. In other words, a SQ has more available views to
utilize to improve its performance.

In the next experiment, we considered various upper bounds
for IPR ranging from 0.1 to 0.9 and kept other parameters
unchanged. The performance curve is shown in Fig. 12. From
the figure, we can clearly see that the performance is improved
as IPR increases. We also conducted another experiment for
various upper bounds for SPR ranging from 0.1 to 0.9 and
kept other parameters unchanged. The experimental results are
shown in Fig. 13.A similar performance pattern is also observed.
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FIGURE 11. Performance comparison between DMVPQ and CSSPQ
with SPR being changed to 0.3.
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FIGURE 12. Performance change with different IPRs for DMVPQ.

The results of the first set of the experiments demonstrate
that our DMVPQ technique is quite promising in improving the
performance for processing monotonic linear PQs.

4.2. Performance of SRG construction methods

The second set of experiments was conducted to compare the
performance behaviors of the generating-based method and the
pruning-based method for constructing a SRG. The SRG was
initially set to empty. The PQs were processed one by one. When
a new SQ was added into the SRG, we needed to find all the
superior or inferior relationships between the new SQ and the
SQs in the SRG. As mentioned before, a straightforward way
to construct an SGR is to perform the pair-wise comparisons
between the new SQ to be added and each existing SQ in the
SRG. But the cost of this way is usually very high, which led
us to develop the generating-based method and the pruning-
based method to avoid some unnecessary comparisons. In
the experiments, we wanted to compare the performance of
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FIGURE 13. Performance change with different SPRs for DMVPQ.
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FIGURE 14. Comparison of saved costs between the generating-
based method and the pruning-based method with IPR = 0.7.

these two methods so as to identify the scenarios where one
method could be better than the other. The performance was
measured in terms of the cost (pair-wise comparisons) saved
over the straightforward pair-wise comparison method. We also
maintained the IPR for each node in the SRG, which represents
the probability of this node being inferior to a new SQ to be
added.

In the first experiment, we set the upper bound of IPR to
a relatively high value 0.7, which led to a high chance of the
existing nodes in the SRG having a (inferior) relationship with
a new SQ to be added. Hence, the resulting SRG was a dense
(in terms of edges) graph. Figure 14 shows the comparison of
the saved costs between the generating-based method and the
pruning-based method. From the figure, we can observe that
the former method outperforms the latter method to construct
the SRG in such a case. This is because the generating-based
method has a better chance of automatically deriving/generating
more relationships (edges) in a dense graph to save many (pair-
wise) comparisons. The larger the SRG, the more savings the
generating-based method could achieve.
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FIGURE 15. Comparison of saved costs between the generating-
based method and the pruning-based method with IPR = 0.3.

In the second experiment, we set the upper bound of IPR to
a relatively low value of 0.3. The resulting SRG was a sparse
graph. Figure 15 shows the comparison of the saved costs
between the generating-based method and the pruning-based
method. We can see that the pruning-based method performed
better than the generating-based method in this case. This
is because the pruning-based method has a better chance to
automatically eliminate/prune impossible relationships (edges)
in a sparse graph to save many comparisons. The larger the SRG,
the more savings the pruning-based method could obtain.

The previous two experiments demonstrate that both the
generating-based method and the pruning-based method can
save an increasing amount of cost as the SRG grows. The
generating-based method is better for a dense graph, while
the pruning-based method is better for a sparse graph, as we
predicted in Section 3.2.

4.3. Performance of view search using new SMV storage
structure

The third set of experiments was conducted to examine the view-
searching performance for the SMVs using our new storage
structure RLS. The SMV was initially set to empty. Four
different materialized view sets (top-view set, middle-view set,
bottom-view set and independent-view set) were maintained.
PQs were processed one by one. For each SQ of the current
PQ, the SMV was searched to find a usable view that could be
used to answer the SQ. After a SQ was executed, its result had
a chance to be kept as a (materialized) view and stored in the
SMV. The new storage structure RLS for the MVS was built by
using Algorithm 3.5. We maintained three parameters UPR,
SCPR and WPR for each SQ. UPR denotes the probability
of a view in the top-view set being a usable view for the given
SQ; SCPR denotes the probability for a direct child node
to be a usable view replacing its direct parent node for the
given SQ; WPR denotes the probability of a SQ result being
kept as a materialized view. Two additional parameters SUPR
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and INPR were also maintained in our experiments. SUPR

denotes the probability of a view being superior to another view
in the SMV, and INPR denotes the probability of a view to be
inferior to another view in the SMV. UPR, SCPR, WPR,
SUPR and INPR were randomly chosen between 0 and their
respective upper bound. In the experiments, the upper bounds
for UPR, SCPR, WPR, SUPR and INPR were set to 0.3,
0.9, 0.3, 0.3 and 0.3, respectively.

To search for a usable view in the SMV for a given SQ,
we examined two searching strategies: the fastest time strategy
(FTS) and the best result strategy (BRS). The FTS returns
the first usable view found in the SMV for the given SQ, while
the BRS returns the best usable view (i.e. the smallest one) in the
SMV for the given SQ. We compared the performance between
the (conventional) sequential search method with the MVS
organized as a linear queue (SSMVS) and the superior (inferior)
relationship based search method with the SMV organized
using our new RLS structure (SRMVS). Various scenarios were
considered.

In the first experiment, we used the fastest time strategy for
both the SSMVS and the SRMVS. For the SSMVS, the search
returned the first usable view (if any) in the linear queue. For the
SRMVS, the search first found the first usable view (if any) in
the top-view set and then recursively followed the direct child
(inferior) link of the found view to see whether a better (smaller)
usable view could be obtained. Hence, the SRMVS returned an
improved usable view (if possible) over the first usable view
found in the top-view set. Note that neither the SRMVS nor the
SSMVS based on the FTS can guarantee that the best usable
view in the SMV is found. Figure 16 shows the comparison
of view quality (in terms of view size) between the SSMVS
and the SRMVS based on the FTS. The x-axis represents the
total number of SQs processed in the system. For each SQ,
a usable view may be returned from the SMV to answer the
query. The y-axis represents the total size of the returned views.
The smaller the total size, the higher the view quality achieved.
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FIGURE 16. Comparison of view quality between SSMVS and
SRMVS based on FTS.

From the figure, we can see that two curves are very close at
the beginning. The view quality obtained from the SRMVS is
increasingly better than that from the SSMVS as the number
of SQs increases. The reason for this is as follows. At the
beginning, the SMVs were empty for both the SSMVS and
the SRMVS. Thus, for the first several SQs, no view could be
used to answer them and the total view size was 0 for both
the SSMVS and the SRMVS. As the number of SQs increased,
more and more SQ results were saved as materialized views in
the SMVs, which could be used to answer the following SQs
and the total view size started to increase. As the SMV grew, the
SRMVS had a better chance of returning an improved usable
view (via the maintained superior–inferior relationships) over
the first usable view found in the top-view set. Therefore, the
view quality curve of the SRMVS becomes better and better
compared with that of the SSMVS.

Figure 17 shows the comparison of view-searching costs
between the SSMVS and the SRMVS based on the FTS. The
x-axis still represents the number of SQs processed. The y-axis
represents the total number of views searched. From the figure,
we can see that the searching cost of the SRMVS is always
smaller than the that one of the SSMVS. The reason for this is
as follows. The SRMVS based on the FTS typically can save
some searching cost by pruning the middle-views and bottom-
views that are descendants of a non-usable top-view, while the
SSMVS based on the FTS has to search for all the views in the
SMV in the worst case.

In the second experiment, we applied the FTS for the SSMVS
and the BRS for the SRMVS. We still compared both the
view quality and the searching costs between the SSMVS and
the SRMVS. Figure 18 shows the comparison of view quality
between the SSMVS based on the FTS and the SRMVS based
on the BRS. From the figure, we can see that the view quality
from the SRMVS is dramatically improved by using the BRS
instead of the FTS. The reason for this is as follows. Using
the SSMVS based on the FTS, once a usable view is found

0 20 40 60 80 100
0

50

100

150

200

250

300

350

Number of step−queries

N
um

be
r 

of
 v

ie
w

s 
se

ar
ch

ed

SRMVS
SSMVS

FIGURE 17. Comparison of view-searching costs between SSMVS
and SRMVS based on FTS.
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FIGURE 18. Comparison of view quality between SSMVS based on
FTS and SRMVS based on BRS.
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FIGURE 19. Comparison of view-searching costs between SSMVS
based on FTS and SRMVS based on BRS.

in the SMV, the view is returned, which does not guarantee
the quality. On the other hand, the SRMVS based on the BRS
examines every usable top view and its descendants as well as
every usable independent-view until the best (smallest) usable
view is found. Hence, it guarantees that the best usable view in
the SMV is returned for the given SQs.

Figure 19 shows the comparison of view-searching costs
between the SSMVS based on the FTS and the SRMVS based
on the BRS. From the figure, we can find that the searching cost
of the SRMVS based on the BRS is a little bit higher than that
of the SSMVS based on the FTS. This is because the SRMVS
based on the BRS has to check all the usable views in the top-
view set and their descendants as well as the usable views in
the independent-view set. On the other hand, the SSMVS based
on the FTS only needs to return the first usable view found in
the linear queue of the SMV. If there are many usable views
in the SMV, the SSMVS does not incur much cost. Hence, the
searching cost of the SRMVS based on the BRS is usually higher
than that of the SSMVS based on the FTS. However, due to
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FIGURE 20. Comparison of view-searching costs between SSMVS
and SRMVS based on BRS.

the capability of the SRMVS for pruning the descendants of
non-usable views, the cost difference between the two methods
is small.

In the third experiment, both the SRMVS and the SSMVS
adopted the BRS. In this case, both methods had the same
view quality, since they both guaranteed that the best usable
view for a given SQ was returned. Hence, we compared only
their view-searching costs. Figure 20 shows the comparison of
searching costs between the SSMVS and the SRMVS based on
the BRS. We observed that the searching cost of the SSMVS
based on the BRS was much higher than the one of the SRMVS
based on the BRS. This is because the former method has to
check all the views to find the best usable view for a given SQ.
On the other hand, the descendants of non-usable views are
removed (pruned) from consideration by the SRMVS based on
the BRS.

Our experiments demonstrate that the SRMVS based on
either the FTS or the BRS is quite promising in efficiently
searching for quality usable views for given SQs, compared
with the SSMVS.

5. CONCLUSIONS

There is an increasing demand for processing PQs from various
application domains. Existing DBMSs were not designed to
process such queries efficiently. In this paper, we have proposed
a novel dynamic materialized-view-based technique to process
a special type of PQ called the monotonic PQ. The main
contributions of the paper are summarized as follows:

(i) We have presented a PQ processing procedure to
dynamically select the results of executed SQs
as materialized views and apply the materialized
views to efficiently process other SQs. A framework
incorporating the procedure is described.

(ii) We have introduced a SRG, which is constructed
for a set of historical PQs. The SRG captures the
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superior–inferior relationships among SQs in these
historical PQs and is used to estimate the benefit of
keeping the result of a SQ as a materialized view. Two
algorithms, i.e. generating-based and pruning-based, to
efficiently construct an SRG are proposed. The former
automatically generates more edges once one edge is
found, while the latter effectively prunes the impossible
cases once an edge is not found. Both algorithms
apply heuristics that are derived from the properties of
monotonic linear PQs. The algorithm that uses the SRG
to determine whether the result of a given SQ should be
kept as a materialized view is also suggested.

(iii) We have also suggested a storage structure, called the
RLS, for managing the SMVs. The RLS maintains the
superior–inferior relationships among the materialized
views and classifies the materialized views into four
groups. It supports efficient search for a good usable
view to evaluate a given SQ. The efficient algorithms
for managing and searching for the SMV with the RLS
structure are discussed. A strategy to handle the space
constraint and several heuristics to improve efficiency
are incorporated.

(iv) We have conducted extensive simulation experiments
to evaluate the performance of our proposed techniques
for various issues. The experimental results demonstrate
that the dynamic materialized-view-based approach is
quite promising in processing the monotonic linear PQs.
Its performance improvement over the conventional
consecutive sequential scan-based query processing
approach is increasingly larger as the number of
processed queries increases. The empirical study
of the performance of the two SRG construction
algorithms shows that both algorithms outperform the
straightforward construction method. The generating-
based algorithm is more suitable for a dense SRG, while
the pruning-based algorithm is more suitable for a sparse
SRG. The performance evaluation of the SMV using our
new storage structure RLS demonstrates that this new
structure can support efficient search for a usable view
with a good quality for a given SQ.

Our work is just the beginning of the research on optimizing
PQs. Further study is required to completely solve the relevant
issues. Our ongoing and future work includes investigating
materialized-view-based techniques to process other types of
PQs such as multiple-input linear PQs and non-linear PQs,
developing a multi-layered materialized view technique that
utilizes storage hierarchies to efficiently process PQs, studying
the issues to incorporate our developed techniques into existing
DBMS and extending the PQ processing to NoSQL database
settings. Some preliminary results on developing a materialized-
view-based technique to process generic PQs have been reported
in Zhu et al. [51].
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