
Distrib Parallel Databases (2008) 23: 151–188
DOI 10.1007/s10619-008-7025-4

Query optimization via contention space partitioning
and cost error controlling for dynamic multidatabase
systems

Qiang Zhu · Jaidev Haridas · Wen-Chi Hou

Published online: 12 February 2008
© Springer Science+Business Media, LLC 2008

Abstract A multidatabase system (MDBS) integrates information from multiple au-
tonomous local databases. Performing global query optimization to achieve efficient
query processing in such a system is challenging due to local autonomy of the data
sources. Dynamic factors in the environment make the problem even more difficult.
In this paper, we present two techniques, i.e., contention space partitioning and cost
error controlling, to perform global query optimization in a dynamic MDBS. Both
techniques generate an execution plan with multiple versions for a query in a dy-
namic MDBS, utilizing the multistate cost models built for the dynamic environment
via our previous multistate query sampling method. The first technique partitions
the contention space of a dynamic multidatabase environment into a given number
of subspaces and chooses a good query execution plan version for each subspace,
while the second technique selects a set of execution plan versions by using a given
error tolerance to control query execution costs. Experiments demonstrate that the
proposed techniques are quite promising for performing global query optimization
in a dynamic MDBS. Compared with related work on dynamic query optimization,
our approach has an advantage of avoiding the high overhead for modifying or re-
generating an execution plan for a query based on dynamic runtime information.

Keywords Multidatabase system · Dynamic environment · Query optimization ·
Multistate cost model · Execution plan · Algorithm

Communicated by Ahmed K. Elmagarmid.

Research was supported by the US National Science Foundation under Grant # IIS-9811980 and The
University of Michigan.

Q. Zhu (�) · J. Haridas
Department of Computer and Information Science, The University of Michigan, Dearborn, MI
48128, USA
e-mail: qzhu@umich.edu

W.-C. Hou
Department of Computer Science, Southern Illinois University, Carbondale, IL 62901, USA

152 Distrib Parallel Databases (2008) 23: 151–188

1 Introduction

A multidatabase system (MDBS) integrates data from multiple local (component)
databases and provides users with a uniform global view of data. A global user can
issue a (global) query on an MDBS to retrieve data from multiple databases with-
out having to know where the data is stored and how the data is retrieved. How to
efficiently process such a global query is the task of global query optimization.

There are a number of challenges for global query optimization in an MDBS.
They are mainly caused by heterogeneity and local autonomy of the system. One
major challenge is that some necessary local optimization information such as local
cost models may not be available at the global level. Several techniques to derive cost
models for an autonomous local database system (DBS) at the global level have been
proposed in the literature, including a calibration method [12, 16], a query sampling
method [44, 45, 48], a cost vector database approach [1], a fuzzy approach [47], and
a generic model approach [30, 36].

Many factors (e.g., CPU load, I/O load, and available memory space) in an MDBS
may change dramatically over time. These dynamic factors make query optimization
in an MDBS even more challenging. To capture dynamic factors in query cost es-
timation, we developed a multistate query sampling method to build multistate cost
models for dynamic local database systems in an MDBS in [49]. The key idea is to di-
vide a dynamic local database system environment into a number of contention states
(such as “High Contention”, “Medium Contention” and “Low Contention”) and use
the observed costs of sample queries run in the dynamic local database system to
build a cost model with a qualitative variable indicating the contention states. It has
been shown that such a multistate cost model can give a good cost estimate for a
(component/local) query run in any contention state at a dynamic local site in an
MDBS.

Establishing cost models is not the ultimate goal of query optimization. The ulti-
mate goal is to choose an efficient execution plan for a query on the basis of the cost
estimates given by the cost models. In general, there are two approaches to processing
a query. The first one is called the interpretation approach. In this approach, simple
query optimization is performed on the fly while a query is being executed. This
approach is suitable for ad hoc/interactive queries, which are usually executed only
once. The second one is called the compilation approach. In this approach, compre-
hensive query optimization is performed for a given query at compile time, result-
ing in an execution plan. The execution plan can then be executed repeatedly at run
time as needed. This approach is more suitable for stored/embedded queries, which
are usually executed repeatedly. In an MDBS environment, both stored/embedded
queries and ad hoc/interactive queries are expected.

Using multistate cost models to perform query optimization in the interpretation
approach is relatively easy. Since the multistate cost models give cost estimates that
reflect the current running system environment, the global query optimizer can choose
a good query execution plan for the current environment based on the cost estimates.
Hence optimization of ad hoc/interactive queries will not be further discussed in this
paper.

Using multistate cost models to perform query optimization for stored/embedded
queries in the compilation approach is more difficult. The main challenge is that

Distrib Parallel Databases (2008) 23: 151–188 153

it is not easy to predict the runtime system environment in which the query is to
be executed when a query is optimized at compile time. Apparently, the traditional
methods of using static cost models to perform query optimization are not acceptable
since a system environment is dynamic rather than static.

In this paper, we present two techniques to perform global query optimization
for a dynamic MDBS based on multistate cost models in the compilation approach.
Both techniques select a set of representative system environmental states for a dy-
namic MDBS, generate an execution plan with multiple versions (corresponding to
the representative system environmental states) for a given query at compile time,
and then determine the best version to run for the query based on dynamic infor-
mation at run time. Since multiple execution plan versions are employed to handle
different dynamic situations, the query performance is expected to be better than what
a traditional single-version execution plan can achieve. The difference between the
above two techniques lies in the way they select the representative system environ-
mental states. The first technique partitions the contention space into a given number
of subspaces and chooses one representative execution plan version for each sub-
space (representing a group of system environmental states). The second technique
repeatedly selects an execution plan version for a system environmental contention
state in the contention space and attempts to share the plan version among as many
(direct or indirect) neighboring contention states as possible if the estimated query
cost is within a given tolerable range. This procedure continues until all the system
environmental contention states are covered. The first technique directly controls the
number of versions generated for an execution plan using a given number, while the
second one directly controls the query costs using a given tolerance. Our simulation
results demonstrate that the presented techniques are quite promising in optimizing a
global query in a dynamic MDBS.

Global query optimization for multidatabase systems has been studied by a num-
ber of researchers in the past years [12, 13, 15, 16, 19, 20, 23, 25, 36, 37, 39, 40, 44].
The main goal of global query optimization in an MDBS is to achieve efficient query
decomposition and inter-site integration during query processing. Generally speak-
ing, there are two types of query optimization: static one and dynamic one. Static
query optimization is to determine an efficient execution plan for a given query at
compile time (applicable for the compilation approach), while dynamic query opti-
mization is to improve query processing on the fly during query execution at run time
(applicable for both the compilation and interpretation approaches). Some techniques
such as semantic query optimization can actually be utilized at both compile time and
run time. However, if a technique does not directly utilize dynamic information avail-
able at run time, we will place it in the category of static query optimization in the
following discussion on related work.

As we know, the success of static query optimization relies on accurate cost mod-
els, which are difficult to obtain in an MDBS due to local autonomy of component
database systems. Hence a major research effort for static query optimization in
MDBSs was to explore techniques to estimate local cost parameters. As mentioned
earlier, a number of such effective techniques have been proposed in the literature
[1, 12, 16, 30, 34, 36, 42, 44, 45, 47, 48, 50]. Query processing architectures/models
with static query optimization were suggested in [12, 22, 24, 39]. The impact of three

154 Distrib Parallel Databases (2008) 23: 151–188

alternative system architectures on the performance of global query processing was
studied in [9]. Semantic query optimization techniques that transform/reformulate a
given global query into an equivalent but more efficient one based on semantic in-
formation available in a multidatabase were proposed in [17–19, 26, 28, 46]. Query
optimization techniques that take into account the differing capabilities of local sites
were presented in [10, 15, 39]. Several optimization algorithms that maximize par-
allelism (including independent one and pipelining one) for query processing were
suggested in [13, 14, 37]. Techniques were also proposed to handle other unique op-
timization issues in MDBSs, which include entity join optimization [38], outerjoin
optimization [8], query transformation considering schema conflicts [25], query op-
timization based on incomplete database concept [31], query optimization involving
multiple mediators [22], and query decomposition in case of data replication [14].
The main advantage of static query optimization is that extensive optimization can be
done at compile time without incurring optimization overhead during the query exe-
cution at run time. However, a major weakness of existing static query optimization
techniques is its incapability of incorporating dynamic runtime factors into consider-
ation. If the runtime environment is significantly different from the assumed one in
which the execution plan is generated, query performance would suffer significantly.

A number of dynamic global query optimization techniques for MDBSs have also
been reported in the literature. In [32], instead of producing an execution plan based
on cost estimates at compile time, a dynamic query optimization technique was sug-
gested to utilize a statistical decision mechanism to schedule inter-site operations in
an MDBS based on partial results available at run time. In [2, 40], a query plan scram-
bling technique was introduced to change (based on heuristics or cost analysis) the
scheduling of the operations in an active query plan determined at compile time when
a delay is detected at run time. It attempts to hide an unexpected delay by performing
other useful work in the hope that the cause of the delay is resolved in the meantime.
After the rescheduling, the query plan needs to be restructured, typically by creating
new operations that are not in the current plan. In [10, 23], techniques were discussed
to improve an execution plan dynamically at run time based on partial evaluation
results (e.g., pruning useless parts, tightening selection conditions). In [20, 21, 46],
techniques were suggested to generate an incomplete/partial (rather than complete)
execution plan at compile time (since some information may be missing) and improve
the plan dynamically at run time when accurate information becomes available. New
operations such as dynamic collectors and double pipelined hash join were intro-
duced in [20] to perform adaptive/dynamic query optimization at run time. In [39],
query processing and evaluation semantics were developed to process queries over
unavailable data sources discovered at run time. In [5], a dynamic query processing
architecture with three layers (i.e., the dynamic query optimizer, the scheduler and
the query evaluator) was proposed. Each layer implements different dynamic query
optimization strategies. Overall, the main advantage of dynamic query optimization
is that it optimizes query processing based on more accurate dynamic information
observed at run time. However, a shortcoming of dynamic query optimization is that
the amount of work required to create/modify/re-generate an execution plan may be
very significant, which directly affects the query response time.

Note that there is another type of dynamic/adaptive query optimization developed
for continuous queries in the context of data stream management systems (DSMS)

Distrib Parallel Databases (2008) 23: 151–188 155

[4, 6, 7, 11, 29, 35]. Since queries are continuously run over data streams in such
a case, dynamic/adaptive query optimization is essential. Due to limited computing
resources, a DSMS has to drop tuples (so-called load shedding) from the input data
streams to provide approximate answers during its query processing. To maximize the
answer precision, the system needs to employ adaptive query optimization strategies
so as to react to changing arriving rates of input streams. Hence the objective of such
adaptive query optimization is different from that of traditional one. On the other
hand, some conventional dynamic query optimization techniques mentioned previ-
ously can be applied to improve query processing efficiency in a DSMS. Continuous
queries over streaming data sources are not considered in this paper.

The global query optimization techniques proposed in this paper generate the exe-
cution plan for a query at compile time, which is similar to static query optimization.
However, our techniques generate multiple versions for an execution plan based on
multistate cost models capturing dynamic environments at run time, which essentially
shifts significant runtime optimization work to the compile time. Hence the amount
of optimization work that needs to be done at run time is minimized and in the mean-
while the variation of dynamic factors affecting query performance at run time is
taken into account. In other words, our techniques possess the strengths of both the
static and dynamic optimization approaches and, in the meantime, overcome their
shortcomings. To our knowledge, no similar work has been reported in the literature.

Nowadays, with the rapid growth of the Web/Internet, users can access a tremen-
dous amount of information from numerous remote data sources. A Web information
integration system with mediators/wrappers facilitates data accesses in the Web by
providing a uniform query interface. Query optimization in such a system shares
many common characteristics/issues with that in a conventional MDBS [3, 15, 21,
27, 41]. The techniques discussed in this paper can be applied to both conventional
MDBSs and Web information integration systems to achieve high query performance
in dynamic environments.

The rest of the paper is organized as follows. Section 2 gives an overview of mul-
tistate cost models. Section 3 discusses the contention space partitioning technique
to generate an execution plan with multiple versions for a given query in dynamic
multidatabase environments. The situations in which local contention levels follow
uniform or non-uniform distributions are considered. Section 4 presents a cost error
controlling technique to generate an execution plan with multiple versions for a given
query in dynamic multidatabase environments, which does not assume any distribu-
tion. Section 5 shows some experimental results to evaluate our techniques. Section 6
summarizes the conclusions.

2 Multistate cost model

To incorporate the effect of dynamic factors on query performance into a cost model
for an MDBS, we introduced an effective multistate query sampling method (MQSM)
in [49]. In this section, we give an overview of the development of a multistate cost
model using MQSM and discuss the potential approaches to performing query opti-
mization based on multistate cost models.

156 Distrib Parallel Databases (2008) 23: 151–188

2.1 Multistate cost model development

MQSM considers the combined effect of all the dynamic factors on a query cost
together rather than individually. Although dynamic factors may change differently
in terms of changing frequency and level, they all contribute to the contention level of
the underlying system environment, which represents their net effect. Notice that the
cost of a query increases as the contention level of the system increases. The system
contention level can be divided into a number of discrete states (categories) such
as “High Contention” (H), “Medium Contention” (M), “Low Contention” (L), and
“No Contention” (N). A qualitative variable can be used to indicate the contention
states. This qualitative variable, therefore, reflects the combined effect of the dynamic
environmental factors. A cost model including such a qualitative variable can capture
the dynamic factors to a certain degree.

Since, for a given query, its cost increases as the system contention level, we can
use the cost of a small probing query to gage the contention level and classify the
contention states for the dynamic system environment. To obtain an appropriate clas-
sification of system contention states, we first partition the range of a probing query
cost in the given dynamic environment into subranges (intervals) with an equal size.
Each subrange represents a contention state. If some neighboring contention states
are found to have a similar effect on the derived cost model, they are merged into one
state. Such a uniform partition with merging adjustment procedure for a classification
of contention states has been proven to be very effective in practice [49].

A qualitative variable X with M possible system contention states s1, s2, . . . ,
sM can be represented by a set of M − 1 indicator (binary) variables Z1, Z2, . . . ,
ZM−1. That is, X = si (1 ≤ i ≤ M − 1) is represented by Zi = 1 and Zj = 0 (for
any j �= i); and X = sM is represented by Zk = 0 (for any 1 ≤ k ≤ M − 1). Including
qualitative variable X in a cost model is equivalent to including indicator variables
Z1,Z2, . . . ,ZM−1 in the cost model.

To develop a cost model including the indicator variables, we extend the query
sampling method in [48]. More specifically, component queries that can be performed
on a local DBS in an MDBS are first grouped into homogeneous classes, based on
some information available at the global level in an MDBS such as the characteristics
of queries, operand tables and the underlying local DBS. A set of sample queries are
then drawn from each query class and run against the user local database in different
contention states. The observed costs of sample queries are used to derive a regression
cost model with indicator variables of the following form:

Y =
(

B0
0 +

M−1∑
j=1

B
j

0 Zj

)
︸ ︷︷ ︸

intercept

+
n∑

i=1

(
B0

i +
M−1∑
j=1

B
j
i Zj

)
︸ ︷︷ ︸

slopes

Xi, (1)

where Y is the query cost, Xi ’s are explanatory variables (such as the operand table
cardinality(ies), result table cardinality, etc), Zj ’s are the indicator variables, and

B
j
i ’s are the regression coefficients. The intercept and slopes of (1) change from one

contention state to another, indicated by the values of Zi ’s. Each query class has such
a multistate cost model.

Distrib Parallel Databases (2008) 23: 151–188 157

To estimate the cost of a query at run time, the query class to which the query
belongs is first identified. The running system contention state is determined using
the observed cost of a small probing query. The cost of the query is then estimated
by using cost model (1). Studies have shown that a multistate cost model can give a
good cost estimate for a component query run in any contention state in a dynamic
local database system [49].

To reduce the overhead of cost estimation, the running system contention state
can also be determined by using an estimated cost (rather than observed cost) of a
probing query Qp . A regression equation between the probing query cost YQp and
some major system contention parameters (such as CPU load ld1, I/O load io, and
size of used memory space um for a dynamic environment) is built first, i.e.,

YQp = E0 + E1 ∗ ld1 + E2 ∗ io + E3 ∗ um, (2)

where Ei (i = 0,1,2,3) are regression coefficients. Once such an equation is in place,
every time we want to determine the system contention state in which a query is
executed, we need to calculate the estimated cost YQp of probing query Qp by using
(2) without actually executing Qp . The contention state is then determined using
this estimated cost. Since obtaining the parameter values (ld1, io, um) in (2) usually
requires much less overhead than executing a probing query, using the estimated costs
of a probing query to determine system contention states is usually more efficient.

Note that different query classes may classify contention states at the same local
site differently in order to obtain a good cost model specifically tuned for the under-
lying query class. For example, assume the cost range (i.e., the range of contention
level) of a probing query at a particular local site S1 is [0, 90], namely,1 the min-
imum probing cost is (approximately) 0 second and the maximum probing cost is
(approximately) 90 seconds. One query class G11 may use three contention states:
s
(11)
1 = [0,30], s

(11)
2 = (30,60], s

(11)
3 = (60,90] for its cost model, while another

query class G12 may utilize four contention states s
(12)
1 = [0,15], s

(12)
2 = (15,35],

s
(12)
3 = (35,65], s

(12)
4 = (65,90] for its cost model. Note that a contention state s

is considered to be the same as an interval (subrange) I of contention level. They
mutually represent each other. We call I the representing interval of s in the follow-
ing discussion. The classification of contention states for a query class in a dynamic
environment is automatically determined during its cost model building [49].

On the other hand, for a probing query cost Y0 (i.e., a contention level) observed at
a local site Si (1 ≤ i ≤ N), there is a unique corresponding contention state s(ij)(Y0),
i.e., the representing interval containing Y0, for each query class Gij (1 ≤ j ≤ Ki) at
the site. In other words, a unique (local) contention state vector �s(i)(Y0) = 〈s(i1)(Y0),
s(i2)(Y0), . . . , s(iKi)(Y0)〉 is determined by contention level Y0 at site Si . In general,
when the component queries of a global query are to be performed at several sites,
a (local) contention state vector can be determined by an observed probing query
cost at each site. The combination of all the (local) contention state vectors is called
a (global) system environmental (contention) state in this paper, which reflects the
running contention environment for the query.

1In the mathematical notation, a closed end (i.e., ‘[’ or ‘]’) of an interval indicates that the end point is
included, while an open end (i.e., ‘(’ or ‘)’) indicates that the end point is not included.

158 Distrib Parallel Databases (2008) 23: 151–188

2.2 Potential query optimization approaches based on multistate cost models

One difficulty to apply multistate cost models to perform query optimization is that
it is not easy to predict the runtime system environment in which the query is to
be executed when a query is optimized at compile time. Apparently, the traditional
methods of using static cost models to perform query optimization are not acceptable
since a system environment is dynamic rather than static. There are several potential
approaches to performing query optimization based on multistate cost models, as
described as follows.

(A) Optimistic approach. The idea of this approach is to simply choose an efficient
execution plan using the query cost estimates given by multistate cost models for the
current system environmental state at compile time. This approach works only under
the assumption that the system environment changes slowly. Due to the slow change
of the system environment, cost estimates given by a multistate cost model for the
current system environment remain valid for a certain period of time. The execution
plan chosen for a query on the basis of the cost estimates is also good for a certain
period of time. Clearly, the applicability of this approach is quite restricted.

(B) Environment predicting approach. The idea of this approach is to pre-
dict/estimate the system environmental state in which a query is to be executed.
The system environmental state in which a query is to be executed may be pre-
dicted/estimated by analyzing the application background. For example, system-
administration-related queries are more likely to be executed in evenings/weekends
when the system load is low, and business-related queries are more likely to be ex-
ecuted during business hours on working days when the system load is high, etc.
The usage pattern of user queries and the load pattern of a system environment can
also be analyzed to improve the predication accuracy. In addition, users may be re-
quired to provide inputs about their queries usage to help the system to optimize the
queries. Using multistate cost models based on a predicted runtime running system
environmental state can usually provide better cost estimates than using traditional
static cost models based on a static system environmental state or using multistate
cost models simply based on a compile-time system environmental state. The degree
of goodness of an execution plan based on a predicted running system environmental
state depends on how accurate the prediction is. This approach works well when the
user query usage and system load patterns are clear and stable. It would be difficult to
deal with the situation in which a user changes his/her query usage pattern frequently.

(C) Lazy approach. This approach generates an execution plan at compile time
based on a static system environmental state or a typical system environmental state.
At run time, unless the plan is found to be very inefficient, the query optimizer ex-
ecutes the query according to the execution plan. If the plan is found to be very in-
efficient, the query optimizer adaptively improves the execution plan. This approach
is similar to the dynamic query optimization approaches mentioned in Sect. 1. As
pointed out, the overhead for adjusting an execution plan can be very high. An ex-
ecution plan is adjusted only if the overhead is paid off by the benefits of the new
execution plan. Note that it is usually very expensive and complicated to adjust an
execution plan in the middle of an execution. Furthermore it is sometimes too late
to find the current execution plan is very inefficient. Re-generating a brand new ex-
ecution plan at run time is equivalent to the interpretation approach, which prohibits

Distrib Parallel Databases (2008) 23: 151–188 159

comprehensive query optimization since its overhead directly affects the query re-
sponse time.

(D) Multiple version approach. The idea of this approach is to generate multiple
versions of an execution plan for a query at compile time, one for each representa-
tive runtime system environmental state. When a user runs the query at run time, an
appropriate version of the execution plan is invoked according to the actual running
system environmental state. Note that the main aim of our query optimization tech-
nique is to take the dynamic behavior of the system environment into consideration
when choosing an execution plan for a query and in the meantime reduce the opti-
mization work performed at run time. This approach is quite promising in realizing
this aim. It is expected to provide a more efficient plan than the one generated by as-
suming a fixed environment (e.g., the static one), and also incur much less overhead
than that for conventional dynamic optimization at run time since most work is done
at compile time. This approach makes the runtime algorithms simple, efficient and
easy to implement.

Clearly, the last approach is the most promising one among others. To realize
this approach, the issues such as how to select representative environmental states
at compile time and how to choose the best version of the execution plan to run the
query at run time need to be addressed. Two techniques to solve these issues are
discussed in the following sections.

3 Contention space partitioning technique

In this section, we introduce a technique to select a given number of representative
environmental states for a dynamic environment. We first assume that the contention
level at each local site in the MDBS follows the uniform distribution. We then discuss
an extension of the technique to handle non-uniform distributions.

3.1 Selecting plan versions at compile time

Assume that a given query Q involves N participating local sites (databases) in the
MDBS: S1, S2, . . . , SN . The range of probing query cost YQi

p
(i.e., contention level)

for site Si is [Vi,Wi] (1 ≤ i ≤ N). There are Ki query classes at site Si . The number
of (local) contention states used by the cost model for query class Gij (1 ≤ j ≤ Ki)

at site Si is Mij . Let Hij = {s(ij)

1 , s
(ij)

2 , . . . , s
(ij)
Mij

} be the set of the contention states

for query class Gij at site Si , with s
(ij)

1 representing the lowest contention state and

s
(ij)
Mij

the highest one. Let s(ij)(YQi
p
) ∈ Hij be the unique contention state determined

by probing query cost YQi
p

∈ [Vi,Wi] for query class Gij at site Si .
Hence the set

Hi = {�s(i)(YQi
p
) = 〈s(i1)(YQi

p
), s(i2)(YQi

p
), . . . , s(iKi)(YQi

p
)〉 where YQi

p
∈ [Vi,Wi]}

160 Distrib Parallel Databases (2008) 23: 151–188

contains all contention state vectors at site Si , and

H = H1 × H2 × · · · × HN (3)

contains all possible system environmental states for query Q.
If the contention level (value), i.e., YQi

p
, at each site is given, the contention state

vector at each site is determined. The system environmental state is then also de-
termined. In other words, there is a unique system environmental state correspond-
ing to a point 〈YQ1

p
, YQ2

p
, . . . , YQN

p
〉 in the N -dimensional region D0 = [V1,W1] ×

[V2,W2] × · · · × [VN,WN]. We call 〈YQ1
p
, YQ2

p
, . . . , YQN

p
〉 a system environmental

(contention) level (value), and [Vi,Wi] the interval of region D0 in the i-th dimen-
sion. We also call region D0 the contention space for the dynamic multidatabase en-
vironment. Note that many system environmental levels may correspond to the same
system environmental state.

For any given system environmental state, the multistate cost models can give
good cost estimates for component queries run at local sites in the environment.
When a user issues a global query to an MDBS, the global query optimizer needs
to decide how to decompose it into component queries and where to execute the
component queries. These decisions are specified in an execution plan. If the system
environmental state is known, the query optimizer can generate an efficient plan for
the query based on cost estimates of component queries as well as possible com-
munication costs.2 Unfortunately, the runtime system environmental state in which
the query is to be executed is unknown at compile time when the query optimizer
optimizes the query.

One solution to this problem is to generate multiple versions of the execution
plan, one for each possible system environmental state, and run the right version
corresponding to the system environmental state in which the query is executed at
run time. If the number of (participating) sites and the number of contention states
for each query class at all sites are small (i.e., leading to a small number of system
environmental states), this solution is feasible. Otherwise, the query optimizer has to
generate many versions for a query execution plan. In practice, there is a limit on
the number of versions that can be generated for a query execution plan due to the
space and time constraints. Thus the number of versions that can be generated may
be less than the number of possible system environmental states (with respect to the
given query) in an MDBS. We therefore need a way to select an appropriate subset of
system environmental states for generating the multiple versions of a query execution
plan.

Assume that each system environmental level, i.e., a point in region D0, has an
equal chance to occur at run time. If only one version is allowed for a plan, which
system environmental state we should select? In principle, the selected system en-
vironmental state should be representative in the sense that the corresponding ver-
sion of the plan will minimize the performance degradation when it is invoked in

2A communication cost is usually proportional to the amount of data transferred. For simplicity, we con-
sider a fast LAN in which the communication cost is negligible in the rest of the paper.

Distrib Parallel Databases (2008) 23: 151–188 161

Fig. 1 Selection of one representative system environmental state

another system environmental state. A good choice in this case is to select the sys-
tem environmental state corresponding to the center point �p0 = 〈(V1 + W1)/2, (V2 +
W2)/2, . . . , (VN +WN)/2〉 in region D0 since a dramatic performance degradation is
expected to be minimized. In other words, the selected system environmental state is
s(�p0) = 〈�s(1)((V1 + W1)/2), �s(2)((V2 + W2)/2), . . . , �s(N)((VN + WN)/2)〉. Figure 1
shows such an example in the two-dimensional case.

If two versions are allowed for the plan, we can do the following. Let

Ai(D0) =
(

Ki∑
j=1

|Hij (D0)|
)

/Ki (1 ≤ i ≤ N) (4)

where |Hij (X)| denotes the number of contention states for query class Gij whose
representing intervals have a non-empty intersection with the interval of region X

in the i-th dimension. We call Ai(D0) the average number of contention states
related to D0 in the i-th dimension (site). Clearly, Ai(D0) ≥ 1 is always true
(assuming D0 �= ∅). Let Ak(D0) = max{A1(D0), A2(D0), . . . , AN(D0)}. Unless
Ak(D0) = 1—no partition is needed in such a case, we split D0 into two smaller
regions. Since D0 is related to more contention states on average in the k-th di-
mension, we divide D0 into two half regions (subspaces) by partitioning it along
the k-th dimension as: D01 = [V1,W1] × · · · × [Vk,W

′
k] × · · · × [VN,WN] and

D02 = [V1,W1] × · · · × (V ′
k,Wk] × · · · × [VN,WN] where V ′

k = W ′
k = (Vk + Wk)/2.

That is, D0 is divided into two half regions along the dimension that has the max-
imum number of contention states (on average for all query classes) related to D0.
In this way, the maximum number of contention states (on average) that are covered
(represented) by each sub-region (i.e., each chosen representative system environ-
mental state) in any dimension is expected to be minimized. Hence the performance
degradation caused by invoking a representative execution plan version for the query
in a system environmental state other than the representative state can be reduced.
If there is a tie for choosing such a dimension k, any of the tied dimensions can be
used for splitting. The system environmental states corresponding to (i.e., contain-
ing) the center points of D01 and D02 are selected as the representatives for gener-

162 Distrib Parallel Databases (2008) 23: 151–188

Fig. 2 Selection of two system
environmental states

ating two versions3 for the query execution plan. Figure 2 shows an example in the
two-dimensional case.

In general, for any given number m, we can recursively apply this procedure to
partition a region into two until m representative system environmental states for gen-
erating m plan versions are selected. Note that the center point for a selected represen-
tative system environmental state is uniquely determined by a given region. It is suffi-
cient to determine m regions in order to select m representative system environmental
states. A general region D is denoted by 〈L1,U1]×〈L2,U2]×· · ·×〈LN,UN], where
‘〈’ can be either closed ‘[’ or open ‘(’; Li and Ui are the minimum and maximum
contention levels at site (dimension) i for the region, respectively. 〈Li,Ui] is called
the interval of D in the i-th dimension.

The following algorithm, for a given number m, selects m regions from which the
m representative system environmental states are determined.

Algorithm 3.1 Selecting regions for generating representative query plan versions
based on contention space partitioning
Input: (1) the number m of system environmental states to be selected for generating
multiple versions of the execution plan for a given query Q, (2) the contention space
D0 = [V1,W1] × [V2,W2] × · · · × [VN,WN] for the dynamic multidatabase environ-
ment, and (3) the set Hij of contention states, including their representing intervals,
for each query class Gij (1 ≤ j ≤ Ki) at each site Si (1 ≤ i ≤ N).
Output: (1) a set of regions (subspaces) whose center points are used to determine the
system environmental states for which representative execution plan versions for Q

are to be generated, and (2) a data structure SiteInfo that keeps the information about
the current intervals for each dimension and their associated regions to facilitate the
search for a representative execution plan version for Q at run time.

3Note that it is possible that the plan versions for two representative system environmental states are iden-
tical, depending on the particular MDBS. Since this phenomenon does not degrade the representativeness
of the versions for the regions, for simplicity, we consider plan versions as different instances regardless
of their contents in this paper.

Distrib Parallel Databases (2008) 23: 151–188 163

Method:

1. begin
2. Let R := {D0} where D0 = [V1,W1] × [V2,W2] × · · · × [VN,WN];

/* R keeps the current set of selected regions */
3. Initialize SiteInfo;
4. Let j := 1;
5. while j < m do /* more regions to be selected */
6. Take a region x ∈ R; /* every region in R has the same average number of

contention states related to each individual dimen-
sion at this point */

7. Let k be a dimension such that Ak(x) = max{A1(x),A2(x), . . . ,AN(x)}
where Ai(x) = (

∑Ki

j=1 |Hij (x)|)/Ki ; /* if there is a tie, choose any
one of them */

8. Let a := Ak(x);
9. if a = 1 then break; /* no need to further split the region */

10. while there exists a region: D = 〈L1,U1] × 〈L2,U2] × · · · × 〈LN,UN]
in R such that Ak(D) = a do

11. Let L′
k := U ′

k := (Lk + Uk)/2;
12. Let D1 := 〈L1,U1] × 〈L2,U2] × · · · × 〈Lk,U

′
k] × · · · × 〈LN,UN];

13. Let D2 := 〈L1,U1] × 〈L2,U2] × · · · × (L′
k,Uk] × · · · × 〈LN,UN];

14. Replace D in R by D1 and D2;
15. j := j + 1;
16. Update SiteInfo;
17. if j = m then break;
18. end while
19. end while
20. return R and SiteInfo;
21. end.

Algorithm 3.1 repeatedly selects a region with a dimension k that has the largest
average number of contention states related to the region and partitions the region
along dimension k until the desired number of regions are obtained or every dimen-
sion has only one contention state related to the region. From the algorithm, we can
see that most work is done in the nested loops starting at lines 5 and 10, respectively.
In the worst case, the total number of iterations done in the two loops is O(m). On
the other hand, the most expensive step (i.e., line 7) requires O(N ∗ K ∗ M) oper-
ations (including arithmetic operations, comparisons, etc.) in the worst case, where
K = maxi{Ki} and M = maxi,j {Mij }. Therefore, the worst-case time complexity of
Algorithm 3.1 is O(m ∗ N ∗ K ∗ M). Note that the maximum number of regions
(thus the representative execution plan versions) selected by the algorithm is O(m).
Usually, m is much smaller than the total number of possible system environmental
states.

If a region D = 〈L1,U1]× 〈L2,U2]× · · ·× 〈LN,UN] is selected, its center point:

�p = 〈(L1 + U1)/2, (L2 + U2)/2, . . . , (LN + UN)/2〉 ∈ D

164 Distrib Parallel Databases (2008) 23: 151–188

Table 1 SiteInfo data structure
Site Interval Regions containing interval

Site 1 interval 1 regions containing interval 1

interval 2 regions containing interval 2

.

Site 2 interval 1 regions containing interval 1

interval 2 regions containing interval 2

.

.

Site N interval 1 regions containing interval 1

interval 2 regions containing interval 2

.

is used to determine a representative system environmental state:

s(�p) = 〈�s(1)((L1 + U1)/2), �s(2)((L2 + U2)/2), . . . , �s(N)((LN + UN)/2)〉.
An optimal version of the execution plan for Q at each of such representative system
environmental states is generated based on the multistate cost models for relevant
sites as the execution plan versions representing the selected regions for Q. Note
that, in practice, an efficient plan version, instead of the optimal version, could be
used as a representative plan version.

To facilitate the search for an appropriate version of the query execution plan at
run time, Algorithm 3.1 also maintains a data structure SiteInfo, which contains a
substructure for each site (dimension) (see Table 1). The use of this data structure
will be discussed in Sect. 3.3. SiteInfo requires most space (i.e., O(m∗N2)) in Algo-
rithm 3.1. Hence the space complexity of the algorithm is O(m ∗ N2).

Example 3.1 Suppose we have 3 participating sites (dimensions) x, y, z for a given
query. The entire region of contention levels is D0 = [0,40]× [0,50]× [0,60]. Each
site has two query classes, whose contention states and their representing intervals
are shown in Table 2. Using Algorithm 3.1, Fig. 3 shows the regions selected when
5 versions are to be generated for a query execution plan. In the first iteration, re-
gion D0 is split into two regions D1 and D2 along the y dimension (since it has the
largest average number of contention sates related to D0). In the next iteration, region
D1 is split into two regions D3 and D4 along z dimension and similarly region D2
is split into two regions D5 and D6. In the final iteration, region D3 is split along
the x dimension to get regions D7 and D8. The final selected regions are D4, D5,
D6, D7 and D8 (i.e., the leave nodes of the tree in Fig. 3). The center points of the
selected regions are: �p4 = 〈20, 12.5, 45〉, �p5 = 〈20, 37.5, 15〉, �p6 = 〈20, 37.5, 45〉,
�p7 = 〈10, 12.5, 15〉, and �p8 = 〈30, 12.5, 15〉. Then the selected representative system
environmental states are:

s(�p4) = 〈〈s(x1)
2 , s

(x2)
2 〉, 〈s(y1)

2 , s
(y2)

2 〉, 〈s(z1)
3 , s

(z2)
4 〉〉,

s(�p5) = 〈〈s(x1)
2 , s

(x2)
2 〉, 〈s(y1)

3 , s
(y2)

3 〉, 〈s(z1)
1 , s

(z2)
2 〉〉,

Distrib Parallel Databases (2008) 23: 151–188 165

Table 2 Contention states at local sites

States for query class 1 States for query class 2

Site x s
(x1)
1 = [0,15], s

(x1)
2 = (15,25],

s
(x1)
3 = (25,40]

s
(x2)
1 = [0,10], s

(x2)
2 = (10,20],

s
(x2)
3 = (20,30], s

(x2)
4 = (30,40]

Site y s
(y1)
1 = [0,8], s

(y1)
2 = (8,25],

s
(y1)
3 = (25,40], s

(y1)
4 = (40,50]

s
(y2)
1 = [0,10], s

(y2)
2 = (10,20],

s
(y2)
3 = (20,30], s

(y2)
4 = (30,40],

s
(y2)
5 = (40,50]

Site z s
(z1)
1 = [0,20], s

(z1)
2 = (20,40],

s
(z1)
3 = (40,60]

s
(z2)
1 = [0,12], s

(z2)
2 = (12,24],

s
(z2)
3 = (24,36], s

(z2)
4 = (36,48],

s
(z2)
5 = (48,60]

Fig. 3 Selection of regions for determining representative system environmental states

Table 3 An example of SiteInfo
Site Interval Regions containing interval

Site x [0,20] D7

(20,40] D8

[0,40] D4,D5,D6

Site y [0,25] D4,D7,D8

(25,50] D5,D6

Site z [0,30] D5,D7,D8

(30,60] D4,D6

s(�p6) = 〈〈s(x1)
2 , s

(x2)
2 〉, 〈s(y1)

3 , s
(y2)

3 〉, 〈s(z1)
3 , s

(z2)
4 〉〉,

s(�p7) = 〈〈s(x1)
1 , s

(x2)
1 〉, 〈s(y1)

2 , s
(y2)

2 〉, 〈s(z1)
1 , s

(z2)
2 〉〉,

s(�p8) = 〈〈s(x1)
3 , s

(x2)
3 〉, 〈s(y1)

2 , s
(y2)

2 〉, 〈s(z1)
1 , s

(z2)
2 〉〉.

A version of the query execution plan is then generated for each of the selected system
environmental states. Data structure SiteInfo for Sites x, y and z is shown in Table 3.

166 Distrib Parallel Databases (2008) 23: 151–188

3.2 Handling non-uniform distributions

In the last subsection, we assume that every contention level (value) has an equal
chance to occur at each local site in the multidatabase environment. However, in the
real world, some ranges of the contention level may occur more often than others at a
local site. For example, some very low or very high contention levels may rarely occur
in a real application. In such a case, we should generate more execution versions for
the area containing contention levels that have a higher chance to occur so that limited
resources can be better utilized for handling real situations.

Some typical non-uniform distributions that the contention level at a local site
in a multidatabase environment may follow include the normal distribution (i.e., the
system load remains in a range centered around a point during most of time, as in a
real company environment), the Erlang distribution (i.e., the system load remains low
(or high) during most of time, as in a backup system), and the Cauchy distribution
(similar to the normal distribution but with heavier tails). In general, let fi(x) be the
probability density function of the distribution that the contention level x ∈ [Vi,Wi]
at site Si (1 ≤ i ≤ N) follows.

To calculate the mean of x for interval 〈ai, bi] with a non-uniform distribution
fi(x), we can use the following formula:

x(ai, bi) =
∫ bi

ai
xfi(x) dx∫ bi

ai
fi(x) dx

. (5)

Hence, when we partition region D = 〈L1,U1] × 〈L2,U2] × · · · × 〈LN,UN] along
dimension/site k at line 11 in Algorithm 3.1, we should use the following split point:

L′
k = U ′

k = x(Lk,Uk)

based on (5). To calculate the integrals in (5), we can apply a typical numerical inte-
gration method such as the Simpson’s rule [33].

Similarly, if a region D = 〈L1,U1] × 〈L2,U2] × · · · × 〈LN,UN] is selected, its
center point:

�p = 〈x(L1,U1), x(L2,U2), . . . , x(LN,UN)〉 ∈ D

is used to determine a representative system environmental state:

s(�p) = 〈�s(1)(x(L1,U1)), �s(2)(x(L2,U2)), . . . , �s(N)(x(LN,UN))〉.
A version of the query execution plan is generated for each of such representative
system environmental states for the selected regions. Clearly, the uniform distribution
in Sect. 3.1 is a special case of the above discussion.

3.3 Determining an appropriate version at run time

When a user requests to execute a query at run time, the best version of the relevant
query execution plan should be invoked. How to determine the best version of the
plan at run time is the issue to be discussed in this subsection.

Distrib Parallel Databases (2008) 23: 151–188 167

First of all, the (current) running contention level at each participating local site
can be gaged by the (observed or estimated) cost of a small probing query at run time
as described in Sect. 2. Hence we have the running system environmental (contention)
level. The corresponding running system environmental state can also be determined.

If the system environmental state in which the query is running is one of the se-
lected representative system environmental states for which the versions of the query
execution plan are generated, the corresponding version should be invoked. However,
in general, the running system environmental state may not be one of the selected
states since the number of the selected states is limited. In this case, the selected
region that contains the running system environmental level needs to be identified.
Since the set of selected regions form a partition of initial region D0, there exists
only one selected region containing the running system environmental level. The ver-
sion of the execution plan generated for the representative system environmental state
corresponding to the center point of the region should be invoked for the given query.
Although this version was not generated exactly for the running system environmen-
tal state, it can usually yield a fair performance, compared with the single version (for
a fixed static system environmental state) provided by a traditional static optimiza-
tion approach. The more versions the query execution plan has, the better the query
performance is expected.

Clearly, we need an efficient technique to search for the region that contains the
running system environmental level. To do that, we make use of the data structure
SiteInfo maintained by Algorithm 3.1. In fact, SiteInfo provides an index for relevant
regions along each participating site/dimension. Note that it is possible that a running
(local) contention level at a participating local site belongs to two region intervals.
One is a sub-interval of the other (see intervals [0,20] and [0,40] in Table 3). The
cause for this phenomenon is that the split of regions along one dimension may not be
completely done before a sufficient number of regions have been selected. However,
there is at most one such dimension along which intervals may overlap. Although the
region to which the running (global) system environmental level belongs is unique,
we may have to search two lists for a desired region at one site/dimension.

The following algorithm makes use of SiteInfo to efficiently search for the relevant
region to which a running system environmental level belongs and then returns the
version of the execution plan for a query to be executed in the environment.

Algorithm 3.2 Selecting a version of the execution plan generated via contention
space partitioning for a given query at run time
Input: (1) the running (global) system environmental level �YQp = 〈YQ1

p
, YQ2

p
,

. . . , YQN
p
) at run time, where YQi

p
is a running (local) contention level at site i

(1 ≤ i ≤ N), (2) data structure SiteInfo maintained by Algorithm 3.1, and (3) the exe-
cution plan with multiple versions, one for each selected region, for a given query Q.
Output: The best version of the execution plan for query Q in the running system
environmental state corresponding to �YQp .
Method:

1. begin
2. Find an interval I1 along dimension (site) 1 that contains local contention

level YQ1
p
;

168 Distrib Parallel Databases (2008) 23: 151–188

3. Use SiteInfo to get set Rmatch of regions containing interval I1;
4. if there exists another interval I ′

1 along dimension 1 that contains YQ1
p

5. then use SiteInfo to get set R′
match of regions containing interval I ′

1;
6. else let R′

match := ∅;
7. Let Rsel := Rmatch ∪ R′

match;
8. for i = 2 to N do

9.
Find an interval Ii along dimension i that contains local contention
level YQi

p
;

10. Use SiteInfo to get set Rmatch of regions containing interval Ii ;
11. if there exists another interval I ′

i along dimension i that contains si
12. then use SiteInfo to get set R′

match of regions containing interval I ′
i ;

13. else let R′
match := ∅;

14. Let Rmatch := Rmatch ∪ R′
match;

15. Let Rsel := Rsel ∩ Rmatch;
16. end for
17. Find the center point �p of the final selected region in Rsel;
18. Find the representative system environmental state s(�p) for �p;
19. return the plan version generated for s(�p);
20. end.

Algorithm 3.2 essentially utilizes indexes to locate the relevant regions without
exhaustively checking all regions, when searching for a representative region for a
given running system environmental level. Clearly, most work of the algorithm is
done in the loop from line 8 to line 16 with O(N) iterations. The most expensive
steps (i.e., lines 14 and 15) in the loop require O(m2) operations in the worst case.
Hence the worst-case time complexity of the algorithm is O(N ∗ m2). Data structure
SiteInfo requires most space for the algorithm. Thus the space complexity of the
algorithm is O(m ∗ N2).

Example 3.2 Let us consider the query execution plan with 5 versions generated
in Example 3.1. Let the running system environmental level at which the query is
executed at run time be 〈25, 45, 50〉, that is, the probing query costs at sites x, y and
z are 25 sec., 45 sec. and 50 sec., respectively. Now, we need to find a selected region
that contains point 〈25, 45, 50〉. Applying Algorithm 3.2, we first use SiteInfo to find
the interval(s) that contains 25 along dimension x. Once such intervals (20,40] and
[0,40] are found, the regions associated with the intervals are saved in Rsel, namely,
Rsel = {D4,D5,D6,D8}. We then use SiteInfo to find the interval containing 45 along
dimension y. Once such an interval [25, 50] is found, the regions associated with the
interval is saved in Rmatch, namely, Rmatch = {D5,D6}. Then Rsel = Rsel ∩ Rmatch =
{D5,D6}. We finally use SiteInfo to find the interval containing 50 along dimension
z. Once such an interval (30, 60] is found, the regions associated with the interval is
saved in Rmatch, namely, Rmatch = {D4,D6}. Calculating Rsel = Rsel ∩Rmatch, we get
Rsel = {D6}. Hence the desired region is D6. The center point for D6 is �p6 = 〈20,
37.5, 45〉. Its corresponding representative system environmental state is s(�p6) =
〈〈s(x1)

2 , s
(x2)
2 〉, 〈s(y1)

3 , s
(y2)

3 〉, 〈s(z1)
3 , s

(z2)
4 〉〉. Therefore, the version generated for s(�p6)

is selected for executing the query.

Distrib Parallel Databases (2008) 23: 151–188 169

4 Cost error controlling technique

The technique introduced in the last section focuses on generating a given number m

(allowed by the underlying resources) of versions of the execution plan for a user
query. For an allowed m, it aims at minimizing the execution cost of a query for
all system environmental states by selecting good representative execution plan ver-
sions. However, it has no direct control over the query cost. In other words, the error
α between the cost of the optimal execution plan version and the cost of the repre-
sentative execution plan version for a query in a given system environmental state
can be large. In this section, we present an alternative method, called the cost error
controlling technique, to generate multiple versions of the execution plan for a query
in a dynamic multidatabase environment. This technique uses a given tolerance to
control cost error α. For a given cost tolerance, this technique aims at minimizing
the number of versions of the execution plan generated for a user query (to minimize
resources needed) when determining the representative execution plan versions for
all system environmental states. As before, two issues that need to be addressed are
what versions should be generated for an execution plan at compile time and which
version should be invoked at run time.

4.1 Selecting plan versions at compile time

Let Q be a query to be run in a dynamic multidatabase environment. For each system
environmental state s, we need to choose a representative execution plan version for
Q in such a way that the difference (relative error) α between the estimated cost of
the representative version and the estimated cost of the optimal version of the execu-
tion plan is controlled within a given tolerance u (≥ 0). Note that the representative
execution plan version for Q in state s is the one that is to be invoked for Q in s;
while the optimal execution plan version for Q is the one that minimizes the esti-
mated cost of Q, based on the multistate cost models, in state s. Clearly, if we choose
the optimal version as the representative version, their cost error (0) meets the toler-
ance requirement. However, the number of selected execution plan versions can be
very large. The basic idea of our technique to solve the problem is to let a selected
representative execution plan version be shared by multiple system environmental
states as long as the relevant cost error is controlled within the given tolerance u. In
this way, the number of selected (representative) versions of the execution plan for
query Q is reduced.

For the technique in the previous section, we considered the space of contention
levels D0 = [V1,W1] × [V2,W2] × · · · × [VN,WN] and partitioned it into subspaces
when determining representative execution plan versions. The (optimal) execution
plan version generated for the system environmental contention state corresponding
to the center of each subspace is used as the representative plan version for the sub-
space. In other words, if query Q is executed at a system environmental contention
level belonging to a subspace S, the representative version corresponding to subspace
S is invoked. In this approach, the system environmental state is determined by the
system environmental contention level. Since the whole space of contention levels
is covered by representative execution plan versions, all system environmental con-
tention states are therefore covered.

170 Distrib Parallel Databases (2008) 23: 151–188

Table 4 Contention states at a local site

Contention states/intervals for query class G11 Contention states/intervals for query class G12

s
(11)
1 = [0,15], s

(11)
2 = (15,25], s

(11)
3 = (25,40] s

(12)
1 = [0,10], s

(12)
2 = (10,20],

s
(12)
3 = (20,30], s

(x2)
4 = (30,40]

However, for the technique presented in this section, we need to consider the
system environmental states directly (rather than via the system environmental con-
tention level) since we need to control the cost error between the representative ver-
sion and the optimal version for each system environmental state. As mentioned in
Sect. 2, the cost models for different query classes at each site may adopt different
sets of (local) contention states, i.e., partitioning the range of contention level (prob-
ing query cost) differently. To simplify our discussion, we unify all contention states
(for all query classes) at each site as follows.

We use the same notation as in Sect. 3.1. Let E(ij) = {p(ij)

0 ,p
(ij)

1 , . . . , p
(ij)
Mij

} (as-

suming Vi = p
(ij)

0 < p
(ij)

1 < · · · < p
(ij)
Mij

= Wi) be the end points of the representing

intervals for the contention states in Hij = {s(ij)

1 , s
(ij)

2 , . . . , s
(ij)
Mij

} for query class Gij

at site Si (1 ≤ i ≤ N , 1 ≤ j ≤ Ki); that is, the representing interval for states s
(ij)

1 ,

s
(ij)

2 , . . . , s
(ij)
Mij

are [p(ij)

0 ,p
(ij)

1], (p
(ij)

1 ,p
(ij)

2], . . . , (p
(ij)

Mij −1,p
(ij)
Mij

], respectively. Let

Ei = E(i1) ∪E(i2) ∪ . . .∪E(iKi), i.e., containing the end points of representing inter-
vals of all contention states for all query classes at site Si .

Using the end points in Ei , we can partition the range of contention level [Vi,Wi]
for site Si into a set ISi of refined intervals. If we consider that each refined interval
represents a new (unified) contention state at site Si , set ISi yields a larger set Ĥi

of contention states for site Si . We call Ĥi the set of unified contention states at
site Si . If the system environment at site Si remains in the same unified contention
state, no query class will change its original contention state. However, if the system
environment changes from one unified contention state to another, at least one query
class has to change its (original) contention state when using its multistate cost model.

Let us consider an example. Assume that the possible component queries at site S1
from decomposing query Q belong to two query classes with two sets of (original)
contention states as shown in Table 4. The set of end points for the refined con-
tention intervals is: E1 = {0,10,15,20,25,30,40}. From this set, the unified con-
tention states/intervals for site S1 are given as follows:

s
(1)
1 = [0,10], s

(1)
2 = (10,15], s

(1)
3 = (15,20],

s
(1)
4 = (20,25], s

(1)
5 = (25,30], s

(1)
6 = (30,40].

Changing a unified contention state from s
(1)
1 to s

(1)
2 does not change the original

contention state for query class G11 but changes the original contention state for
query class G12. Changing a unified contention state from s

(1)
2 to s

(1)
3 , on the other

hand, changes the original contention states for both query classes. Assume that the

Distrib Parallel Databases (2008) 23: 151–188 171

Fig. 4 Unified system environmental states in a two-site scenario

current contention level is 32. If the original contention states are used, query class
G11 is in state s

(11)
3 and query class G12 is in state s

(12)
4 . If the unified contention

states are used, we can simply say that the system is in unified state s
(1)
6 regardless of

the query class.
Clearly, the unified contention states at a local site capture all possible changes to

the original contention states for all query classes at that site, and vectors in

Ĥ = Ĥ1 × Ĥ2 × · · · × ĤN (6)

capture all possible state changing scenarios in the dynamic multidatabase environ-
ment (with multiple sites). We call a vector in Ĥ a unified system environmental
state. Note that each component of an original system environmental state in (3) is
a vector of original contention states for different query classes at a local site, while
each component of a unified system environmental state in (6) is simply a unified
contention state (rather than a vector) at a local site.

It suffices to select a representative execution plan version for each unified system
environmental state in Ĥ in order to run the query in the dynamic multidatabase
environment. However, note that the unified contention states at each site only help us
enumerate all possible state changing cases at the site. When a multistate cost model
for a query class at the site is used to estimate the cost of a component query in the
class, the corresponding original contention state has to be identified and applied with
the model.

Figure 4 gives a visualization of unified system environmental states for two sites.
Each cell in the figure represents a unified system environmental state. For example,
cell C23 represents the unified system environmental state with a unified contention

172 Distrib Parallel Databases (2008) 23: 151–188

state s
(1)
2 at site 1 and a unified contention state s

(2)
3 at site 2. Note that the bound-

aries of cells along each site are the end points of the representing intervals of the
corresponding unified contention states at the site.

Our goal is to select a representative execution plan version for a given query Q at
each unified system environmental state in the multidatabase environment so that the
cost error between the representative execution plan version and the corresponding
optimal one for Q is within the given tolerance. One approach to achieving this goal
is to repeatedly pick up a unified system environmental state ŝ whose representative
execution plan version has not been selected (e.g., starting with the bottom-left one
in a two-site scenario), generate an optimal execution plan version P for ŝ, and use
P for each direct or indirect neighboring system environmental state of ŝ if P is
acceptable. Note that P is acceptable for a system environmental state ŝ′ if the cost
error between P and the corresponding optimal version for ŝ′ is within the given
tolerance. One disadvantage of this approach is that it has to examine every individual
system environmental state. To overcome this problem, we employ the following
more efficient approach.

Assume Ĥi = {s(i)
1 , s

(i)
2 , . . . , s

(i)
mi

} (1 ≤ i ≤ N), with s
(i)
1 representing the lowest

unified contention state and s
(i)
mi

the highest one at site Si . In other words, there are
mi unified contention states at site Si .

Let us consider the following scenario. Assume that an execution plan version P0

is acceptable for system environmental states 〈s(1)
1 , . . . , s

(j−1)

1 , s
(j)

1 , s
(j+1)

1 , . . . , s
(N)
1 〉

and 〈s(1)
1 , . . . , s

(j−1)

1 , s
(j)

10 , s
(j+1)

1 , . . . , s
(N)
1 〉; that is, only one site Sj changes its uni-

fied contention state from (lower) s
(j)

1 to (higher) s
(j)

10 , while other sites remain in the

same unified contention state s
(i)
1 (1 ≤ i ≤ N ; i �= j). In this case, it is reasonable

to assume that P0 is also acceptable for intermediate system environmental states
〈s(1)

1 , . . . , s
(j−1)

1 , s
(j)
n , s

(j+1)

1 , . . . , s
(N)
1 〉 for any 1 < n < 10, which is called the one-

site “sandwich” principle in this paper. Applying this principle and a binary search
strategy, we can select representative execution plan versions for all system environ-
mental states efficiently. Note that, although the cost errors for running P0 in the
intermediate system environmental states are usually within the given tolerance, it is
not guaranteed.

Specifically, we use an m1 × m2 × · · · × mN matrix CellInfo to keep the infor-
mation to indicate the representative execution plan versions selected for system
environmental states. For example, cell (element) CellInfo[k1][k2] · · · [kN] keeps the
information about which execution plan version selected for system environmental
state 〈s(1)

k1
, s

(2)
k2

, . . . , s
(N)
kN

〉. If no plan version is associated with a cell at the moment,
such a cell is called a free cell. Initially, all cells are free and linked (via two linking
pointers associated with each cell) in a doubly linked list, FreeCells, in the row-
wise fashion. That is, FreeCells : CellInfo[1][1] · · · [1] ↔ CellInfo[2][1] · · · [1] ↔
CellInfo[N][1] · · · [1] ↔ CellInfo[1][2] · · · [1] ↔ CellInfo[2][2] · · · [1] ↔ · · · ↔
CellInfo[N][2] · · · [1] ↔ · · ·.

Our algorithm picks up the first free cell C from FreeCells, which is
CellInfo[1][1] · · · [1] at the beginning. It generates the optimal execution plan ver-
sion P for the system environmental state corresponding to C, marks the cell as
being selected and removes it from FreeCells. It then checks the direct and indirect

Distrib Parallel Databases (2008) 23: 151–188 173

Fig. 5 Example scenarios for the cell matrix in an MDBS with two sites

neighboring cells along each dimension (fixing the other dimensions) to see if P is
acceptable to them. To achieve high performance, it applies a binary search strategy
to find the farthermost cell that accepts P along each dimension. It then applies the
one-site sandwich principle to assign P to the relevant intermediate cells (system
environmental states). Any cell whose execution plan version has been selected is
removed from FreeCells. The adoption of a doubly linked list allows us to remove
a cell from the list quickly (in O(1) time). Figure 5(a) shows a resulting cell matrix
after the above procedure for the first cell CellInfo[1][1] in an MDBS with two sites.
In general, when the algorithm picks the first free cell from FreeCells, it also needs
to check if the representative execution plan version selected for a neighboring cell is
acceptable to this current free cell. Figure 5(b) and (c) show two scenarios in which
the plan version selected for a neighboring cell (marked with “V”) may be accept-
able to the current free cell but has not been examined for it. Only if no neighboring
plan version is acceptable to the current free cell, the optimal plan version for this
cell is selected. For the binary search along each dimension, the search range needs
to be determined before the search starts. The lower boundary of the search is the
current cell, and the upper boundary of the search would be the farthermost consec-
utive free cell along this dimension. Figure 5(d) shows a scenario with binary search
boundaries. More details of this algorithm is given as follows:

Algorithm 4.1 Selecting representative query plan versions based on cost error con-
trolling
Input: (1) a given query Q for which an execution plan with multiple versions is to
be generated, (2) the query cost error tolerance Err (i.e., a threshold value), and (3)
the set Hij of (original) contention states, including their representing intervals, for
each query class Gij (1 ≤ j ≤ Ki) at each site Si (1 ≤ i ≤ N).
Output: (1) a data structure UnifiedStates that keeps the information about the uni-
fied contention states (including their representing intervals) for each site, and (2) an
m1 × m2 × · · · × mN matrix CellInfo that keeps information about the representative
execution plan versions selected for all unified system environmental states, where
mi is the number of unified contention states at site Si .

174 Distrib Parallel Databases (2008) 23: 151–188

Method:
1. begin
2. for each site Si (1 ≤ i ≤ N) do
3. Find the set Ĥi of unified contention states for the site and update data

structure UnifiedStates with the relevant information;
4. end for
5. Create and initialize an m1 × m2 × · · · × mN matrix CellInfo, where

mi = |Ĥi |;
6. Initialize a doubly linked list FreeCells to link all cells in CellInfo;
7. while FreeCells is not empty do
8. Remove the first free cell CellInfo[k1][k2] · · · [kN] from FreeCells;
9. if there exists a neighboring cell whose representative execution plan P ′

has been selected and P ′ is acceptable to current
CellInfo[k1][k2] · · · [kN] then

/* if there is more than one such cell, choose the one with
minimum-error plan */

10. Update CellInfo with P ′ as the representative execution plan version
selected for CellInfo[k1][k2] · · · [kN];

11. Let P := P ′;
12. else select the optimal execution plan version O for cell

CellInfo[k1][k2] · · · [kN] as its representative execution plan version
and update CellInfo;

13. Let P := O;
14. end if
15. for each site Si (1 ≤ i ≤ N) do
16. ExpandRegion(CellInfo, [k1, k2, . . . , kN], Err, Si , P)
17. end for
18. end while
19. return CellInfo and UnifiedStates;
20. end.

The above algorithm invokes the following procedure to check if the execution
plan version selected for the current cell is also acceptable to its direct and indirect
neighboring cells along a given dimension, using the binary search strategy and the
one-side sandwich principle.

Procedure ExpandRegion(CellInfo, [k1, k2, . . . , kN], Err, Si , P): Expand the se-
lected region using the binary search and the one-site sandwich principle
Input: (1) CellInfo: the matrix containing information about representative execution
plan versions selected for (some) system environmental states, (2) [k1, k2, . . . , kN]:
the indexes of the current cell whose representative execution plan version has
just been selected, (3) P : the execution plan version selected for current cell
CellInfo[k1][k2] · · · [kN], (4) Err: the acceptable cost error tolerance, and (5) Si : the
site/dimension to be examined so as to extend the region where plan P is acceptable.
Output: CellInfo with updated information for the new cells that accept execution
plan version P .

Distrib Parallel Databases (2008) 23: 151–188 175

Method :
1. begin
2. L := ki ;
3. Let U be the i-th index for the farthermost consecutive free cell

CellInfo[k1] · · · [ki−1][U][ki+1] · · · [kN] from the current cell along the
dimension for Si ;

4. if P is acceptable to cell CellInfo[k1] · · · [ki−1][U][ki+1] · · · [kN] then
5. Assign P to each cell CellInfo[k1] · · · [ki−1][j][ki+1] · · · [kN] for

L < j ≤ U

6. and update CellInfo (and FreeCells) to reflect the changes;
7. else
8. while L ! = U do
9. X := �(L + U)/2�;

10. if P is acceptable to cell CellInfo[k1] · · · [ki−1][X][ki+1] · · · [kN] then
11. Assign P to each cell CellInfo[k1] · · · [ki−1][j][ki+1] · · · [kN] for

L < j ≤ X

12. and update CellInfo (and FreeCells) to reflect the changes;
13. L := X;
14. else
15. U := X;
16. end if
17. end while
18. end if
19. end.

Most work of Algorithm 4.1 is done in lines 7–18. There are O(MN) cells in
CellInfo, where M = max{m1,m2, . . . ,mN }. The algorithm determines a represen-
tative execution plan version for each cell either directly in lines 8–14 or indirectly
in line 16 via ExpandRegion(). ExpandRegion() applies the binary search strategy
and the one-side sandwich principle to share a representative execution plan ver-
sion among as many neighboring cells as possible. However, in the worst case,
ExpandRegion() spends O(logM) time in the binary search for each site but fails
to share any plan version among neighboring cells. The representative execution plan
version for each cell has to be determined in lines 8–14 in such a case. Thus the
worst-case time complexity of Algorithm 4.1 is O(MN ∗N ∗ logM). Matrix CellInfo
requires most space for the algorithm. Hence the space complexity of the algorithm
is O(MN). Clearly, this algorithm is suitable for queries involving a small number
of sites (i.e., small N). On the other hand, although the number of (unsharable) rep-
resentative execution plan versions selected by the algorithm is O(MN) in the worst
case, the actual number of selected plan versions is usually much smaller due to
the adoption of the neighbor sharing strategy and the one-site sandwich principle in
the algorithm. Furthermore, the larger the given cost error tolerance, the smaller the
number of representative execution plan versions that would be selected by the al-
gorithm. In the extreme, it is possible that only one representative execution plan is
selected/acceptable for all the cells (unified system environmental states).

176 Distrib Parallel Databases (2008) 23: 151–188

4.2 Determining an appropriate version at run time

For a given query Q, once CellInfo is filled, we have all the execution plan versions
that are necessary to cover all the unified system environmental states. When we run
Q at run time, we first determine the current running contention level at each local site
based on a probing query cost. Using the running contention level and data structure
UnifiedStates, we can determine the corresponding (running) unified contention state
at the relevant site. UnifiedStates basically contains an array of the unified contention
states (with their representing contention level intervals) for each site. To efficiently
search for a unified contention state for a given contention level at a site, a binary
search strategy can be applied. Using the running unified contention states at all sites
and CellInfo, we can easily identify the representative execution plan selected for the
corresponding cell (i.e., the running unified system environmental state). More details
are given in the following algorithm.

Algorithm 4.2 Finding the execution plan version determined via cost error control-
ling for a given query Q at run time.
Input: (1) the running (global) system environmental level �YQp = 〈YQ1

p
, YQ2

p
,

. . . , YQN
p
) at run time, where YQi

p
is a running (local) contention level at site Si

(1 ≤ i ≤ N), (2) data structure UnifiedStates containing the information about the
unified contention states for each site, and (3) matrix CellInfo containing the forma-
tion about the representative execution plan versions selected for all unified system
environmental states.
Output: The version of the execution plan for query Q that is selected for the given
running unified system environmental state corresponding to given �YQp .
Method:

1. begin
2. Initialize array A of indices;

/* A[i] will store the index for the running unified contention state at site Si */
3. for i = 1 to N do /* For each site, retrieve the unified contention state

corresponding to the running contention level */
4. Let A[i] be the index for the running unified contention state that corre-

sponds to the given running contention level YQi
p

at site Si , based on
UnifiedStates;
/* The running unified contention state can be found using a binary search
algorithm */

5. end for
6. C := CellInfo[A[1]][A[2]] · · · [A[i]] · · · .[A[N]];

/* Return the version for the cell C */
7. return the plan version selected for cell C;
8. end.

Most work of the algorithm is done in lines 3–5. Hence, the time complex-
ity of the algorithm is O(N). Most space required by the algorithm is for its in-
puts UnifiedStates and CellInfo. Therefore, the space complexity of the algorithm is
O(MN).

Distrib Parallel Databases (2008) 23: 151–188 177

The contention space partitioning technique in Sect. 3 and the cost error control-
ling technique in this section both have advantages and shortcomings. The main ad-
vantage of the former is that it controls the resources (space and time) to generate
execution plan versions for a given query in a dynamic multidatabase environment.
Although it aims at minimizing the execution cost of a query in each system environ-
mental state, it has no direct control over the difference/error between the cost of the
selected execution plan version and the cost of the optimal execution plan version.
However, the cost error can be indirectly controlled by allowing a larger number of
versions for an execution plan. The number m of execution plan versions to be se-
lected for a given query can be determined based on several factors including time
spent on query optimization, space used to keep execution plan versions and query
cost error tolerated. A trade-off between the required resources (time and space) and
the achieved efficiency (cost error) needs to be considered when determining m. The
main advantage of the cost error controlling technique is that it can directly control
the error/difference between the cost of the selected execution plan version and the
cost of the optimal execution plan version with a given tolerance. It tries to mini-
mize the number of versions generated for an execution plan by sharing a version
among as many system environmental states as possible and reduce optimization time
by avoiding checking some system environmental states. However, it has no control
over the number of versions generated for an execution plan. It can only indirectly
reduce the number of generated versions by allowing a larger cost error tolerance.
Therefore, if the system resources used for generating and maintaining an execution
plan are limited, the former technique should be employed. On the other hand, if the
query performance needs to be ensured, the latter technique is preferred. Note that,
although the optimal execution plan versions are considered in both techniques when
determining representative execution plan versions, other efficient (rather than opti-
mal) execution plan versions could be used in practice. In such a case, the cost error
controlling technique would accept a neighboring execution plan version P for the
current cell if the cost of P is smaller than that of the efficient execution plan version
P ′ known to the current cell or the cost of P is within the error tolerance relative to
the cost of P ′.

5 Experiments

To evaluate the effectiveness of our query optimization techniques, we conducted
some simulation experiments. In the experiments, global queries for an MDBS with
four participating local database systems (sites) were considered. Two sites (sites a

and b) ran Oracle 8.0 and the other two sites (sites c and d) ran DB2 5.0. Each site was
equipped with a SUN UltraSparc 2 workstation running Solaris 5.1. A synthetic load
builder was employed to generate dynamic loads to simulate dynamic application
environments.

An experimental database was created at each local site, with the same set of tables
as those used in previous work [49]. More specifically, each local database has twelve
tables Ri(a1, a2, . . . , aj) (i = 1,2, . . . ,12; j ∈ {3,5,7,9,11,13}) with cardinalities
ranging from 3,000–250,000. The data in the tables consists of randomly-generated

178 Distrib Parallel Databases (2008) 23: 151–188

integers. Each table has a number of indexed columns and various selectivities for
different columns.

Two query classes were considered at each local site: one for unary queries and
the other for join queries (i.e., query classes G15 and G24 in [48]). A multistate
cost model was developed for each query class at each local site by applying the
multistate query sampling method described in Sect. 2 based on the observed costs
of sample queries run on the dynamic local database systems. Due to the limita-
tions of our available computing resources (e.g., memory size and CPU speed), the
cost models developed directly for our environment had only 4–6 contention states,
which cannot reflect a more dynamic environment that may occur in the real world.
To simulate more dynamic environments in some experiments, we extrapolate the
directly-obtained cost models to include more (up to 11) contention states. Using the
multistate cost models, we can estimate the cost of a (component) query run in any
contention state at a local site. Since we focus on studying the effect of dynamic
factors at autonomous local sites on query performance, we assume that the commu-
nication costs are negligible by using a high-performance local area network. For our
simulation experiments, the costs of component queries obtained from decomposing
a global test query are simulated by using the corresponding cost estimates given
by the multistate cost models with a random error within 30%. From our previous
empirical studies [49], this simulation is reasonable.

The global queries tested in our experiments are of the following form:

(π
αa (σ

Fa (Ra))) ��
Fab

(π
αb

(σ
Fb

(Rb))) ��
Fbc

(π
αc (σFc (R

c))) ��
Fcd

(π
αd

(σ
Fd

(Rd))) (7)

where Rx is a table at local site x, αx is a list of columns in Rx , Fx is a qual-
ification condition on Rx , Fxy is a qualification condition on Rx and Ry , and
x, y ∈ {a, b, c, d}. Each qualification condition is in the conjunctive normal form.
A typical query example is given as follows:

(π
Ra

2 .a2, Ra
2 .a5

(σ
Ra

2 .a3>5 ∧ Ra
2 .a5=2

(Ra
2)))

��
Ra

2 .a2=Rb
8 .a9

(π
Rb

8 .a4, Rb
8 .a9

(σ
Rb

8 .a1 �=3
(Rb

8)))

��
Rb

8 .a4>Rc
9.a7

(π
Rc

9 .a1, Rc
9 .a3, Rc

9 .a6, Rc
9 .a7

(σ
Rc

9 .a1=8 ∧ (Rc
9 .a4≤101 ∨ Rc

9 .a2=23)
(Rc

9)))

��
Rc

9.a6≤Rd
5 .a4

(π
Rd

5 .a2, Rd
5 .a4, Rd

5 .a6
(σ

Rd
5 .a3≥54

(Rd
5))).

The test queries in the experiments were generated by randomly choosing a table at
each site, randomly choosing a set of columns to project from each table, randomly
choosing the types of relevant selection and join conditions, and randomly choos-
ing the columns and constants in the qualification conditions from their respective
allowed domains.

There are a number of strategies to perform such a query. Figure 6 shows two of
them. Given a system environmental state, we can use the cost estimates given by the
multistate cost models for the system environmental state to determine the optimal

Distrib Parallel Databases (2008) 23: 151–188 179

Fig. 6 Examples of execution plan versions

execution strategy from many alternatives. If the contention space partitioning tech-
nique is applied, the optimal execution strategy chosen for a representative system
environmental state yields a version in the corresponding query execution plan. The
versions for all representative system environmental states comprise the query exe-
cution plan with multiple versions for the given query. If the cost error controlling
technique is used, the optimal execution strategy is chosen for a system environment
state and examined to see if it is also acceptable to the neighboring system environ-
mental states. The set of selected optimal execution strategies acceptable to all the
system environmental states comprise the query execution plan with multiple ver-
sions for the given query. At run time, the current system environmental (contention)
level can be determined by the measured/estimated costs of the small probing queries
run at participating local sites. From the current system environmental level, we can
determine the corresponding system environmental state. The execution plan version
covering the given system environmental state is invoked to run the given query.

Figure 7 shows the comparison of costs for a set of random global queries of form
(7) run in system environmental states determined by random system environmen-
tal levels. The following costs for each query were compared: (i) the cost using the
best version of the execution plan with multiple (a random number 2 ≤ n ≤ 8) ver-
sions generated by the contention space partitioning technique discussed in Sect. 3.1,

180 Distrib Parallel Databases (2008) 23: 151–188

Fig. 7 Query performance comparison for the contention space partitioning technique

(ii) the cost using the execution plan generated from the static cost models (i.e., the
ones assuming a static environment without considering dynamic factors), and (iii)
the cost using the optimal execution plan for the running system environmental state
determined by a given system environmental level. The figure shows that the exe-
cution plans with multiple versions are more efficient than the corresponding static
execution plans. The performance of the execution plans with multiple versions gen-
erally well approximates the performance of the corresponding optimal execution
plans for the queries in the running system environmental states. Note that the cost
of a query depends on a number of factors such as the size(s) of input table(s), the
sizes of intermediate and result tables, and the system environmental contention level.
Hence the execution of various queries in different environments may incur different
costs. An efficient execution plan attempts to minimize the cost of a query under a
given condition/environment.

Figure 8 shows that the performance of a query execution plan with multiple ver-
sions is usually getting increasingly better as the number of versions allowed in the
plan increases. In the experiment, we considered a number of global queries run in
the system environmental states determined by random running system environmen-
tal levels. As we increase the number of versions allowed in the execution plan for a
query, the performance is usually getting better since a better version could be cho-
sen to evaluate the query. It is observed that the performance of the optimal plans for
most queries in the experiment can be achieved without having to use a large num-
ber of versions. Besides, although in some cases the query performance may remain

Distrib Parallel Databases (2008) 23: 151–188 181

Fig. 8 Query performance improvement as the number of versions in a plan increases

the same or even temporarily degrade, it improves eventually as the number of ver-
sions in the plan increases. The figure demonstrates some typical patterns of query
performance behavior in the experiment.

Figure 9 shows the result from another experiment, in which we assumed that
only one version (i.e., the one corresponding to the center point of the initial region)
was allowed for the execution plan of a given query. We considered a number of
running system environmental levels with various distances from the center point
along different directions. The figure shows that the closer the running level is to the
representative level (i.e., the center point), the closer the performance of the selected
representative version is to the performance of the optimal plan. Therefore, when
the representative regions become smaller (i.e., the maximum distance between the
center and any point in the region is smaller), a better performance is expected for the
execution plan with multiple versions.

The previous experiments were conducted in a dynamic multidatabase environ-
ment where every local contention level has an equal chance to occur at its cor-
responding site; that is, the contention level at each local site follows the uniform
distribution. We also examined the effectiveness of the contention space partitioning
technique with the extension suggested in Sect. 3.2 for non-uniform environments. In
the experiment, we considered dynamic multidatabase environments with four local
sites whose contention levels follow the normal distribution, the Erlang distribution,
the Cauchy distribution, and the uniform distribution, respectively. A set of random

182 Distrib Parallel Databases (2008) 23: 151–188

Fig. 9 Effect of running contention level departed from the region center on query performance

global queries of form (7) was used in the experiment. The following costs for each
query were compared: (i) the cost using the best version of the execution plan with
multiple (a random number 2 ≤ n ≤ 8) versions generated by the contention space
partitioning technique extended for non-uniform distributions in Sect. 3.2, (ii) the
cost using the best version of the execution plan with multiple (the same number n)
versions generated by the original contention space partitioning technique (i.e., as-
suming the uniform distribution for all local sites), and (iii) the cost using the optimal
execution plan for the running system environmental state determined by a given run-
ning system environmental level. Figure 10 shows the comparison result. From the
figure we can see that the extension suggested in Sect. 3.2 is quite effective for mul-
tidatabase environments exhibiting non-uniform distributions of contention levels at
local sites. The extended technique is usually more efficient than the original tech-
nique in such environments. In fact, the performance of an execution plan generated
by the former well approximates the performance of the optimal execution plan in
most cases.

The above non-uniform multidatabase environments were also used to test the
effectiveness of the cost error controlling technique. Note that the cost error control-
ling technique works for a dynamic environment with any distribution. Testing it in
non-uniform environments can demonstrate its robustness. A set of random global
queries of form (7) was used in the experiments. The following costs for each query
were compared: (i) the cost using the best version of the execution plan with multi-

Distrib Parallel Databases (2008) 23: 151–188 183

Fig. 10 Query performance comparison for the contention space partitioning technique in non-uniform
environments

ple versions generated by the cost error controlling technique (with random threshold
values between 0.0 and 0.3, i.e., up to 30% error tolerance), (ii) the cost using the
best version of the execution plan with multiple versions generated by the contention
space partitioning technique (for non-uniform distributions), (iii) the cost using the
execution plan generated from the static cost models, and (iv) the cost using the opti-
mal execution plan for the running system environmental state determined by a given
system environmental level. To have a fair comparison between (i) and (ii), we let
both techniques generate the same number of versions for an execution plan for the
same test query. Specifically, for a given test query, we applied the cost error con-
trolling technique with a random threshold value between 0.0 and 0.3 to generate an
execution plan with multiple versions. Once we knew the number m of versions in the
generated plan, we employed the contention space partitioning technique to generate
a plan with m versions for the test query. Figure 11 shows the comparison result.
From the figure we can see that the execution plans generated by the cost error con-
trolling technique are usually more efficient than those generated by the contention
space partitioning technique when the numbers of versions in the corresponding ex-
ecution plans are the same. The performance of queries using the former plans are
predictable in the sense that the error between the cost of the selected plan version
and the cost of the optimal version is controlled using a given tolerance. The figure

184 Distrib Parallel Databases (2008) 23: 151–188

Fig. 11 Query performance comparison for the cost error controlling technique

also shows that the execution plans generated by the previous two techniques are
significantly more efficient than the corresponding static execution plans.

Although the cost error controlling technique uses a given tolerance to directly
control the cost error, it has no direct control over the number of versions for an
execution plan. In general, the smaller the error tolerance, the more the number of
versions needed for an execution plan to cover all system environmental states in
the environment. Figure 12 shows such a relationship between the error tolerance
and the number of versions of an execution plan for a typical test query. The num-
ber of versions in an execution plan is indirectly controlled by the error tolerance.
In contrast, the contention space partitioning technique directly controls the number
of versions in an execution plan, which in term controls the query performance as
shown in Fig. 8. Hence, the cost error controlling technique is preferred when query
performance needs to be ensured, while the contention space partitioning technique
is preferred when space (for keeping plan versions) presents a constraint.

Our experimental results demonstrate that the techniques proposed in this paper
are quite promising in performing global query optimization for dynamic multidata-
base environments.

Distrib Parallel Databases (2008) 23: 151–188 185

Fig. 12 Effect of error tolerance on query performance

6 Conclusions

The techniques proposed so far in the literature for global query optimization in
multidatabase systems can be classified into static ones and dynamic ones. A static
technique optimizes a query at compile time and does not consider the dynamically-
changing environmental factors that may have a significant effect on query perfor-
mance at run time. Hence, the query execution plan generated with such a technique
is often sub-optimal in a dynamic environment. However, the amount of optimization
work performed at run time in this case is negligible if not nothing at all since all
the work for generating plans is done at compile time. A dynamic optimization tech-
nique, on the other hand, takes into consideration the dynamically-changing environ-
mental factors and modifies or re-generates query execution plans at run time. Hence,
the modified/re-generated plans are usually more efficient than the ones generated at
compile time. However, the amount of work performed for such optimization is sig-
nificant at run time, which directly affects the query response time and thus greatly
reduces the benefits of an improved query execution plan.

The query optimization techniques proposed in this paper aim to overcome the
shortcomings of existing static and dynamic query techniques in MDBSs. They take
into account the dynamically-changing environmental factors by adopting so-called
multistate cost models for dynamic local sites. A multistate cost model can give a
good cost estimate of a query run in any contention state at its dynamic local site.

186 Distrib Parallel Databases (2008) 23: 151–188

Based on the cost estimates, our techniques generate an execution plan with multiple
versions at compile time, one for each selected representative system environmental
state. The two presented techniques, i.e., the contention space partitioning one and
the cost error controlling one, differ in the way for generating the multiple versions
of an execution plan. The former partitions the space of system environmental levels
in a dynamic multidatabase environment into a given number of smaller regions and
generate a representative execution plan version for each region. The latter systemat-
ically generates execution plan versions for a dynamic multidatabase environment so
that the error between the cost of each generated execution plan version and the cost
of the corresponding optimal execution plan for the underlying system environmen-
tal state is controlled using a given tolerance. When optimization time and space are
highly restricted, the former technique is preferred. When query performance needs
to be ensured, the latter is more favorable. Our experiments demonstrate that the pro-
posed optimization techniques are quite promising in optimizing global queries in
a dynamic multidatabase environment. However, our work is just the beginning of
further research that needs to be done in the future in order to completely solve all
relevant issues.

Acknowledgements The authors would like to thank Per-Åke (Paul) Larson, Tamer M. Ozsu, Guy M.
Lohman, Yuqing Song, Roberto Kampfner, Yu Sun and Satyanarayana Motheramgari for their valuable
comments and suggestions for some work reported in this paper. We are also grateful to the anonymous
reviewers for their careful reviews and constructive suggestions for improving the paper. Some preliminary
work of this paper was presented at ICEIS’03 [43].

References

1. Adali, S., et al.: Query caching and optimization in distributed mediator systems. In: Proc. of ACM
SIGMOD Conf., pp. 137–148 (1996)

2. Amsaleg, L., Franklin, M.J., Tomasic, A., Urhan, T.: Scrambling query plans to cope with unexpected
delays. In: Proc. of Int. Conf. on Paral. and Distr. Inf. Syst., pp. 208–219 (1996)

3. Amsaleg, L., et al.: Scrambling query plans to cope with unexpected delays. In: Proc. of Int. Conf. on
Paral. and Distr. Inf. Syst., pp. 208–219 (1996)

4. Arasu, A., Babcock, B., et al.: STREAM: the Stanford stream data manager. IEEE Data Eng. Bull.
26(1), 19–26 (2003)

5. Bouganim, L., et al.: Dynamic query scheduling in data integration systems. In: Proc. of IEEE Int.
Conf. on Data Eng., pp. 425–434 (2000)

6. Chandrasekaran, S., Cooper, O., et al.: TelegraphCQ: continuous dataflow processing for an uncertain
world. In: Proc. of CIDR Conf., pp. 1–12 (2003)

7. Chandrasekaran, S., Cooper, O., et al.: TelegraphCQ: continuous dataflow processing. In: Proc. of
ACM SIGMOD Conf., pp. 668 (2003)

8. Chen, A.L.P.: Outerjoin optimization in multidatabase systems. In: Proc. of Int. Symp. on DB in Paral.
and Distr. Syst., pp. 211–218 (1990)

9. Chen, C.-M., Sun, W., Rishe, N.: Performance comparison of three alternatives of distributed multi-
database systems: a global query perspective.. In: Proc. of Int. Conf. on Performance, Computing and
Communications, pp. 53–59 (1998)

10. Cheng, X., Dong, G., Lau, T., Su, J.: Data integration by describing sources with constraint databases.
In: Proc. of IEEE Int. Conf. on Data Eng., pp. 374–381 (1999)

11. Reiss, F., Hellerstein, J.M.: Lifting the burden of history from adaptive query processing. In: Proc. of
VLDB Conf., pp. 948–959 (2004)

12. Du, W., et al.: Query optimization in heterogeneous DBMS. In: Proc. of VLDB Conf., pp. 277–291
(1992)

Distrib Parallel Databases (2008) 23: 151–188 187

13. Du, W., Shan, M.C., Dayal, U.: Reducing multidatabase query response time by tree balancing. In:
Proc. of ACM SIGMOD Conf., pp. 293–303 (1995)

14. Evrendilek, C., Dogac, A., Nural, S., Ozcan, F.: Multidatabase query optimization. Distrib. Parallel
Databases 5(1), 77–113 (1997)

15. Garcia-Molina, H., Labio, W., Yerneni, R.: Capability-sensitive query processing on Internet sources.
In: Proc. of IEEE Int. Conf. on Data Eng., pp. 50–59 (1999)

16. Gardarin, G., et al.: Calibrating the query optimizer cost model of IRO-DB, an object-oriented feder-
ated database system. In: Proc. of VLDB Conf., pp. 378–389 (1996)

17. Goni, A., Bermudez, J., Blanco, J.M., Illarramendi, A.: Using reasoning of description logics for
query processing in multidatabase systems. In: Proc. of the 3rd Workshop on Knowl. Repres. Meets
DB, pp. 1–6 (1996)

18. Hsu, C.-N., Knoblock, C.A.: Reformulating query plans for multidatabase systems. In: Proc. of ACM
CIKM Conf., pp. 423–432 (1993)

19. Hsu, C.-N., Knoblock, C.A.: Semantic query optimization for query plans of heterogeneous multi-
database systems. IEEE Trans. Knowl. Data Eng. 12(6), 959–978 (2000)

20. Ives, Z.G., Florescu, D., Friedman, M.: An adaptive query execution system for data integration. In:
Proc. of ACM SIGMOD Conf., pp. 299–310 (1999)

21. Ives, Z.G., Levy, A.Y., Weld, D.S.: Adaptive query processing for Internet applications. IEEE Data
Eng. Bull. 23(2), 19–26 (2000)

22. Josifovski, V., Katchaounov, T., Risch, T.: Optimizing queries in distributed and composable media-
tors. In: Proc. of Int. Conf. CoopIS, pp. 291–302 (1999)

23. Josinski, H.: Dynamic query optimization and query processing in multidatabase systems. In: Int.
Conf. on Extending DB Tech. Ph.D. Workshop, pp. 1–4 (2000)

24. Kang, S., Moon, S.: Global query management in heterogeneous distributed database systems. Mi-
croproces. Microprogram. 38, 377–384 (1993)

25. Lee, C., Chen, C.J.: Query optimization in multidatabase systems considering schema conflicts. IEEE
Trans. Know. Data Eng. 9(6), 941–955 (1997)

26. Lee, J.-O., Baik, D.-K.: SemQL: a semantic query language for multidatabase systems. In: Proc. of
ACM CIKM Conf., pp. 259–266 (1999)

27. Levy, A.Y., Rajaraman, A., Ordille, J.J.: Querying heterogeneous information sources using source
descriptions. In: Proc. of VLDB Conf., pp. 226–251

28. Lim, E.-P., et al.: An algebraic transformation framework for multidatabase queries. Distrib. Parallel
Databases 3, 273–307 (1995)

29. Motwani, R., Widom, J., et al.: Query processing, resource management, and approximation in a data
stream management system. In: Proc. of CIDR Conf., pp. 1–12 (2003)

30. Naacke, H., Gardarin, G., Tomasic, A.: Leveraging mediator cost models with heterogeneous data
sources. In: Proc. of IEEE Int. Conf. on Data Eng., pp. 351–360 (1998)

31. Otsuka, S., Miyazaki, N.: An incomplete database approach to global query processing. In: Proc. of
the 12th Int. Conf. on Inf. Networking, pp. 337–342 (1998)

32. Ozcan, F., Nural, S., Koksal, P., Evrendilek, C.: Dynamic query optimization in multidatabases. IEEE
Data Eng. Bull. 20(3), 38–44 (1997)

33. Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipes in C: the Art of
Scientific Computing, 2nd edn. Cambridge University Press, Cambridge (1992)

34. Rahal, A., Zhu, Q., Larson, P.-Å.: Evolutionary techniques for updating query cost models in a dy-
namic multidatabase environment. VLDB J. 13(2), 162–176 (2004)

35. Reiss, F., Hellerstein, J.M.: Data Triage: an adaptive architecture for load shedding in TelegraphCQ.
In: Proc. of IEEE Int. Conf. on Data Eng., pp. 155–156 (2005)

36. Roth, M.T. et al.: Cost models DO matter: providing cost information for diverse data sources in a
federated system. In: Proc. of VLDB Conf., pp. 599–610 (1999)

37. Subramanian, D.K., Subramanian, K.: Query optimization in multidatabase systems. Distrib. Parallel
Databases 6(3), 183–210 (1998)

38. Tsai, P.S.M., Chen, A.L.P.: Optimizing entity join queries when data transmission cost dominates.
Data Knowl. Eng. 22, 283–308 (1997)

39. Tomasic, A., Raschid, L.: Scaling access to heterogeneous data sources with DISCO. IEEE Trans.
Knowl. Data Eng. 10(5), 808–823 (1998)

40. Urhan, T., Franklin, M.J., Amsaleg, L.: Cost-based query scrambling for initial delays. In: Proc. of
ACM SIGMOD Conf., pp. 130–141 (1998)

41. Vassalos, V., Papakonstantinou, Y.: Describing and using query capabilities of heterogeneous sources.
In: Proc. of VLDB Conf., pp. 256–265 (1997)

188 Distrib Parallel Databases (2008) 23: 151–188

42. Wei, C.-P., Sheng, O.R.L., Hu, P.J.-H.: Fuzzy statistics estimation in supporting multidatabase query
optimization. Electron. Commer. Res. 2(3), 287–316 (2002)

43. Zhu, Q., Haridas, J., Hou, W.-C.: Global query optimization based on multistate cost models for a
dynamic multidatabase system. In: Proc. of Int. Conf. on Enterprise Infor. Syst., pp. 144–155 (2003)

44. Zhu, Q., Larson, P.-Å.: A query sampling method for estimating local cost parameters in a multidata-
base system. In: Proc. of IEEE Int. Conf. on Data Eng., pp. 144–153 (1994)

45. Zhu, Q., Larson, P.-Å.: Building regression cost models for multidatabase systems. In: Proc. of Int.
Conf. on Paral. and Distr. Inf. Syst., pp. 220–231 (1996)

46. Zhu, Q., Larson, P.-Å.: Global query processing and optimization in the CORDS multidatabase sys-
tem. In: Proc. of 9th Int. Conf. on Paral. and Distr. Comp. Syst., pp. 640–646 (1996)

47. Zhu, Q., Larson, P.-Å.: A fuzzy query optimization approach for multidatabase systems. Int. J. Uncer-
tain. Fuzziness Knowl. Based Syst. 5(6), 701–722 (1997)

48. Zhu, Q., Larson, P.-Å.: Solving local cost estimation problem for global query optimization in multi-
database systems. Distrib. Parallel Databases 6(4), 373–420 (1998)

49. Zhu, Q., Sun, Y., Motheramgari, S.: Developing cost models with qualitative variables for dynamic
multidatabase environments. In: Proc. of IEEE Int. Conf. on Data Eng., pp. 413–424 (2000)

50. Zhu, Q., Larson, P.-Å.: Classifying local queries for global query optimization in multidatabase sys-
tems. Int. J. Cooperative Inf. Syst. 9(3), 315–355 (2000)

	Query optimization via contention space partitioning and cost error controlling for dynamic multidatabase systems
	Abstract
	Introduction
	Multistate cost model
	Multistate cost model development
	Potential query optimization approaches based on multistate cost models

	Contention space partitioning technique
	Selecting plan versions at compile time
	Handling non-uniform distributions
	Determining an appropriate version at run time

	Cost error controlling technique
	Selecting plan versions at compile time
	Determining an appropriate version at run time

	Experiments
	Conclusions
	Acknowledgements
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for journal articles and eBooks for online presentation. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

