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databases. A key feature of an MDBS is local autonomy that each local database
system retains to serve existing local applications. The global system can only
interact with local DBMSs at their external user interfaces.

A global query issued on an MDBS is decomposed into a set of local queries
executed at local database systems during query processing. The results from
local queries are integrated into the �nal query result returned to its user. How-
ever, the way to decompose a global query is not unique. Di�erent decomposition
strategies may yield signi�cantly di�erent performance in the distributed envi-
ronment. Choosing a good decomposition and integration strategy for a given
global query is the task of global query optimization. To perform global query
optimization, cost information for local queries to be performed on local database
systems is required. However, such information is unavailable to the global query
optimizer since the internal implementation details of a local DBMS is unknown
to the MDBS. Estimating the costs of local queries at the global level in an
MDBS is a major challenge for global query optimization in the system.

To tackle this challenge, a number of techniques have been proposed in the
literature. In [3], Du et al. proposed a calibration method that makes use of the
observed costs of some special queries run against a special synthetic calibrating
database to deduce necessary local cost parameters. In [6], Gardarin et al. ex-
tended Du et al.'s method so as to calibrate cost models for object-oriented local
database systems in an MDBS. In [15{17], Zhu and Larson proposed a query
sampling method that develops regression cost models for local query classes
based on observed costs of sample queries run against actual user databases. In
[14], Zhu and Larson introduced a fuzzy method based on fuzzy set theory to de-
rive fuzzy cost models in an MDBS. In [10], Naacke et al. suggested an approach
to combining a generic cost model with speci�c cost information exported by
wrappers for local database systems. In [1], Adali et al. suggested to maintain a
cost vector database to record cost information for every query issued to a local
database system. In [12], Roth et al. introduced a framework for costing in the
Garlic federated system.

All above techniques considered only a static environment, i.e., assuming
that the environment does not change signi�cantly over time. However, such an
assumption may not be true in reality since many factors such as the number of
concurrent processes in a multidatabase system environment may change signif-
icantly. The cost of a query can be dramatically di�erent at di�erent times in a
dynamic system environment. For example, in one of our experiments, the cost
of a sample query1 performed on Oracle 8 in a dynamical environment varied
from 2.58 sec. to 127.05 sec. (49 times!) when we had 1 to 30 concurrent user
processes in the environment. Hence query cost estimates obtained for a static
environment cannot be used in a dynamic environment.

To capture dynamic factors in a cost model, we recently proposed a qualita-
tive approach[18]. This approach extends our previous query sampling method[15{
17] and develops regression cost models using qualitative variables to indicate

1 The query was SELECT a1, a5, a7 FROM R WHERE a3 > 300 and a8 < 2000 on table
R(a1; a2; :::; a9) with 50,000 tuples of random data.
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system contention states. Each contention state re
ects a combined e�ect of dy-
namic factors on the system. Although such a cost model can be used to estimate
the costs of queries for any contention state in the dynamic environment, each
query is assumed to be run in a single contention state. The qualitative approach
cannot directly solve the problem to estimate the cost of a large query run in
multiple contention states.

To estimate the costs of large queries experiencing multiple contention states
in a dynamic multidatabase environment, we develop two new techniques in this
paper. The �rst technique, called fractional analysis approach, is to estimate
query costs in a dynamic environment in which the system contention states
change gradually and smoothly. The idea is to analyze and integrate the frac-
tions of a query cost for multiple experienced contention states. The second
technique, called probabilistic approach, is to estimate query costs in a dynamic
environment in which the system contention states change rapidly and randomly.
The idea is to make use of the theory of Markov chains to derive a cost formula
to estimate the query costs in such an environment. These two techniques to-
gether with our qualitative approach provide a suite of techniques to estimate
the costs of queries for di�erent cases in a dynamic multidatabase environment.

The rest of this paper is organized as follows. Section 2 outlines our qualita-
tive approach to developing cost models with qualitative variables for dynamic
multidatabase environments. Section 3 presents the fractional analysis approach
to estimating query costs. Section 4 discusses the probabilistic approach to esti-
mating query costs. Section 5 shows some experimental results. The last section
summarizes the conclusions.

2 Dynamic Cost Models with Qualitative Variables

To incorporate the dynamic factors in a multidatabase system into a cost model,
we proposed an e�ective qualitative approach in [18]. In this approach, we con-
sider the combined e�ect of all the factors on a query cost together rather
than individually. Although the dynamic factors change di�erently in terms
of changing frequency and level, they all contribute to the contention level of
the underlying system environment, which represents their net e�ect. Notice
that the cost of a query increases as the contention level. The system con-
tention level can be divided into a number of discrete states (categories) such
as \High Contention" (SH), \Medium Contention"(SM), \Low Contention"
(SL), and \No Contention" (SN). A qualitative variable is used to indicate the
contention states. This qualitative variable, therefore, re
ects the combined e�ect
of the dynamic environmental factors. A cost model including such a qualitative
variable can capture the dynamic factors to certain degree.

Since, for a given query, its cost increases as the system contention level, we
can use the cost of a probing query to gauge the contention level and classify
the contention states for the dynamic system environment. To obtain an appro-
priate classi�cation of system contention states, we �rst partition the range of
a probing query cost in the given dynamic environment into subranges (inter-
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vals) with an equal size. Each subrange represents a contention state. If some
neighbor contention states are found to have a similar e�ect on the derived cost
model, they are merged into one state. Such a uniform partition with merging
adjustment procedure for a classi�cation of contention states has been proven
to be very e�ective in practice[18].

A qualitative variable X with M possible system contention states S1, S2,
..., SM can be represented by a set of M � 1 indicator (binary) variables Z1,
Z2, ..., ZM�1. That is, X = Si (1 � i � M � 1) is represented by Zi = 1
and Zj = 0 (for any j 6= i); and X = SM is represented by Zk = 0 (for any
1 � k � M). Including qualitative variable X in a cost model is equivalent to
including indicator variables Z1; Z2; :::; ZM in the cost model.

To develop a cost model including the indicator variables, we extend our
previous query sampling method in [15{17]. In other words, we use observed
costs of sample queries to build a regression cost model with indicator variables
as follows:

Y = (B0

0
+
P
M�1

j=1 B
j
0
Zj)| {z }

intercepts

+

nX
i=1

(B0

i +
P
M�1

j=1 B
j
iZj)| {z }

slopes

Xi; (1)

where Y is the query cost, Xi's are explanatory variables, Zj 's are indicator

variables, and B
j
i 's are the regression coeÆcients. The intercepts and slopes of

equation (1) change from one contention state to another, indicated by the values
of Zi's. Since the above qualitative approach is obtained by introducing multiple
contention states into our previous query sampling method, it is also called as
the multi-states query sampling method. For more details of this method, please
refer to [18].

3 Fractional Analysis Approach

One assumption made by the qualitative approach discussed in the last section
is that the contention state does not change during the execution of a query
although di�erent executions of queries can be run in di�erent contention states.
This assumption is usually valid for small (cost) queries. For large (cost) queries,
they may experience multiple contention states during their executions. How
to estimate the cost of a query when it experiences multiple states during its
execution is the issue to be discussed in this and the following sections.

There are two simple approaches to estimating the cost of a query experi-
encing multiple states. One is called the single state analysis. The idea is to
ignore the changes in contention states during the execution of a query and use
a dynamic cost model with a qualitative variable discussed in Section 2 together
with one prevailing contention state to estimate the query cost. The prevailing
contention state can be (1) the initial state in which the query is to start; (2)
the median state among all states; or (3) a random state from all states. Unlike
the initial state, the median and random states may not actually be experienced
by the query at all. Hence the initial state may be superior in most cases for
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the single state analysis approach. The advantage of this approach is that one
step application of the dynamic cost model is suÆcient to give a cost estimate.
However, the resulting estimate may be inaccurate since not all experienced
contention states are considered.

Another simple approach is called the average cost analysis. The idea is to
take the average of costs for all the states in the environment as the cost estimate
C(Q) of query Q, that is, using �C(Q) =

P
M

i=1
C(Q;Si)=M to estimate C(Q),

where C(Q;Si) denotes the cost estimate for Q in state Si and S1; S2; :::; SM are
all possible states in a given environment. Although the average cost estimate
is usually better than the single-state cost estimates, it may still be quite rough
due to the fact that some contention states may never be experienced while other
contention states may be experienced with various durations for the given query.

In this section, we are going to introduce a better cost estimation via a �ner
analysis, called fractional analysis. The key idea is to analyze a query cost by
fractionalizing it according to the contention states to be experienced.

We notice that the system load in a particular application environment often
demonstrates certain pattern. Fig. 1 shows the load for a system environment
observed in a real-world company on di�erent days. Clearly, the loads follow
a similar pattern during every observed day in the company. The loads are
minimum o� working hours. The loads start to grow in the morning when the
working hours begin and decline when the working hours are close to the end of
the day. A curve depicting such a pattern in which the system load changes over
time in an application environment2 is called a load curve. Such a load curve
can be obtained via calibrating the application environment under consideration.
One assumption made in the following discussion is that the load curve for the
given application environment is prior known.

As suggested in Section 2, the load (contention) level is divided into a number
of discrete contention states (see Fig. 2), where the load level is measured by a
probing query cost. Let� = f S1; S2; :::; SM g be the set of all possible contention

2 In general, the time period for a load curve can be a day, a week, a year, or any

other reasonable periodical durations. In this paper, we consider a day only.

513Cost Estimation for Large Queries via Fractional Analysis



g

states; S(1); S(2); :::; S(N) be the sequence of contention states occurred along the
load curve in the given application environment, where S(i) 2 �; t(i�1) and t(i)

be the starting and ending times for state S(i) (i = 1; 2; :::; N).

Consider queryQ starting its execution at time t
(s)
Q in state S(k). Let C(Q;S(i))

(i = k; k+1; :::) be the cost estimate for query Q if the query is executed entirely
in state S(i).

If C(Q;S(k)) � (t(k) � t
(s)
Q ), Q is expected to experience only one contention

state S(k). Hence C(Q;S(k)) is a good estimate of the cost for query Q, i.e.,
C(Q) = C(Q;S(k)):

If C(Q;S(k)) > (t(k) � t
(s)
Q ), query Q is expected to experience more than

one contention state. Let T (k) = (t(k) � t
(s)
Q ). Then T (k)=C(Q;S(k)) is the

estimated fraction of work done for Q in state S(k). The remaining fraction
[1 � T (k)=C(Q;S(k))] of work for Q is to be done in the subsequent contention
states. If [1 � T (k)=C(Q;S(k))] � C(Q;S(k+1)) � (t(k+1) � t(k)), all remaining
work of Q can be done in state S(k+1). The cost of Q can be estimated as:
C(Q) = T (k) + [1� T (k)=C(Q;S(k))] � C(Q;S(k+1)):

If [1� T (k)=C(Q;S(k))] �C(Q;S(k+1)) > (t(k+1) � t(k)), query Q is expected
to experience more than two contention states. Let T (k+1) = (t(k+1) � t(k)).
Then T (k+1)=C(Q;S(k+1)) is the estimated fraction of work done for Q in state
S(k+1), and T (k)=C(Q;S(k)) + T (k+1)=C(Q;S(k+1)) is the estimated fraction
of work done so far (in both states S(k) and S(k+1)). The remaining fraction
[1� T (k)=C(Q;S(k)) � T (k+1)=C(Q;S(k+1))] of work for Q is to be done in the
subsequent contention states. If [1 � T (k)=C(Q;S(k)) � T (k+1)=C(Q;S(k+1))] �
C(Q;S(k+2)) � (t(k+2) � t(k+1)), all remaining work of Q can be done in state
S(k+2). The cost of Q can be estimated as: C(Q) = T (k) + T (k+1) + [1 �
T (k)=C(Q;S(k))� T (k+1)=C(Q;S(k+1))] � C(Q;S(k+2)):

In general,

C(Q) =

mX

i=k

T (i) + [1�

mX

i=k

T (i)=C(Q;S(i))] � C(Q;S(m+1)); (2)

where T (k) = (t(k) � t
(s)
Q ); T (i) = (t(i) � t(i�1)) for i � k + 1; m is the minimum

integer such that [1�
P

m

i=k T
(i)=C(Q;S(i))] � C(Q;S(m+1)) � T (m+1).

Note thatm cannot be determined in advance. It has to be determined during
the fractional analysis. The following algorithm describes the fractional analysis
procedure:

Algorithm 1 : Fractional Analysis

Input: The load curve including the contention states changing sequence S(1),

S(2), ..., S(N) and the starting time t(i�1) and ending time t(i) for each state S(i)

(i = 1; 2; :::; N); the starting time t
(s)
Q of query Q; the cost model C(Q;S) for estimat-

ing the cost of query Q in any state S.

Output: Cost estimate C(Q) for query Q.

Method:

514 Q. Zhu, S. Motheramgari, and Y. Sun



1. begin

2. Find the initial state S(k) for Q such that t(k�1) � t
(s)
Q < t(k);

3. Let F := 0; C := 0; T := t(k) � t
(s)
Q ; m := k � 1;

4. while (1� F ) � C(Q;S(m+1)) > T do

5. C := C + T ;

6. F := F + T=C(Q;S(m+1));

7. m := m+ 1;

8. T := t(m+1) � t(m);

9. end;

10. C := C + (1� F ) � C(Q;S(m+1));

11. return C;

12. end.

Comparing the above fractional analysis with the single state analysis, we
notice that, when query Q is expected to complete its execution entirely in its

initial state (i.e., C(Q;S(k)) � (t(k) � t
(s)
Q )), the cost estimates for Q from the

fractional analysis and the initial single state analysis are identical. If such an
initial state also happens to be the median (or randomly-selected) state, the
query cost estimates from the fractional analysis and the median (or random)
single state analysis are identical. However, in general, the execution of a large
query may experience more than one contention state. Since the fractional anal-
ysis considers all the states that a query experiences, it usually gives better cost
estimates than a single state analysis.

Comparing the fractional analysis with the average cost analysis, we have
the following propositions:

Proposition 1. Let S(k); S(k+1); :::; S(m); S(m+1) be the sequence of contention
states experienced by query Q. Let Ij be the set of all indexes u's such that
S(u) is in the sequence and S(u) = Sj 2 � for j 2 f1; 2; :::;Mg. Let Tj =P

u2Ij
T (u) (i.e., the accumulated duration3 for Q in state Sj). If T1=C(Q;S1)

= T2/C(Q;S2) = ... = TM=C(Q;SM) = 1=M (i.e., Tj = C(Q;Sj)=M for 1 �
j � M), then C(Q) = �C(Q); where C(Q) and �C(Q) are the fractional cost
estimate from (2) and the average cost estimate, respectively.

Proof. Without loss of generality, we assume S(m+1) = SM . From (2), we have

C(Q) =

M�1X

j=1

X

u2Ij

T (u) +
X

u2IM ^ u6=m+1

T (u) + [1�

M�1X

j=1

X

u2Ij

T (u)=C(Q;Sj)

�
X

u2IM ^ u6=m+1

T (u)=C(Q;SM)] � C(Q;SM)

=

M�1X

j=1

Tj + TM � T (m+1) + [1�

M�1X

j=1

Tj=C(Q;Sj)� TM=C(Q;SM) (3)

+T (m+1)=C(Q;SM)] � C(Q;SM)

3 Assume that Tj = 0 if Ij = ; (empty set).
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=

M�1X

j=1

C(Q;Sj)=M + C(Q;SM)=M � T (m+1) + [1� (M � 1)=M � 1=M

+T (m+1)=C(Q;SM)] � C(Q;SM) =

MX

j=1

C(Q;Sj)=M = �C(Q):

Therefore, the cost estimate from (2) and the average cost estimate are identical
in such a case. ut

Note that Tj=C(Q;Sj) is the fraction of work done for Q in state Sj (during
its total stay in the state if there are several visits). Proposition 1 actually states
that the cost estimate from the fractional analysis is identical to the average
cost of all states when query Q experiences every possible contention state in
� at least once and completes an equal fraction (1=M) of work in each of the
M states. In such a case, both cost estimates are quite accurate. However, in
general, a query may �nish more work in one state than others, which implies
that the above condition does not hold. In this case, the fractional analysis is
expected to give better estimates since it considers the actual fraction of work
done in each state for the query.

Proposition 2. Assume that C(Q;Sj) 6= C(Q;Si) for some j 6= i. Using the

same notation as in Proposition 1, if T1 = T2 = ::: = TM , then C(Q) < �C(Q).

Proof. Let T = Tj (1 � j � M). Note that Tj=C(Q;Sj) (1 � j � M) is the
fraction of work done for Q in state Sj . The fractions in all states should add to

1, that is:
PM

j=1 Tj=C(Q;Sj) = 1: Hence, T = 1=[
PM

j=1 1=C(Q;Sj)]: From (3),
we have

C(Q) = M=[

MX

j=1

1=C(Q;Sj)]: (4)

On the other hand, we have

[

MX

j=1

1=C(Q;Sj)] � [

MX

i=1

C(Q;Si)] =

MX

j=1

MX

i=1

C(Q;Si)=C(Q;Sj)

=M +

M�1X

j=1

MX

i=j+1

[C(Q;Si)=C(Q;Sj) + C(Q;Sj)=C(Q;Si)]: (5)

Notice that a
b
+ b

a
� 2 for a; b > 0 and the equality is true only if a = b.

Since C(Q;Sj) 6= C(Q;Si) for some j 6= i is assumed, i.e., C(Q;Si)=C(Q;Sj) +
C(Q;Sj)=C(Q;Si) > 2 for some j 6= i. Hence, from (5)

MX

j=1

1=C(Q;Sj) �
MX

i=1

C(Q;Si) > M +
M�1X

j=1

MX

i=j+1

2 = M2: (6)
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From (4), (6) and the average cost estimate formula, we have

�C(Q)

C(Q)
= [

MX

j=1

1=C(Q;Sj)] � [
MX

i=1

C(Q;Si)]=M
2 >

M2

M2
= 1:

Therefore, C(Q) < �C(Q). ut

People might think that a query cost would be equal to the average cost for
all states if the query spends the same amount of time in every state. However,
Proposition 2 states that the cost estimate for a query from the average cost
analysis is larger than the cost estimate for the query from the fractional cost
analysis when query Q spends an equal amount of time in every state. The
reason for this phenomenon is that Q runs in di�erent states with di�erent
working rates. The higher the contention level is, the slower the working rate.
Therefore, with the same amount of time, the query will complete less work in a
state with a higher contention level. If all states spend the same amount of time
on Q, most work of Q will be done in the states with lower contention levels.
The actual cost of Q will be smaller than the average cost in such a case.

4 Probabilistic Approach

Although the fractional analysis approach in the last section can estimate costs
for queries experiencing multiple contention states during their executions, one
assumption made is that the load curve in the given dynamic environment is prior
known and the load changes gradually. To deal with the cases with rapidly and
randomly changing loads in a dynamic environment, we develop a probabilistic
approach in this section.

Note that a rapidly and randomly changing load in a dynamic environment
causes frequent changes in its contention states. The occurrence of a contention
state is a random phenomenon and governed by laws of probability.

Let � = f S1; S2; :::; SM g be the set of all possible contention states in
a dynamic environment. We consider a sequence of occurrences of contention
states fX(n); n = 0; 1; 2; :::g in the given environment as a stochastic process,
where X(n) is a random variable taking values from �. X(n) = Si indicates
that the environment is in contention state Si at time tn = t0 + n � Æ, where
Æ is the observing time interval. We notice that the probability for the next
contention state X(n+1) taking a particular value usually depends only on the
value of the present contention state X(n) and is independent of values of past
contention states X(0); X(1); :::; X(n�1). For example, if the present contention
state is \very busy", the next contention state is most likely to be \quite busy"
or \extremely busy" regardless of past contention states. In other words, the
conditional distribution of any future state X(n+1) satis�es:

P (X(n+1) = Sj j X(n) = Si; X
(n�1) = Skn�1 ; :::; X

(0) = Sk0)

= P (X(n+1) = Sj j X
(n) = Si) = Pij ;

for any n � 0; and Sj ; Si; Skn�1 ; :::; Sk0 2 �:
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Pij (1 � i; j � M) denotes the (one-step) transition probability for the system
contention state changing from Si to Sj in the next time interval. Clearly, Pij � 0
and
P
M

j=1 Pij = 1 since the system has to be in one of the states in � in the next
time interval. Such a stochastic process is known as a (�nite) Markov chain[11].

The next issue is how to establish the transition probabilities in the Markov
chain for a dynamic environment. Note that the contention state in a dynamic
environment after each time interval can either remain in the same state or
change to other states. However, the probability for the contention state changing
to a far-away state is less than the one for it changing to a neighbor state.

Let the system contention state at time t0 be Si, and the system contention
state at next time t1 be Sj . Recall that a contention state re
ects a set of close
contention levels which are measured by probing query costs. Let Lk (1 � k �
M) be the center of gravity of the contention levels for contention state Sk 2 �.
Let dij be the distance between Li and Lj .

If the probability for the system contention state remaining in the same state
Si is qi, the probability for the system contention state changing to other states
from Si will be (1 � qi). Among other states, a reasonable assumption is that
the probabilities are inversely proportional to their distances to Si. Hence,

Pii = qi; Pij = [(1� qi)=dij ]=[

MX

j=1

1=dij ]; for 1 � i; j �M:

Parameter qi can be calibrated via experiments. Matrix (Pij)M�M lists all one-
step transition probabilities for the Markov chain.

The probability Pij(n) for a contention state Si changing to another con-
tention state Sj after n time intervals is called an n-step transition probability for

the Markov chain. For a �nite Markov chain, the limit �j =
lim
n!1 Pij(n) exists[11]

and is called the limit probability of state Sj . Two interesting properties[11] of
a limit probability are: (1) it is independent of the initial state (i.e., Si) and (2)
it not only represents the probability of a contention state in a Markov chain
after a suÆciently large number of transitions but also represents the long-run
portion of time for the Markov chain being in the state.

The limit probabilities for a �nite Markov chain satisfy the following system
of linear equations[11]:

�j =

MX

i=1

�iPij ; for j = 1; 2; :::;M; subject to

MX

j=1

�j = 1;

which can be used to determine �j (1 � j �M). All limit probabilities f�j j j =
1; 2; :::Mg comprise a so-called long-run distribution for the Markov chain.

Since we consider, in this section, the situation in which Q is a large (cost)
query and the contention states in the dynamic environment change frequently,
it is expected that there are many transitions during the execution of Q. Since
�i represents the long-run portion of time for the Markov chain being in Si,
�i �C(Q) is the amount of cost incurred in state Si. Hence (�i �C(Q))=C(Q;Si)
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is the portion of work done for Q in Si. Clearly, the portions of work done for Q

in all states should add to 1, i.e.,
P
M

i=1
�i�C(Q)
C(Q;Si)

= 1: Solving this equation, we

have

C(Q) = 1=[

MX

i=1

�i
C(Q;Si)

]: (7)

Since C(Q;Si) can be estimated by using the dynamic cost models with qual-
itative variables, discussed in Section 2, formula (7) can be used to estimate
the cost of query Q in the dynamic environment in which the contention states
change rapidly.

Comparing the above probabilistic approach with the single state analysis
approach, we notice that the cost estimate of a query given by the single state
analysis approach is identical to the one given by the probabilistic approach when
the limit probability for the selected single state is 1 (i.e., the limit probabilities
for other states are 0). However, in general, more than one state has a non-
zero limit probability. The single state analysis is, therefore, not an appropriate
approach for such a rapidly changing environment.

Comparing the probabilistic approach with the average cost analysis ap-
proach, we have the following propositions:

Proposition 3. If �1=C(Q;S1) = �2=C(Q;S2) = ::: = �M=C(Q;SM), then
C(Q) = �C(Q), where C(Q) and �C(Q) are the Markov cost estimate from (7)
and the average cost estimate, respectively.

Proof. Since �i=C(Q;Si) = �j=C(Q;Sj), we have �i = �j � C(Q;Si)=C(Q;Sj).
From (7) and the average cost estimate formula, we have

�C(Q)

C(Q)
=

1

M

MX

i=1

C(Q;Si)

MX

j=1

�j=C(Q;Sj) =
1

M

MX

i=1

MX

j=1

C(Q;Si) � �j=C(Q;Sj)

=
1

M

MX

i=1

MX

j=1

�i =
1

M

MX

i=1

M � �i =
MX

i=1

�i = 1

Therefore, C(Q) = �C(Q). ut

Although �i=C(Q;Si) does not have any physical meaning, �i�C(Q)=C(Q;Si)
is the portion of work done for Q in state Si. Therefore, the assumption in the
proposition implies that each state completes an equal portion of work for Q. In
such a case, the cost estimates from the probabilistic approach and average cost
analysis are the same. However, such an assumption is usually not met. Since the
probabilistic approach can cope with di�erent limit probability distributions, it
is expected to give better cost estimates.

Proposition 4. If �1 = �2 = ::: = �M = 1=M , then C(Q) < �C(Q).

Proof. Similar to the proof for Proposition 2, omitted. ut
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Proposition 4 states that the cost estimate for a query by the average cost
analysis is larger than the cost estimate for the query by the probabilistic ap-
proach when the limit probabilities for all states are the same. This phenomenon
can also be explained by the di�erent working rates in the contention states, like
the explanation given for Proposition 2.

5 Experimental Results

To validate the cost estimation techniques proposed in the previous sections,
experiments were conducted using a multidatabase system prototype, named
CORDS-MDBS[2]. Two commercial DBMSs, i.e., Oracle 8.0 and DB2 5.0, were
used as component database systems running under Solaris 5.1 on two SUN Ul-
traSparc 2 workstations. Fig. 3 shows the experimental environment. To test the
techniques in various dynamic environments, we developed a load builder which
can generate dynamic system loads to simulate various dynamic environments
following di�erent load curves (for the fractional analysis approach) or retention
probability distributions (for the probabilistic approach) for contention states.

CORDS-MDBS Server

( . . . . . . )(DB2 5.0)(Oracle 8.0)

local queries

Local DBS  1 Local DBS  2 Local DBS  n

Component Component Component

Component Component Component

DBMSDBMSDBMS

MDBS AgentMDBS AgentMDBS Agent

DBDBDB

Fig. 3. Experimental Environment

The table schemas in the component databases used in the experiments were
the same as those4 in [15, 17]. More speci�cally, each component database con-
tains 12 tables Ri(a1; a2; :::; an) (1 � i � 12; 1 � n � 13) with all integer
columns. The data in the tables are randomly generated using di�erent ranges
for di�erent columns to achieve various selectivities. The table cardinalities range
from 3,000 to 250,000. Each table has some indexed columns. For more details
of the test database, please refer to [15, 17].

Since the costs of unary queries are usually not large and the techniques
in this paper are for large cost queries, we chose a join query class for our
experiments. Following the multi-states query sampling method in Section 2, we
drew a sample of queries from the query class and executed them in a dynamic

4 The size of each table is ten times larger than that in [15, 17].
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multidatabase environment. Based on the observed costs of sample queries, our
cost model building tool automatically selects signi�cant variables and uses them
together with a qualitative variable (represented by a set of indicator variables)
indicating system contention states to develop a cost model for the query class.
Our tool also applies some statistical measures to validate the signi�cance of
the cost model. Table 1 shows the cost models developed for the query class

Table 1. Cost Models for a Join Query Class in a Dynamic MDBS Environment
(RNJ | result table size; TNJ1; TNJ2 | 1st and 2nd intermediate table sizes; TNJ12

| TNJ1 � TNJ2; RLJ | result table tuple length; LJ1; LJ2 | 1st and 2nd operand
table tuple lengths; TZJ1 | NJ1 � LJ1; TZJ2 | NJ2 � LJ2; NJ1; NJ2 | 1st and 2nd
operand table sizes.)

(Dynamic) Cost Model with Qualitative Variable
(0:7419e+1 � 0:1169e+3 � Z4 + 0:2748e+2 � Z3 � 0:3963e+2 � Z2

+0:3626e+2 � Z1) + (0:1131e-2 + 0:2212e-2 � Z4 + 0:4383e-2 � Z3

+0:5517e-2 � Z2 + 0:6588e-2 � Z1) �RNJ + (0:4952e-3 � 0:5211e-3 � Z4

�0:2522e-3 � Z3 + 0:3308e-3 � Z2 + 0:2617e-2 � Z1) � TNJ1 +
Component (�0:4691e-3 + 0:6974e-3 � Z4 + 0:9641e-3 � Z3 + 0:1900e-2 � Z2

DBMS 1 +0:3194e-2 � Z1) � TNJ2 + (�0:1121e+1 + 0:5489e+1 � Z4

(Oracle) +0:1419e+2 � Z3 + 0:7953e+1 � Z2 + 0:1452e+2 � Z1) � RLJ +
(�0:1995e+2 + 0:3754e+2 � Z4 + 0:2510e+2 � Z3 + 0:3139e+2 � Z2

+0:8524e+1 � Z1) � LJ1 + (0:1647e+2 � 0:2275e+2 � Z4

�0:3715e+2 � Z3 � 0:2881e+2 � Z2 � 0:2503e+2 � Z1) � LJ2

coef. of multi. std. error avg. sample F-statistics
determination of estimation cost (sec.) (critical value at � = 0:01)

0.9992 0.1708e+3 0.1178e+4 16166.13 (> 1.25)

(Dynamic) Cost Model with Qualitative Variable
(�0:1529e+2� 0:1923e+1 � Z3 + 0:1178e+2 � Z2 + 0:3510e+1 � Z1)
+ (0:4171e-7 � 0:1697e-7 � Z3 + 0:6500e-7 � Z2 + 0:9597e-6 � Z1) � TNJ12

Component + (0:8934e-3 + 0:1697e-2 � Z3 + 0:2478e-2 � Z2 + 0:3554e-2 � Z1) � RNJ

DBMS 2 + (0:2763e-3 � 0:1106e-2 � Z3 � 0:4020e-3 � Z2 + 0:7719e-2 � Z1) � TNJ1

(DB2) + (0:1234e-4 + 0:4639e-4 � Z3 + 0:2241e-4 � Z2 + 0:3693e-3 � Z1) � TZJ1

+ (0:3684e-4 + 0:6292e-4 � Z3 + 0:1345e-4 � Z2 � 0:1768e-3 � Z1) � TZJ2

coef. of multi. std. error avg. sample F-statistics
determination of estimation cost (sec.) (critical value at � = 0:01)

0.9963 0.2436e+3 0.7860e+3 5108.04 (> 1.41)

on the two component DBMSs, i.e., Oracle and DB2. The coeÆcient of total
determination indicates that both cost models can capture over 99% variations
in the query costs. The F-test also shows that both cost models are useful.
Between the two models, the one for Oracle is even better.

To further validate the cost models, we ran some randomly-generated test
queries5 in the dynamic environment under the restriction that each query only
experiences a (random) single contention state. We applied the dynamic cost

5 The test queries used in this paper are the same as those in [15].
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models in Table 1 to estimate the costs of the test queries and compared the
estimated costs with their observed costs as well as the estimated costs using a
static cost model6. The comparison results are shown in Fig.'s 4 and 5. From
the �gures we can see that the estimated costs given by the dynamic cost model
are much better than the ones given by the static cost model.

However, assuming a query to experience one state may be only valid for small
(cost) queries. For large (cost) queries, the execution of a query may experience
more than one contention state. The techniques presented in Sections 3 and 4
should be applied to estimate the cost of such a query.

In the experiments to evaluate the e�ectiveness of the fractional analysis tech-
nique, the \shape" of load curve in Fig. 1 is assumed. However, for simplicity, (1)
the "noon" contention state S1 is split into two state occurrences, e.g., the con-
tention states sequence S4; S3; S2; S1; S1; S2; S3; S4 was used for experiments on
DB2; and (2) the load curve repeats its pattern (the contention states sequence)
periodically so that the queries that cannot be �nished within the current cycle
can be completed within the following cycle(s). The initial starting state for each
test query was randomly selected from the contention states sequence. Di�erent
changing patterns (\increase", \decrease", \equal", and \random") of time du-
rations for the contention state occurrences along the curve were tested in our
experiments. Fig.'s 6 and 7 show the experimental results for the \random" case,
which well represents all other cases. The following observations can be obtained
from our experiments:

{ The fractional analysis technique can give good cost estimates for the test
queries in a gradually and smoothly changing environment. Most cost esti-
mates in the experiments have relative errors within 30%.

{ The cost estimates given by the fractional analysis are clearly better than
the ones given by the average cost analysis or the initial single state analysis
for most cases.

{ There are some cases (i.e., queries completed entirely within one state) in
which the cost estimates from the fractional analysis and the initial single
state analysis are the same, which is consistent with our theoretical analysis.

{ The average costs are larger than the estimated costs given by the fractional
analysis when a query spent an equal (accumulated) amount of time in every
state, which is consistent with Proposition 2 we showed in Section 3.

{ The accuracy of the cost model with a qualitative variable used to estimate
C(Q;Si) of query Q for state Si is important to the fractional analysis. Since
we obtained a better cost model for Oracle, its fractional analysis results are
overall more accurate than the ones for DB2.

In the experiments to evaluate the e�ectiveness of the probabilistic approach,
we tested various dynamic environments with di�erent retention probability
changing patterns (\increase", \decrease", \equal", and \random"). Since an
environment with an equal retention probability for all contention states may
not yield an equal limit probability for every contention state, we also tested

6 The static cost model was developed by using our static sampling query method in
[15], i.e., assuming that the environment has only one state (static).
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Fig. 4. Estimated Costs for Test Queries

via Qualitative Approach on Oracle 8.0

Fig. 5. Estimated Costs for Test Queries

via Qualitative Approach on DB2 5.0
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Fig. 7. Estimated Costs for Test Queries

via Fractional Analysis on DB2 5.0
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Fig. 9. Estimated Costs for Test Queries

via Probabilistic Approach on DB2 5.0
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the \equal" limit probability case. The experimental results for the \random"
case, which well represents other cases, are shown in Fig.'s 8 and 9. From the
experiments, we can obtain similar observations that we had (see above) for the
fractional analysis (except that the single state analysis was not considered).

In summary, our experimental results demonstrate that the qualitative ap-
proach, fractional analysis approach and probabilistic approach comprise a promis-
ing suite of techniques in estimating local query costs for a dynamic multi-
database environment.

6 Conclusion

A major challenge for performing global query optimization in an MDBS is
that some local cost information may be unavailable at the global level. Most
techniques suggested so far in the literature considered only static system envi-
ronments, namely, assuming the environment never changes. However, the cost
of a query changes dramatically in a realistic dynamic environment.

To solve the problem, we have studied several new techniques. In our recent
work[18], we employed a multi-states query sampling method to develop cost
models with qualitative variables indicating the system contention states. For
queries experiencing a single state, such developed cost models can be used to
directly estimate their costs. To estimate the costs of (large) queries experienc-
ing multiple states, we propose two new techniques, i.e., fractional analysis and
probabilistic approach, to estimate their costs in this paper. The �rst one is
suitable for a gradually and smoothly changing environment, while the latter is
suitable for a rapidly and randomly changing environment. The cost formulas in
both cases are derived. Their properties are analyzed. Note that although the
two new techniques make use of the cost models developed by the multi-states
query sampling method, it is not required; in other words, any method that
can estimate the cost of a query in each contention state can be used together
with the two techniques proposed in this paper. To validate the e�ectiveness
of the new techniques, we conducted extensive experiments. Our experimental
results demonstrate that the presented techniques are quite promising in esti-
mating query costs in a dynamic multidatabase environment. Their produced
cost estimates for most queries have relative errors within 30%.

Dynamic environmental factors were ignored in existing cost models for
database systems due to lack of appropriate techniques. The work reported in
this paper has shown some promise in solving the problem. However, our work
is just the beginning of work needed to be done in order to completely solve all
related issues.
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