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Abstract. Modern twig query evaluation algorithms usually first gen-
erate individual path matches and then stitch them together (through
a “merge” operation) to form twig matches. In this paper, we propose
a one-phase holistic twig evaluation algorithm based on the TwigStack
algorithm. The proposed method applies a novel stack structure to pre-
serve the holisticity of the twig matches. Without generating interme-
diate path matches, our method avoids the storage of individual path
matches and the path merge process. Experimental results confirm the
advantages of our approach.

1 Introduction

XML has become a widely accepted standard for data exchange and integra-
tion over the Internet. The ability to process XML queries efficiently plays an
important role in the deployment of the XML technology in the future.

The XML twig queries retrieve document elements through a joint evalua-
tion of multiple path expressions [8]. Modern XML twig query processing ap-
proaches [1, 9, 2, 6, 4], including the Twigstack [2] and other approaches based on
it, typically first decompose a twig query into a set of binary patterns or single
paths and then search for matches for these individual patterns/paths. Finally,
these matches are stitched together to form the answers to the twig query. The
overheads incurred in the two-phase approach could be large since the cost to
output and then input the individual matches and finally merge them to form
twig matches can be substantial, especially when the number of matching paths
is large.

To address this problem, we propose a one-phase holistic twig evaluation algo-
rithm that outputs twig matches in their entireties without a later merge process.
Instead of outputting individual path matches as soon as they are formed, our
method holds the path matches until entire twig matches are formed. The new
algorithm yields no intermediate results (to be output and then input), and re-
quires no additional merge phase. Experimental results show that our algorithm
compares favorable to Twigstack [2] and Twig2Stack [11].



The rest of the paper is organized as follows. Section 2 gives a brief sur-
vey of twig processing. Section 3 details our one-phase holistic twig evaluation
algorithm. Section 4 presents the experimental results. Section 5 concludes.

2 Backgrounds

Many twig query evaluation algorithms [1, 2, 5, 9] have been proposed in the lit-
erature. Bruno et al. [2] designed the notable and efficient algorithm TwigStack.
The algorithm pushes only nodes that are sure to contribute to the final results
onto stacks for ancestor-descendent queries. Like most other algorithms, it is
a two-phase algorithm, a path matches generation phase followed by a merge
phase. Aiming to eliminate the two-phase overhead, Twig2Stack [11], a bottom-
up evaluation algorithm, was proposed. Unfortunately, it may push nodes that
do not contribute to the final results onto stacks, resulting in some extra work.
It utilizes PathStack [2] to reduce runtime memory usage, however, at the price
of increased stack manipulation complexity. TJFast [7] employs an innovative
encoding scheme, called the extended Dewey code. Although this code can repre-
sent the relationships of nodes on a path elegantly, tremendous storage overhead
is incurred, especially for longer paths. There are also some other algorithms [6,
4] that attempt to improve the performance of Twigstack for parent-child queries
for which Twigstack is suboptimal.

3 A One-Phase Holistic Twig Join Algorithm

In this section, we present a one-phase twig query evaluation algorithm, called
the HolisticTwigStack, based on the TwigStack. The new algorithm preserves
all the strengths of the TwigStack and yet has no the aforementioned two-phase
overhead. In the following, we illustrate the shortcomings of the TwigStack and
Twig2STack by an example.

Example. Consider the data tree (a) and twig query (b) in Fig1.

Fig. 1. Example of Holistic Twig Join Algorithm



TwigStack generates 12 path matches in the first phase: a1/b1, a1//b2, a1//b3,
a1//b4, a2/b2, a2//b3, a2//b4 for A//B and a1/c1, a1//c2, a1//c3, a2/c2, a2/c3 for
A//C. Several nodes, such as a1 and a2, appear multiple times in the matches,
resulting in a large intermediate result (larger than the entire data tree itself).
A 2-way merge is then needed to merge path matches into twig matches.

Twig2Stack is a one-phase algorithm. Although it does not have the two-
phase overhead of TwigStack, it lacks the important advantage of TwigStack,
i.e., not pushing any node that does not contribute to the twig matches onto a
stack. In the example, Twig2Stack pushes non-contributing nodes a3, b5, and b6,
onto stacks. It also creates additional stacks, such as the one connecting c2 and
c3, to speed up later query processing, at the cost of increased space complexity.

3.1 Notations

Like most twig query processing approaches [1, 2, 5, 9], we adopt the region code
scheme. Each node in the XML document tree is assigned a unique 3-ary tuple:
(leftPos, rightPos, LevelNo), which represents the left, right positions, and
level number of the node, respectively. As in all the stack-based algorithms,
there is a stream Tq associated with each pattern node q of the twig query. The
elements in each stream are sorted by their leftPos.

We define the Top Branch Node as the branch node in the twig pattern
at the highest level. The Top Branch Node and the nodes above it in the twig
pattern are called Upper Nodes. Lower Nodes refer to nodes that are below the
Top Branch Node in the twig pattern. For example, the Top Branch Node in
Fig 1(b) is A. The document nodes that have the same type of Top Branch Node,
Upper Node and Lower Nodes are referred as Top Branch Element, Upper El
-ement and Lower Element, respectively. We also define ClosestPatternAnces-
tor(e) as the closest ancestor of the element e in the document tree according to
the query pattern. For example, in Fig 1(a),ClosestPatternAncestor(b2)=Closest-
PatternAncestor(b3)= ClosestPatternAncestor(b4)=a2. We also define a pattern
sibling element of e as an element in the document tree that (i) has the same
node type as e; (ii) shares the same closest pattern ancestor with e, and (iii)
does not have the ancestor-descendent relationship with e. In our example, b3 is
a pattern sibling element of b4.

3.2 Stack Structure

The overheads incurred in the TwigStack algorithm are caused by the“hasty”
output of the individual path matches generated when a leaf element is en-
countered, which splits the twig matches. We also observe that individual path
matches are to be merged together based on the common branch nodes to form
the twig matches. In order to keep the holisticity of the twigs, we opt to delay
the output of individual path matches and their merging by holding them in lists
of stacks until all elements under the same Top Branch Element are processed.
To hold multiple matching paths, we associate each Upper Node with a single



stack and Lower Node with lists of stacks, as compared with one stack for each
query node in the TwigStack.

Like other stack-based algorithms, an element is pushed onto a stack whose
top element is an ancestor of the incoming element. In addition, we require that
the incoming element must have the same closest pattern ancestor as the top
element. For an element that does not satisfy the above conditions, it will be
stored in a new stack. Elements that have the same closest pattern ancestor
will be linked together for convenient access. Fig 2 shows the stack structure of
our algorithm, named HolisticTwigStack, of the given example in Fig 1. In the
structure, we have represented the closest pattern ancestor relationships by solid
arrows, e.g., a1 to SB1. The stacks of the same node type that share the same
closest pattern ancestor are linked by dotted arrows. Take SB2 and SB3 as an
example. They are linked together by using a dotted arrow pointing from b3 to
its sibling element b4. Only 9 nodes are stored in HolisticTwigStack, which is
less than Twig2Stack and TwigStack.

Fig. 2. Data Structure of HolisticTwigStack

It is observed that the commonly referenced ancestor-descendent relation-
ships between query nodes, such as A//B and A//C, can be easily inferred from
the closest pattern ancestor relationships by assuming that the ancestor elements
of a stack “inherit” the relationships (i.e., the solid arrows) of their descendants
(in the same stack). For example, a1 could inherit the solid links of a3, that is,
a1 implicitly also has links to SB2 and SC2 and thus the ancestor-descendent
relationships (i.e., A//B, A//C) that a2 has with other query nodes. The twig
matches for the elements in the root stack can be constructed easily by traversing
the links following the query pattern.

3.3 Algorithm

Our algorithm, named HolisticTwigStack, is presented in Algorithm 1. The al-
gorithm computes the answer to a query twig pattern Q in one phase.

Elements are checked for satisfaction of structural relationships in the same
way as is done in TwigStack by recursively calling the function getNext(), which
is defined in TwigStack [2]. We attempt to withhold the elements sharing the
same Top Branch Element in memory until the element with the disjoint range
arrives. The reason lies in the fact that the arrival of the disjoint element actually
eliminate the possibility of the subtree rooted at this Top Branch Element to



participate any further match. Like in the TwigStack, an incoming element e is
pushed onto a stack (line 18) only if it is surely to contribute to a twig match
(line 5); otherwise, we simply advance to next element (line 20). Before pushing
e onto a stack, we further check if it falls beyond the range covered by the top
element in the stack of Top Branch Node, namely, STBN (line 6). Note that the
top element covers only a subrange of other lower elements’ ranges in the same
stack, so the elements in STBN are visited top-down until STBN is empty or the
current top element can cover the incoming element e . If e is disjoint with the
current top element of the STBN and all the paths under it have already been
formed, twig matches sharing the same Top Branch Element are output(line 8).
Furthermore, the top element of STBN is popped out and its ancestor element in
STBN (if there is any) inherit its relationship with its descendent elements in twig
pattern(line 14). Otherwise, all the elements in the stacks are cleaned out (line
12). The same process also need to be conducted over the stacks of Upper Node
in order to clear all the nodes that are unnecessary for future matches(line 17).
After having reached the end of streams (end(Q)), we output the remaining twig
matches related to root elements left in S root (line 22-30).

The basic idea of procedure MoveElementToStack() is given below. More
details can be found in [10]. If the incoming element e is an Upper Element, we
simply push it onto the corresponding stack. If e is a Lower Element, a more
complicated process is involved. Assume the type of e is q and the stacks for the
Lower Node q have been numbered in their order of creation as Sq1 , Sq2 , . . . , Sqn .
For each incoming element of type q , we check if it is a descendent of the top
element of the last stack Sqn and if it has the same closest pattern ancestor as
the top element of the stack. (The correctness of only checking the last stack will
be given in the next subsection.) If so, we push the element onto the last stack
Sqn ; otherwise, we push the element onto a new stack Sqn+1 . In the latter case,
we shall check if it has the same closest pattern ancestor as any top element
of a stack on an existing list. If so, we append Sqn+1 to the end of that list;
Otherwise, we directly link Sqn+1 to its closest pattern ancestor.

ShowTwigSolution() is called to output twig matches rooted at the current
root element. The twig matches can be formed by following the solid and dot-
ted links between stacks and the ancestor-descendent relationships between the
elements in the same stacks. Interested readers are referred to [10] for details of
the algorithm.

3.4 Analysis of Algorithm

In this section, we show the correctness of the HolisticTwigStack algorithm. Due
to the space limitation, readers are referred to [10] for details and proofs.

First, we introduce some terms and properties of TwigStack. subtreeNodes(q)
include node q itself and all its descendants in the query pattern Q. An element
has a minimal descendent extension if there is a solution for the sub-query rooted
at q, composed entirely of the head elements for subtreeNodes(q). Here, the head
element of q, denoted as hq, is defined as the first element in Tq that participates
in a solution for the sub-query rooted at q [2].



TwigStack ensures that the element eq = next(Tq) is pushed onto the stack
if and only if (i) element next(Tq) has a descendent element eqi in each of the
stream Tqi

, for qi=children(q), and (ii) each of the element eqi
recursively satisfies

the first property [2].

Algorithm 1: HolisticTwigStack (Q)

begin1

while not end(Q) do2

q=getNext(Q);3

e=the current first element in the stream of q;4

if (q is of root type) or (at least one element in Sparent(q) covers e) then5

while (!Empty(STBN) and e is disjoint with STBN ’s top element)6

do
if (no leaf stack is empty) then7

ShowTwigSolution(Sroot, Sroot.size-1);8

end9

TopElem=s.pop();10

if Empty(STBN ) then11

Clean all child stacks of s;12

else13

Update the links between stacks;14

end15

end16

Remove all the elements in each SUpper Node that are disjoint with e17

and update the links appropriately;
MoveElementToStack(q, e);18

end19

AdvanceList(q);20

end21

while not empty(Sroot) do22

ShowTwigSolution(Sroot, Sroot.size-1);23

Sroot.Pop();24

if not Empty(Sroot) then25

Update the links between stacks;26

else27

Clean all child stacks;28

end29

end30

end31

Lemma 1. Let e1, e2, . . . , em be the sequence of elements pushed onto the
stacks during the execution of the algorithm. Then, e1.left < e2.left < . . . <
em.left.

Lemma 2. The elements popped out of stack of Upper Node at line 10, 17
24 and elements deleted at line 12 and line 28 from the stack lists of Lower Node
participate no further matches. So, the deletions are safe.

Earlier in the MoveElementToStack() procedure, when an element is to be
pushed onto an appropriate stack, instead of examining all the stacks on the list



we only check if it is a descendent of the top element of the last stack (of its
type) and if it has the same closest pattern ancestor as the top element. This
optimization is based on the following lemma.

Lemma 3: For each incoming Lower Element, either it can only be a de-
scendent of the top element of the last stack (of its type), or it is not a descendent
of any top element of the stacks (of its type).

Lemma 4: MoveElementToStack(q) correctly places the elements onto stacks
and links elements to their closest pattern ancestors.

Thus the elements in the stacks can be reached in any case as long as it
participates the final match, which is guaranteed by the property of getNext().
The relevant proof can be found in [2].

Theorem 1: Given a twig query pattern Q and an XML document tree D,
Algorithm HolisticTwigStack correctly returns all answers to Q on D.

Theorem 2: Given a query twig pattern Q, comprising of n nodes and
only ancestor-descendent edges, over an XML document D, Algorithm Holis-
ticTwigStack has the worst-case I/O and CPU time complexities linear in the
sum of sizes of the n input lists and the output list. Furthermore, the worst-case
space complexity of HolisticTwigStack is the sum of the sizes of the n input lists.

Let us make simple comparisons with TwigStack. Our algorithm may take
a little more CPU time in stack manipulation, but TwigStack would require
extra time and space to store and merge the individual path matches. It is im-
portant to note that our stacks store twig matches rooted at elements that
are currently in the stack of Top Branch Node, while TwigStack stores all
the twig matches, in the form of individual path matches. Furthermore, nodes
shared by multiple paths would have to be stored repeatedly in individual
paths. Therefore, our algorithm in general uses much less space than TwigStack.
For example, we are given a twig pattern where the root A has k children:
A//C1[//C2]. . . [//Ck] and the document tree has n A nodes matching the given
pattern. Each node Ai (1≤i≤n) has ni1 C1 children, ni2 C2 children,. . . ,nik

Ck children. Thus the total number of matches is
∑n

i=1

∏k
j=1 nij . Both meth-

ods need the same time O(
∑n

i=1

∏k
j=1 nij) to form all the combinations. But

our method requires only O(Maxi,1≤i≤n(
∑k

j=1 nij) + 1) space while TwigStack

needs O(
∑n

i=1

∑k
j=1(nij + 1)) = O(

∑n
i=1

∑k
j=1 nij + nk) to store the interme-

diate results. The space consumption of TwigStack can be further exacerbated
when the twig pattern is deeper or more common nodes are shared by leaf nodes.
In worst case, the intermediate result size of TwigStack is O(K×P)=O(J), where
K is the sum of the lengths of the input lists for all leaf nodes, and P is the length
of the longest root-to-leaf path in the twig pattern.

4 Experimental Results

In this section, we evaluate the performance of the HolisticTwigStack algo-
rithm against TwigStack and Twig2Stack using both synthetic and real datasets.



Twig2Stack was shown to have better perfromance than TJFast [7] in [11], and
thus the latter is ommitted here.

4.1 Experimental Set-up

The synthetic datasets consist of XMark, TreeBank, and other datasets gener-
ated by the random generator in [2]. The depths of the randomly generated trees
vary from 5 to 10, fan-outs from 2 to 10, and the number of labels is set at 7.
DBLP is the real dataset used in the experiments.

We use three types of twig queries in the experiments: Q1 represents a set
of shallow but wide queries (dept=2, width= 4 to 5, in the patterns); Q2 a set
of deep but narrow queries (dept= 3 to 5, width=2) and Q3 balanced queries
(dept= 2 to 3 and width= 2 to 3).

We store the intermediate results of TwigStack in memory. This provision,
eliminates the expensive output/input cost of the TwigStack, however, at the
price of memory consumption.

4.2 Experimental Results

TwigStack’s time is broken into two parts to reflect the cost of the two-phase
algorithm with the lower and upper parts of the bars in the figures corresponding
to the first and second phases, respectivley. Fig3 (a) and (b) show the perfor-
mance on the random datasets. As observed, HolisticTwigStack is the fastest.
TwigStack is slow for two reasons: (i) the recursive execution of ShowSolution-
WithBlocking is time-consuming; and (ii) the scan and merge of the intermediate
results in the second phase requires an extra amount of time. The entire execu-
tion times of TwigStack are 18%, 7% and 34% longer than ours for the three
types of queries, respectively. Twig2Stack turns out to be the slowest. It requires
nodes to be pushed/popped onto/out of stacks twice before forming the final re-
sults, incurring higher cost in stack manipulation. It takes 2.2, 1.9 and 1.3 times
longer than HolisticTwigStack for the three types of queries, respectively. Fig3
(b) shows the space utilization. TwigStack uses, on average, 7,328, 5,208 and
9,192 bytes for Q1, Q2 and Q3, respectively, while ours uses only 1,068, 1,464
and 984 bytes for the same queries. This is because TwigStack stores all path
matches in memory (due to our provision to reduce time consuming disk I/O),
while ours stores only twig matches that are rooted at elements currently in the
root stack, a subset of theirs, in memory. As for the Twig2Stack, although it
does not store intermediate results, it may push nodes that do not contribute to
the final results onto stacks, referred to as non-optimality. Recall that TwigStack
and our method (based on the TwigStack), guarantees such optimality. It uses
more space, from 9% to 209%, than our method, though better than TwigStack.

Figures 3(c) and(d) show the results of XMark. TwigStack consumes 8% to
18% more time than ours, as shown in (c) and 4 to 5,186 times more space than
ours, as shown in (d). Please note in some cases, the space of HolisticTwigStack
and Twig2Stack is too small to be shown. Usually, the larger the number of
matches, the larger the space usage ratio. Our method is also much faster than



Twig2Stack; it consumes only 15%, 96% and 59% of Twig2Stack’s time. However,
the space utilizations are almost same. This is due to the uniform and balanced
tree structure of XMark and the relatively uniform distribution of query matches.

Similar results are observed on TreeBank, which are shown in (e) and (f).

Fig. 3. Experimental Results

The results of DBLP are shown in (g) and (h). Although TwigStack is only
slightly slower than ours, its intermediate result sizes are too large (around
100,000 times larger than the other two methods) to show in the chart. Twig2Stack
uses much more time, 3.1, 4.4, and 1.4 times more, than our method, due to its



complex stack manipulation and overhead for processing ”non-productive” nodes
in the stacks (i.e., the non-optimality). Note that Twig2Stack uses much more
space than ours in this experiments than in the XMark and TreeBank as there
are more “non-productive” being pushed onto stacks.

In summary, our algorithm generally runs faster and requires less memory
than TwigStack and Twig2Stack. The larger the query result sizes, the better
our algorithm, compared with TwigStack. The more complex the tree structures,
the better our algorithm, compared with Twig2Stack.

5 Conclusion

In this paper, we propose an efficient one-phase holistic twig pattern match-
ing algorithm based on the TwigStack. We lower the expensive time and space
overhead incurred in the two-phase algorithms by devising a novel stack struc-
ture to hold matching paths until entire twig matches that share the same
Top Branch Element are formed. Experimental results have confirmed that our
method is significantly more efficient in all cases tested.
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