
Join Selectivity Re-estimation for Repetitive

Queries in Databases

Feng Yu1, Wen-Chi Hou1, Cheng Luo2, Qiang Zhu3, and Dunren Che1

1 Southern Illinois University, Carbondale, IL 62901, USA
{fyu,hou,dche}@cs.siu.edu

2 Coppin State University, Baltimore, MD 21216, USA
cluo@coppin.edu

3 University of Michigan, Dearborn, MI 48128, USA
qzhu@umich.edu

Abstract. Repetitive queries refer to those queries that are likely to be
executed repeatedly in the future. Examples of repetitive queries include
those that are used to generate periodic reports, perform routine mainte-
nance, summarize data for analysis, etc. They can constitute a large part
of daily activities of the database system and deserve more optimization
efforts. In this paper, we propose to collect information about joins of a
repetitive query, called the trace, during execution. We intend to use this
information to re-estimate selectivities of joins in all possible execution
orders. We discuss the information needed to be kept for the joins and
design an operator, called the extended full outer join, to gather such in-
formation. We show the sufficiency of the traces in computing the exact
selectivities of joins in all plans of the query. With the exact selectivities
of joins available, the query optimizer can utilize them to find truly the
best join order for the query in its search space, guaranteeing “optimal”
execution of the query in the future.

Keywords: Join Selectivity Estimation, Query Re-optimization.

1 Introduction

A primary problem in query optimization is to find the most efficient execution
plan for a query, which is mainly determined by the join orders. In order to find
the best join order, accurate cost estimations of alternative join orders must be
known. Query optimizers generally use statistics stored in the database catalogs,
such as histograms [3–5], etc., and assumptions about attribute values [1, 7] to
estimate the cost. Unfortunately, due to the complexity of queries, sufficiency of
statistics, and validity of assumptions, query optimizers often cannot find the
most efficient join orders for the queries in their search spaces. Studies [1, 2]
have shown that it could be orders of magnitude slower in speed when executing
queries with sub-optimal plans. Thus, some database systems, like Sybase and
Oracle, allows users to force the join orders; some, e.g., Sybase, even allows users

A. Hameurlain et al. (Eds.): DEXA 2011, Part II, LNCS 6861, pp. 420–427, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Join Selectivity Re-estimation for Repetitive Queries in Databases 421

to explicitly edit the plans [6]. Unfortunately, such measures cannot guarantee
success and can also be quite cumbersome and slow for complex queries. Clearly,
there is a tremendous need for a mechanism that can automatically refine the
execution plans of queries.

Repetitive queries refer to those that are likely to be posted repeatedly in
the future. Many useful queries, such as those used for generating periodical
reports, performing routine maintenances, summarizing and grouping data for
analysis, etc., are repetitive queries. They are often stored in databases for con-
venient reuses for the long term. Any sub-optimality in the execution plans of
such queries could mean repetitive and continued waste of system resources and
time in the future. The efficiency of the executions of repetitive queries has a
paramount effect on the performance of the system and thus deserves more op-
timization efforts. In this research, we attempt to gather information about a
repetitive query while it is being executed. We show that the information gath-
ered is sufficient for optimizers to compute the selectivities of joins accurately in
all execution (or join) orders. It is worth mentioning that we do not intend to
modify the search strategy of the optimizer, but just to provide it with sufficient
and accurate information so that it can find truly the best join order for the
query in its solution space, conveniently called the optimal plan here.

In this paper, we introduce the notion of the trace of a query, which contains
information about how tuples from input relations are joined in the query. We
propose to collect the trace of a query during execution and use it to re-estimate
selectivities of joins in all alternative plans of the query derived by exchanging
the input relations. We have designed operators to collect sufficient information
in the traces so that the exact join selectivities in all execution orders can be
computed. With the exact join selectivities known, the query optimizer can find
the best execution plan for a repetitive query for future executions. Substantial
saving can be obtained from running such queries with optimal plans, not to
mention running them repeatedly. This work makes a major stride in the re-
search of query re-optimization and can make significant improvement on the
performance of the system.

The rest of the paper is organized as follows. Terminologies and definitions
used in the paper are introduced in Section 2.Section 3 discusses selectivity esti-
mation using traces for queries with acyclic join graphs. Due to space limitation,
interested readers are referred to [8] for queries with cyclic join graphs. The
analysis of overhead is included in section 4. Section 5 presents the conclusions
and future work.

2 Framework and Terminology

In this section, we describe the selectivity re-estimation framework and introduce
terminology used in the paper.

422 F. Yu et al.

2.1 Join Selectivity Re-estimation Framework

We attempt to gather information about how tuples are joined in a query while
the query is being processed. The information to gather here is called the query
(or join) trace.

We assume that there are mechanisms in the database that can differentiate
a repetitive query from an ordinary query. We also assume an optimizer knows
how to compute the selectivities of joins from the trace, which will be discussed
in the next two sections.

Figure 1(a) depicts the framework. A query is first optimized by the query
optimizer as usual. If it is a repetitive query, its trace will be gathered when
the query is executed. Once the execution completes, the trace collected will be
provided to the optimizer to compute selectivities of joins of alternative plans
and select the best plan. Physical execution plans are generated based on the best
logical plans by the optimizer and stored in the database for future invocations
of the query. Certainly, after the database has gone through substantial changes,
the process of trace gathering and re-optimization can be re-invoked.

In this paper, we discuss the information to be gathered, and how to gather
them. In addition, we show the sufficiency of the gathered information for com-
puting the exact selectivities of joins of alternative plans.

2.2 Join Graph

A query can be modeled by a graph, called the join graph, that describes the
join relationships among participating relations.

Definition 1 (Join Graph). The join graph G(V, E) of a query consists of a
set of vertices V = {R1, R2, ..., Rn} and a set of edges E. Each vertex denotes
an input relation of the query and each edge (Ri, Rj) ∈ E, Ri, Rj ∈ V , denotes
the existence of join conditions between Ri and Rj in the query.

Example 1 (Join Graph). Fig. 1(b) shows the join graph of a query where there
are join conditions placed between R1 and R2, R2 and R3, and R3 and R4.

If the join graph of a query is disconnected, we can consider each connected
component separately (and then merge them by Cartesian products). Therefore,
we shall assume hereafter all queries have connected join graphs or all join graphs
are connected. For simplicity, we further assume all joins are equi-join, though
our approach can be applied to other joins, such as non-equi joins, and Cartesian
products.

In this research, we assume every (execution) plan P is in the form of a left-
deep tree P = (...((R1 �� R2) �� R3)...) �� Rn [6] because most, if not all,
commercial database systems generate such plans for executions. We assume all
��’s are equi-joins and no Cartesian product appears in P. It is worth mentioning
that the method proposed is applicable to bushy trees and right-deep trees as
well.

Join Selectivity Re-estimation for Repetitive Queries in Databases 423

Let G(V, E) be the join graph of a query Q. In this research, we are interested
in estimating the selectivities of all possible subqueries that are joins of some
or all of the relations in V . Note that we assume all subgraphs G′(V ′, E′) are
connected, and no Cartesian product exists in any of the subqueries or plans.

Definition 2 (Joinable Relations). A pair of relations Ri and Rj are said to
be joinable in a query if there is an edge (Ri, Rj) in the join graph of the query.

Definition 3 (Joinable Tuples). A pair of tuples ti and tj, ti ∈ Ri, tj ∈ Rj,
are said to be joinable if ti and tj have the same value for the join attributes of
Ri and Rj . Joinable tuples are also referred to as match tuples.

Theorem 1. Given a connected join graph for a query and an execution plan
P = (...((R1 �� R2) �� R3)...) �� Rn, each relation Rk, 2 ≤ k ≤ n, has join
attributes with exactly one prior relation Ri, i < k, in P if and only if the join
graph of the query has no cycle.

Proof. See [8].

2.3 Query Trace

When a query is being processed, information about how tuples are joined is
gathered. We intend to use this information, called query (or join) trace, to
estimate selectivities of joins in all execution orders.

Example 2. Fig. 1(b) is the join graph of a query, and Fig. 1(c) shows the match-
ing of join attribute values between tuples. For simplicity, we have represented
a tuple only by its added IDs without reference to other attribute values, that
is, R1 = {1, 2, 3}, R2 = {a, b}, R3 = {A, B}, R4 = {I, II}. For example, tuple 1
of R1 matches tuple a of R2, and tuples 2 and 3 match tuple b of R2. Tuples a
and b of R2 match tuples A and B of R3, respectively. Finally, tuples A and B
of R3 match tuples I and II of R4, respectively.

Consider a left-deep tree execution plan P = ((R1 �� R2) �� R3) �� R4. To
generate the trace, an ID attribute is added to every relation and the attribute
is to be preserved in the outputs of all operators. Thus, the result of R1 �� R2, as
shown in Fig. 1(d), besides its normal set of attributes, denoted by Result-Attrs,
has additional attributes R1-ID and R2-ID, called the trace of R1 �� R2, denoted
by T (R1 �� R2).

Fig. 1(f) shows the trace of ((R1 �� R2) �� R3) �� R4, denoted by T (((R1 ��
R2) �� R3) �� R4). Once a query is completely processed, we can extract the
final trace, e.g., T (((R1 �� R2) �� R3) �� R4) in Example 2, from the “extended”
query result by a simple projection on all the added ID attributes.

424 F. Yu et al.

Query

Optimization

Query Processing

and

Information Gathering

Optimal

Plans

Selectivity Re-estimation

and

Query Re-optimization

Queries Results

Query

Traces

(a) Selectivity Re-estimation Frame-
work

R

R R

R

2

1

3

4

(b) A Join Graph

1

2

3

a

b

A

B

I

II

R R R R21 3 4

(c) Matching of Tuples

Result-Attrs R1-ID R2-ID

... 1 a

... 2 b

... 3 b

(d) Result and Trace of
R1 �� R2

R1-ID R2-ID R3-ID

1 a A

2 b B

3 b B

(e) Trace of (R1 ��
R2) �� R3

R1-ID R2-ID R3-ID R4-ID

1 a A I

2 b B II

3 b B II

(f) Trace of ((R1 �� R2) ��
R3) �� R4

Fig. 1. Query Traces

3 Selectivity Estimation for Acyclic Join Graphs

In this and next sections, we discuss information that needs to be incorporated
into the traces in order to estimate selectivities of joins accurately.

Let Q be a query with an acyclic join graph G(V, E) and P an execution plan
of the query. Let T (P) be the final trace of P . Let G′(V ′, E′) be a vertex-induced
connected subgraph of G(V, E), in which V ′ = {Ri1 , ..., Rim} ⊆ V and E′ ⊆ E,
representing a subquery Q′ of Q. The selectivity of Q′ can be estimated as

˜sel(Q′) =
|πRi1 -ID,...,Rim -IDT (P)|

|Ri1 | × ... × |Rim | (1)

in which πRi1 -ID,...,Rim -IDT (P) is the projection of trace T (P) on attributes
Ri1 -ID, ..., Rim -ID, without duplicate.

3.1 No Dangling Tuples in the Joins

Here, we assume no dangling tuple exists in any of the joins in the query, i.e.
every tuple in one relation finds at least one matching tuple in another relation
with which there is a join edge in the join graph. The relations in Fig. 1(c) satisfy
this condition.

Theorem 2. Let P be an execution plan of a query Q with a connected acyclic
join graph G(V, E). Let Q′ be a subquery of Q that has a vertex-induced connected
join subgraph G′(V ′, E′), V ′ = {Ri1 , ..., Rim} ⊆ V . If there is no dangling tuple
in any join of P , Eq. (1) derives the exact selectivity of Q′ from T (P).

Proof. See [8] .

Join Selectivity Re-estimation for Repetitive Queries in Databases 425

1

2

a

b

A

B

I

II

R R R R21 3 4

(a) Matching of Join Attribute
Values

R1-ID R2-ID R3-ID R4-ID

1 a A I

(b) No Information about
Dangling Tuples

R1-ID R2-ID

1 a

2 b

(c) T (R1 ��
R2) Generated
by Outer Joins

R1-ID R2-ID R3-ID

1 a A

2 b

B

(d) T ((R1 �� R2) ��
R3) Generated by
Outer Joins

R1-ID R2-ID R3-ID R4-ID

1 a A I

2 b

B II

(e) T (((R1 �� R2) �� R3) ��
R4) Generated by Outer
Joins

Fig. 2. Dangling Tuples in Relations

overlap 90% 80% 70%

Rel. size time result size time result size time result size

10k 3.12% 21.03% 3.87% 47.60% 4.98% 81.51%

100k 2.46% 20.23% 5.46% 45.79% 6.30% 78.19%

Fig. 3. Overhead: outerjoin vs. join

3.2 Dangling Tuples in Joins

Dangling tuples are lost in the joins. To retain matching information about
dangling tuples, we replace the joins in the query by the full outer joins (

◦
��).

Fig. 2(c) to 2(d) show the traces generated at different stages of query execution,
where the joins are replaced by the full outer joins. The trace in Fig. 2(c) is the
same as it were generated by a join because there is no dangling tuple in the
join. The trace in Fig. 2(d) retains information about dangling tuples b in R2

and B in R3 by the outer join. Fig. 2(d) is the final trace that will be retained
and used in later selectivity estimation.

The estimated selectivities for R1 �� R2, R2 �� R3, and R3 �� R4 are now, by
Eq. (1), 1

2 (= 2
2×2), 1

4 (= 1
2×2), and 1

2 (= 2
2×2), respectively, which are exact. Note

that, as mentioned earlier, a trace tuple having a null for any of the projected
attributes is not accounted for in the respective |πRi1 -ID,...,Ri1 -IDT (P)| because
a null in a Rij -ID column of a trace tuple indicates that there is no match found
in Rij for the respective combination of tuples to generate an output in the
(sub)query. One can easily verify that the estimated selectivities for all other
subqueries are all exact.

Theorem 3. Let P be an execution plan of a query Q with a connected acyclic
join graph G(V, E). Let Q′ be a subquery of Q that has a vertex-induced connected

426 F. Yu et al.

join subgraph G′(V ′, E′), V ′ = {Ri1 , . . . , Rim} ⊆ V . Eq. (1) derives the exact
selectivity of Q’ from the trace obtained by replacing the joins in the query with
the full outer joins, denoted by T (P).

Proof. See [8]

4 Preliminary Experimental Results

4.1 Preliminary Experimental Results

We test two cases where the synthetic relations have 10K and 100K tuples. Each
input relation and the result relation has 5 attributes. By overlapping parts of
the domains of join attributes, we generate match tuples, partial match, and
no-match tuples.

Relations are read into memory for processing. The CPU cost accounts for
the cost of all processing and the writing of outputs to memory. We use result
size as a measure for potential I/O cost if the result cannot fit in memory . Table
3 shows the CPU and result size (in terms of the number of tuples) overheads
for the outer join operator. The overheads are computed as (OJ − J)/J , where
OJ and J represent the CPU time and the result sizes of outer join and join,
respectively.

The CPU overheads (i.e., 3.12%, 3.87%, 4.98%) are still quite small. This is
because the same amounts of computations, for hashing and comparisons, need
to be performed for both the join and outer join. Only copying dangling tuples
to the output relation (in memory) is extra, which does not take much time.
It is noted that the results could have been better or worse depending on the
amounts of dangling tuples generated in the relations.

From the experiments, we observe that CPU overhead is much more accept-
able than result size overhead. Therefore, if the memory is large enough to hold
the trace at each stage, the trace gathering can be performed with query eval-
uation with too much of delay. On the other hand, if the memory is too small
to hold the traces, the result size overhead could dramatically slow down the
query processing. If that is the case, we may have to gather the trace off-line by
running the query again in spare time.

5 Conclusions and Future Work

In this paper, we propose to collect information about joins, called traces, to
re-estimate the selectivities of joins of repetitive queries. We have shown that
the exact selectivities of joins in all execution orders of a query can be computed
from its trace. In the future, we shall empirically study the overheads incurred
in the the process of trace gathering more thoroughly.

Join Selectivity Re-estimation for Repetitive Queries in Databases 427

References

1. Christodoulakis, S.: Implications of certain assumptions in database performance
evauation. ACM Trans. Database Syst. 9, 163–186 (1984)

2. Markl, V., Raman, V., Simmen, D., Lohman, G., Pirahesh, H., Cilimdzic, M.: Ro-
bust query processing through progressive optimization. In: Proceedings of the 2004
ACM SIGMOD International Conference on Management of Data, SIGMOD 2004,
pp. 659–670. ACM, New York (2004)

3. Muralikrishna, M., DeWitt, D.J.: Equi-depth histograms for estimating selectivity
factors for multi-dimensional queries. In: SIGMOD Conference, pp. 28–36 (1988)

4. Piatetsky-Shapiro, G., Connell, C.: Accurate estimation of the number of tuples
satisfying a condition. In: Proceedings of the 1984 ACM SIGMOD International
Conference on Management of Data, SIGMOD 1984, pp. 256–276. ACM, New York
(1984)

5. Poosala, V., Ioannidis, Y.E.: Selectivity estimation without the attribute value in-
dependence assumption. In: Proceedings of the 23rd International Conference on
Very Large Data Bases, VLDB 1997, pp. 486–495. Morgan Kaufmann Publishers
Inc., San Francisco (1997)

6. Ramakrishnan, R., Gehrke, J.: Database Management Systems, 3rd edn. McGraw-
Hill, New York (2003)

7. Selinger, P.G., Astrahan, M.M., Chamberlin, D.D., Lorie, R.A., Price, T.G.: Access
path selection in a relational database management system. In: Proceedings of the
1979 ACM SIGMOD International Conference on Management of Data, SIGMOD
1979, pp. 23–34. ACM, New York (1979)

8. Yu, F., Hou, W.-C., Luo, C., Zhu, Q., Che, D.: Join selectivity re-estimation for
repetitive queries in databases, http://www2.cs.siu.edu/~fyu/main-trace.pdf

