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In virtually every  organization,  data are stored 
in a  variety  of ways  and  managed  by different 
database  and file systems.  Applications requiring 
data  from multiple sources  must  recognize  and 
deal with the specifics of  each  data  source 
and  must also perform any  necessary  data 
integration. The objective of a  multidatabase 
system is to provide application developers  and 
end users with an  integrated  view  of  and  a 
uniform interface to all the  required  data.  The 
view  and the interface  should be independent  of 
where the  data  are  stored  and  how  the  data  are 
managed. CORDS is a  research project focused 
on distributed applications.  As  part of this 
project, we  are  designing  and prototyping a 
multidatabase  system.  This  paper  provides  an 
overview of the  system  architecture and 
describes  the  approaches  taken in the following 
areas:  management of catalog  information, 
schema integration, global query  optimization, 
(distributed) transaction management,  and 
interactions with component  data  sources.  The 
prototype system  gives application developers 
a  view  of  a single relational database  system. 
Currently  supported  component  data  sources 
include  several  relational  database  systems, 
a  hierarchical database  system,  and  a  network 
database  system. 

A lmost  every large organization  faces  a  data 
integration problem in which applications 

require  access  to  data  stored in a  variety of data 
sources, possibly distributed  over multiple plat- 
forms. The data  sources  may  be  diverse,  consist- 
ing of, for example, file systems, relational data- 
base  systems,  or nonrelational database  systems. 

Typically, each  type of data  source  has  its own 
interface  and  protocols  for retrieving and updat- 
ing data. 

Applications  that  require  data from multiple data 
sources  become  complex,  expensive  to  develop 
and maintain, and directly  dependent  on the  spe- 
cific data  sources.  Consider  an application pro- 
gram running on  a machine that  needs  to  access 
data in two different database  systems.  Further- 
more, assume  that  each  database  system  runs  on 
a different machine and  that different communi- 
cation  protocols  are required to communicate 
with the machines. The  complexity of the appli- 
cation program depends  on  the level of support 
provided for connectivity and data integration. 

Most modern  database  systems  provide  support 
for remote clients; that is, an application running 
on  a  separate  machine  can  transparently  access 
the  database  systems.  Remote  access  capability 
provides connectivity-a necessary  prerequisite 
for  distributed applications. However,  the appli- 
cation program still has  to deal with two different 

Wopyright 1995 by International Business Machines Corpo- 
ration. Copying in printed form for private use is permitted 
without payment of royalty provided that (1) each reproduc- 
tion is done without alteration and (2) the Journal reference 
and  IBM copyright notice are included on the first page. The 
title and abstract, but no other portions, of this paper may be 
copied or distributed royalty free without further permission 
by computer-based and other information-service systems. 
Permission to republish any other portion of this paper must 
be obtained from  the Editor. 

I IBM SYSTEMS JOURNAL, VOL 34, NO 1, 1995 0018-8670195153.00 0 1995 IBM AVALURI ET AL. 39 



interfaces  and two sets of error  messages and 
their  codes. On retrieval, it also has to perform 
the  processing needed to  combine  data from the 
two databases. 

Application development is simplified if the two 
database  systems  support  a common interface. 

An MDBS provides an  integrated 
view of data  from  multiple, 

autonomous, heterogeneous, 
distributed sources. 

Examples of such  interfaces  are  the Microsoft 
Open  Database  Connectivity (ODBC)’ suite of 
functions,  the X/Open SQL (Structured  Query 
Language) Call Level  Interface ( C L I ) , ~ ’ ~  and  the 
IBM Distributed Relational Database  Architec- 
ture* (DRDA*). The application still recognizes 
that it is dealing with multiple data  sources,  but 
now their interfaces are  the same.  Integration 
processing, however,  is still the responsibility of 
the application. 

Application development  is simplified even fur- 
ther if all details of how to  access  the two data- 
base  systems  are delegated to a  separate  system. 
The term multidatabase  system (MDBS) describes 
systems  with  this capability. The objective is to 
provide  the application with the  view  that it is 
dealing with a single data  source. If a  request re- 
quires  data  from multiple sources,  the  multidata- 
base  system will determine  what  data  are required 
from each  source,  retrieve  the  data, and perform 
any integration processing  needed. 

Large  user  organizations  consistently  express  a 
strong  need  for  systems  that  provide  better  data 
connectivity  and  data  integration. We believe that 
the  data  connectivity problem is  more or less 
solved: applications are now able to retrieve  or 
update  data in several different databases  on  sev- 
eral different platforms. However, simply being 
able to “get at”  the  data  is not enough. 
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CORDS (a name stemming from an  early group 
called “COnsortium  for  Research  on  Distributed 
Systems”) is a  research  project  focused  on dis- 
tributed applications. It is  a  collaborative effort 
involving IBM and  several universities. More in- 
formation about  the project can  be found in Ref- 
erence 5 .  As  part of this  project, we  have 
designed and prototyped  an MDBS, called the 
CORDS-MDBS, that  provides  an  integrated, rela- 
tional view of multiple heterogeneous  database 
systems.  Currently, five data  sources  are  support- 
ed:  three different relational database  systems,  a 
network  database  system,  and  a  hierarchical  da- 
tabase  system.  In  this  paper,  we  present an over- 
view of the architecture of the CORDS-MDBS and 
the  current  state of the  prototype implementa- 
tion. We describe  the  approaches  taken in man- 
aging catalog information, schema integration, 
global query optimization, distributed  transaction 
management, and interfacing to heterogeneous 
data  sources. We also recommend  that  a few ad- 
ditional facilities be provided by  database  sys- 
tems  to  ease  the integration task. 

Technical  challenges 

The  objective of an MDBS is to  provide an inte- 
grated view of data from multiple, autonomous, 
heterogeneous,  distributed  sources. Although an 
MDBS resembles  a  “traditional”  distributed  data- 
base  system,  there  are major differences, mainly 
caused by  the  autonomy  and  heterogeneity of the 
underlying data  sources. 

Autonomy implies that, to a  component  data 
source (CDS), the  multidatabase  system  is  just an- 
other application with  no special privileges. It has 
no  control  over,  or influence on, how the  data  are 
modeled by the CDS, how requests  are  processed, 
how transaction management is handled, and so 
on. Simply put,  when developing a  multidatabase 
system, we cannot rely on being able  to  change  a 
CDS; we have  to  use  whatever  interface and ca- 
pabilities a target CDS provides. 

Heterogeneity implies that  the CDSS may differ in 
terms of data models, data  representation,  capa- 
bilities, and  interfaces. Commonly used models 
include flat (indexed) files, hierarchical, network, 
relational, or  object-oriented models. Different 
data models provide different primitives for struc- 
turing data,  but  many  other  properties and fea- 
tures  are typically associated with a  data model. 
These  are, for example, the  constraints  that  can 
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be expressed  and  enforced,  the  data definition 
language, the  data manipulation language, and the 
application program interfaces (MI). 

We now briefly summarize  some of the main 
challenges for MDBSs in global query optimiza- 
tion, distributed transaction management, schema 
integration, security, and catalog management in 
multidatabase systems. 

Query optimization-Global query optimization 
in a  multidatabase  system is similar to  query  op- 
timization in a homogeneous distributed  database 
system.  However,  there  are  two  crucial differ- 
ences: handling CDSS with different query  pro- 
cessing capabilities and  lack of query optimiza- 
tion information at the global level in an MDBS. 

The  query  processing  capabilities of CDSs may 
vary  greatly, ranging from object-oriented  data- 
base  systems  and relational database  systems  to 
legacy database  systems and file systems.  The 
global query optimizer must decompose  a global 
query  into  component  queries  to  be  processed  at 
the CDSS. It  must also determine how and where 
to perform any integration processing  that  is 
needed. To correctly  decompose  a global query, 
the global query optimizer needs  to  know  what 
operations  can be performed by a CDS. 

To determine  an efficient execution plan, the 
global query optimizer also  needs to estimate  the 
cost of processing  a  component  query at a CDS 
and  the  amount of output  data.  The  amount of 
output  data  produced by component  queries is a 
decisive factor in  finding an efficient plan for in- 
tegration processing. Because CDSs are  autono- 
mous pre-existing systems,  the global query  op- 
timizer may  not  be able to  obtain  the  necessary 
information from them  to  make  accurate  esti- 
mates. 

Transaction management-The function of an 
MDBS transaction manager is to  guarantee the 
properties of global transactions  such as atom- 
icity and isolation. The difficulty stems from the 
fact  that local transactions,  unknown to  the MDBS, 
may interfere. To ensure the atomicity property of 
global transactions, the MDBS must, in general, use 
an atomic commit protocol.6 However, an atomic 
commit protocol is not sufficient to ensure correct 
global schedules. Local transactions may cause a 
situation where all  local schedules are correct, but 
the global schedule is not. 
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Schema integration-The key problems in schema 
integration are  related to semantic  heterogeneity, 
for example, the  use  and meaning of data  by dif- 
ferent  applications, by different administrators, 

The  query processing 
capabilities of CDSs may 

vary  greatly. 

and by different end  users.  In general, semantic 
concepts  are  not defined in database catalogs or 
application code;  they may be defined in support- 
ing documentation.  Therefore, automatically de- 
tecting semantic differences and compensating 
for them may be impossible. Another  important 
part of the integration process is the  detection of 
conflicts between CDS schemas in representations 
of the  same  objects. 

Security-The research  community  has  not ad- 
dressed  the  issue of security in MDBSs. Because 
the CDSs are  autonomous, it is unlikely that local 
security  managers will give up or  share their  con- 
trol. In addition, heterogeneity  means  that differ- 
ent CDSS may  have different models of security- 
perhaps  even incompatible security  systems.  The 
subject of MDBS security is still a major open 
problem. 

Multidatabase catalog-As does  any  other  data- 
base  system,  an MDBS requires  a catalog: a  data 
repository  storing  meta-data  and  system informa- 
tion. For performance  and availability reasons, it 
must  be possible to have multiple MDBS servers 
running simultaneously  at  sites  distributed in the 
computing network. At least  some of the catalog 
information must  be globally available so that  a 
request  can effectively be serviced by  any MDBS 
server. 

Architecture and prototype implementation 

Within the CORDS project,  the MDBS acts  as  one of 
the  data  services offered by  the CORDS service 
environment (CSE) (see Bauer et ai?,’). It is de- 
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Figure 1 A possible MDBS run-time  configuration 

signed to offer the full functionality of an existing 
commercial database management system (DBMS). 

This  section  presents  the  overall  architecture of 
the CORDS-MDBS and briefly describes  the  current 
prototype implementation. The  prototype  system 
serves  as a proof of concept  and as a test bed for 
MDBS functionality. It  also helps us  to gain some 
understanding of the  practicality of using existing 
standards  and  products  for modules, interfaces, 
and  protocols. 

Design objectives. The main design objective was 
to present  applications with a single-image view; 
that is, from the point of view of an  application, 
the MDBS appears  as a single, relational database 
system. To achieve  this  view,  the MDBS must  pro- 
vide  the  same  functions as a regular database sys- 
tem, and it must hide the  heterogeneity  and dis- 
tribution of the underlying CDSS. The design also 
aims to  ensure that  the  system is scalable  and 
expandable. A practical  system  needs to scale  at 
least  three orders of magnitude: from tens of 
users  on a few platforms to  tens of thousands of 
users  on  thousands of platforms. In a large sys- 
tem, then, it must  be  possible  to  run multiple in- 
stances of the MDBS. 

Expandability  refers to  the complexity  and  cost of 
incorporating new data  sources. The need  for 
easy expandability requires  that all CDSS should 
support  the  same  common  data model and 
present  the  same  interface to  the MDBS. If the  data 
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model or  the interface of a particular underlying 
CDS, or  both, differs from the  chosen  standard, a 
CDS-Specific MDBS agent  can  be  developed to hide 
the differences. In  our design, MDBS agents  are 
strictly  separated from the main MDBS software; 
no  other  components of the system are aware of 
the  details of a CDS. There is one  exception:  an 
MDBS agent may provide  only a subset of the 
processing capabilities required by the  common 
model. For example, an MDBS agent for an in- 
dexed file system  may  support  only single-table 
SQL queries. It must be possible to describe the 
capabilities in a generic manner. This information 
is included in the catalog. 

Figure 1 depicts a possible run-time  configuration. 
Six “servers”  are distributed at nodes across a 
communications network: three agent-CDS in- 
stances, a catalog server, and two MDBS servers. 
The term agent-COS refers to  an MDBS agent and its 
associated CDS. The  two MDBS servers use the 
(global) catalog server to maintain MDBS meta-data. 
They issue component queries to  the agent-CDSs 
and, if required, process the data further to produce 
the final result. 

We believe that  the MDBS should present  exactly 
the  same  interface as MDBS agents. The immedi- 
ate benefit of this uniformity is flexibility in pro- 
totype testing. However, a more  important  ben- 
efit is flexibility in MDBS composition.  Since  the 
MDBS presents  the  same  interface  as a CDS agent, 
an MDBS instance  can  be included as a CDS in any 
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Figure 2 Main  components of CORDS-MDBS prototype 
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other MDBS. Thus,  instead of having a one-level 
structure of MDBSs, one can build a hierarchy of 
MDBSs. 

Prototype implementation. The main components 
of the CORDS-MDBS are shown in Figure 2. This 
structure  does  not  represent  our final goal for  the 
architecture of a  complete MDBS but it provides  a 
reasonable  subset of the  functionality of a com- 
plete  system.  The  system was built on top of the 
Advanced Interactive Executive* (AIX*) and Open 
Software FoundationDistributed Computing Envi- 
ronment (OSFDCE**).* The amount of prototype 
code exceeds 200 000 lines. 

Communication. Interprocess  communication is 
supported by  the MDBS client and  server libraries. 
The client library  supports  a  (draft)  version of the 
Microsoft ODBC interface. It translates ODBC Calls 
into IBM Distributed  Data Management (DDM)9 
messages  that it ships  via  Sun RPC (remote 
procedure ca1l)'O or the  Encina**  Transactional 
RPC" according to  the DRDA protocol.  The  server 
library  accepts  the RPC calls and translates  them 
back  into ODBC calls. 

Schema  integration. The schema integration com- 
ponent is an  environment to support  users during 
the integration process. It consolidates  a set of 
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tools  to help with  the  various  tasks involved in the 
integration process, in particular  schema  transla- 
tion, conflict resolution, and schema merging. 
The  current  prototype, called the MDBS View 
Builder, supports an X Windows System**  inter- 
face built on Motif** and provides facilities for 
schema  translation among several  data models, 
for browsing and querying the MDBS catalog,  and 
for creating  and managing MDBS views  and  the 
transformation  functions used for conflict resolu- 
tion. Schema integration is discussed in more  de- 
tail in the  next  section. 

Motif inteqace.  The  user  interface is a simple 
X-Windows/Motif-based graphical user  interface. 
It is a normal MDBS application, used primarily for 
testing. A user  can  edit and submit SQL queries 
and updates  posed against MDBS tables. The in- 
terface module submits  these  queries,  via  the 
MDBS client and  server libraries, to  the MDBS 
server.  The resulting rows  are  retrieved  and  pre- 
sented in a  display window. 

Request  coordinator. As its name indicates,  the 
request  coordinator  coordinates  the  actual  pro- 
cessing of user  requests. A request  corresponds 
to  an ODBC call. A single request  may  require  the 
coordinator  to  interact  with  several MDBS mod- 
ules: parser,  view  integrator, global query  opti- 
mizer,  execution engine, and  transaction man- 
ager. The  current  version of the  coordinator  can 
operate in multiuser mode  but is single-threaded. 
In other  words, it supports multiple simultaneous 
connections,  but it can  only  process  one RPC call 
at  a time. 

Catalog.  The MDBS catalog serves  a  purpose sim- 
ilar to the  catalog of a relational DBMS. Catalog 
data  are of two types: (1) structural data-de- 
scriptions of objects in the  system  and  their  re- 
lationships, and (2) statistical data-mainly sta- 
tistics from CDSs used during query optimization. 
The  objects  described in the catalog include the 
sites in the  network,  the CDSS on the  sites,  the 
schemas defining the  data from the CDSS, and the 
users. For example, a cDS is described by prop- 
erties  such  as  the  type of the  data  source,  the  data 
model used, if any, and  the functionality avail- 
able;  the  schemas  are  presented in relational 
form,  and  the information maintained in the  cat- 
alog includes  the  names of the  tables in the 
schema,  the name and type of each  attribute in the 
tables,  and  the mappings from the local schema of 
the CDS to  its relational representation. 
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To achieve scalability, it must be possible to run 
several  instances of the MDBS server  distributed 
in a  network.  Each of the  servers  must  have  ac- 
cess  to  the  same  catalog information. This  re- 

To achieve  scalability, it must be 
possible to run  several  instances 

of the MDBS server distributed 
in a network. 

quires  a single logical MDBS catalog on top of dis- 
tributed physical copies. The MDBS catalog must 
also support  a global naming scheme  that  can  be 
used to uniquely identify objects on distributed 
heterogeneous CDSS. For  these  reasons, we de- 
cided to implement the  prototype MDBS catalog 
using an x.500 directory. 

The catalog module is implemented on top of the 
EAN x.500 Directory Service,13 which was  ex- 
tended  to  provide full transaction  support.  The 
catalog module interacts with the  directory  ser- 
vice  via  a  directory  user agent (DUA) that is re- 
sponsible for querying the  directory.  The  direc- 
tory  service itself is transparently  distributed 
over physically separated  entities called directory 
system  agents (DSA). AI1 catalog information is 
currently  stored in the x.500 directory.  However, 
it is not  mandatory:  the xsoo directory could con- 
tain only top-level information and references to 
other (local) catalogs. 

Parser. The  parser module is a  straightforward 
SQL parser built using YACC (Yet  Another Com- 
piler Compiler). We found that YACC is  not  an 
ideal tool for building parsers  to  be used in long- 
running, multithreaded  servers.  Parsers  gener- 
ated by YACC are  not  reentrant,  and  they  cause 
memory  leaks  when  syntax  errors are encoun- 
tered. We have  subsequently solved both  these 
problems. 

View integration. View definitions are  expressed 
in terms of CDS export  tables,  which define the 
data available from a CDS in a relational form or 
in terms of other  views.  To  process  a  user  re- 

IBM SYSTEMS JOURNAL, VOL 34, NO 1, 1995 



quest,  the  request  must  be  transformed  into  one 
that is expressed solely in terms of export  tables. 

The view integration module takes  a  user  query 
and merges it with the  view definitions that  are 
referenced in the  query.  The module recursively 
integrates  a  view definition with a  user  query so 
that it can handle a  view defined in terms of views. 
The parse  trees  representing  the  views  referenced 
in the  user  query  are  stored in the catalog. The 
output of this module is  a single parse  tree  rep- 
resentation of the merged query  parse  tree and 
view definition parse  trees.  Queries and view def- 
initions may  contain simple selects,  joins on one 
site  or  across multiple sites,  unions  across  sites, 
and  subqueries. 

Query decomposition and optimization. All MDBS 
agents  provide  the global query  optimizer with 
the  same relational interface,  even though the un- 
derlying CDS may  not  be relational. The  only  ex- 
ception  is  that  an MDBS agent  may  only  support  a 
subset of SQL. The  current  prototype of the global 
query  optimizer has limited capabilities. It sup- 
ports SQL SELECT-FROM-WHERE queries with 
ORDER BY, GROUP BY, and HAVING Clauses. It also 
allows a  restricted  set of subqueries:  a  subquery 
can  only  refer to tables in a single CDS schema.  It 
uses  heuristic  rules  to perform decomposition  and 
optimization. Global query optimization is fur- 
ther  discussed in a  later  section of this  paper. 

Execution  engine. The  execution engine takes  a 
global execution plan, submits  the SQL requests 
contained in the plan to  the appropriate CDSS, and 
then  performs integration processing on the  re- 
sulting data  streams.  This module is basically the 
same  as  any relational execution engine. The  cur- 
rent  version of our  execution engine can perform 
joins and unions  across multiple CDSS. They  are 
performed in a pipelined, data-driven fashion by 
(internally) buffering intermediate  results. 

Transaction  management subsystem. The  trans- 
action manager maintains unique transaction 
identifiers, guarantees global “serializability,” 
and  manages  distributed global commitment. The 
CORDS-MDBS transaction management prototype 
employs the Encina  distributed  transaction man- 
agement toolkit,”  the X/Open XA interface  pro- 
tocol, l4 OSF/DCE, and the IBM DRDA protocol.  The 
prototype  supports  both CDSs embedded in a DCE 
environment  and  those  external to DCE. We first 
consider CDSs embedded in DCE and  then  the 
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changes  necessary  to  support CDSs that  are  not 
DCE-Compliant. 

DCE-compliant component data sources. Figure 3 
illustrates  the CORDS-MDBS transaction manage- 
ment subsystem,  its  components,  and their inter- 
faces. SQL requests  are  submitted from client ap- 
plications to the MDBS server using Encina 
transactional  remote  procedure calls (TRPC). The 
MDBS server  parses client requests  and  decom- 
poses  them  to  component  requests  that  are  sub- 
mitted  to CDSS. Transactions begin in the client 
application. The  transaction  context  for  a given 
request is propagated implicitly through TRPCS. 

Client agents submit the component  requests 
through TRPCs to ODBC libraries of server  agents 
at the target CDSS. When a  server agent receives 
an ODBC request, it starts a  thread  that  invokes 
the  corresponding  native ODBC function from its 
underlying CDS. With use of the  native XA inter- 
face,  the  transaction is then mapped from the 
thread to a local CDS transaction, in whose  con- 
text  the  native ODBC call is executed. 

The global transaction manager (GTM) is based on 
the  Encina  distributed  transaction toolkit and is 
distributed through linked libraries in each MDBS 
component:  the client application, the MDBS 
server and client agents, and the  server  agents. 
The GTM is responsible  for global transaction pro- 
cessing. The  transaction  context is propagated 
among distributed  components through TRPCs. 
Each CDS registers itself with the local component 
of the GTM. The GTM starts and manages local 
transactions at a CDS through XA calls at  the  cor- 
responding GTM component and the  server  agent. 
Global serializability is  guaranteed through a mul- 
tidatabase  concurrency  control  scheduler  that 
manages  the serializable execution and order of 
commitment of global subtransactions at CDSs. 

Transactions  are  terminated by commit or roll- 
back calls from the client application. Rollback 
calls may  also arise from exceptions during con- 
currency  control scheduling at the MDBS server  or 
CDS, respectively. When an application requests 
a commit from the GTM, the  two-phase commit 
protocol is initiated at each GTM component  par- 
ticipating in the  transaction.  The MDBS server  is 
selected as  the  two-phase commit (ZPC) coordi- 
nator  and  submits  prepare and commit or roll- 
back  requests  to  the GTM components  embedded 
in the  server  agents. 
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Figure 3 CORDS-MDBS transaction  management  subsystem 
~~~ 
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Non-DCE component data sources. Use of the 
Encina toolkit in managing distributed  transac- 
tions  mandates  that all CDSs run in a DCE envi- 
ronment. When DCE is not available at  a CDS site, 
the  server agent is split into two parts:  the  server 
agent client running under DCE, and  the  server 
agent server running at  the CDS site. The  server 
agent client gives the MDBS server  the illusion that 
the CDS runs  under DCE by converting all TRPC 
calls and XA callbacks to (Sun) RPC calls to  the 
native ODBC and XA calls at  the  server agent 
server. In effect, the client end of the  server agent 

acts  as  a  protocol  converter  that  converts TRPC 
and XA protocol calls to simple RPC calls to  the 
server  end of the  server agent. 

MDBS agents. MDBS agents  serve two purposes: 
to provide  a  standardized  interface  to  a CDS and 
to simulate required functionality that is absent 
from, or not exposed  by,  the CDS. 

The CORDS-MDBS prototype  currently  incorpo- 
rates five component  database  systems.  Three of 
them are relational database systems: Oracle**, 
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DB2/6000*, and EMPRESS**;  all three run on AIX. 
Two are older nonrelational systems: VAXDBMS* * 
on VMS** (network) and IMS* (Information Man- 
agement System*) on MVS (Multiple  Virtual Stor- 
age) (hierarchical). Agents communicate with an 
execution engine through the MDBS server library 
which is linked in. Each agent provides an ODBC 
interface, returns data in a standard format, and 
conforms to our standard error-handling and re- 
porting rules. 

Relational agents-Agents for relational systems 
implement a  subset of the ODBC call suite  on  top 
of the native call-level interface of the DBMS. Re- 
turn  codes  are mapped, as appropriate, to ODBC 
error messages. 

Nonrelational agents-The agents  for IMS and 
V N D B M S  are much more  complex  than  the  re- 
lational agents. Both agents implement an SQL 
front  end on top of the  record-at-a-time  interface 
provided by  the underlying systems.  The  current 
hplementation Supports SQL SELECT-FROM-WHERE 
queries, including subqueries, grouping, and ag- 
gregation. ORDER BY, set  operations,  and  host 
variables  are  not  yet  supported. 

Both  nonrelational  agents perform query optimi- 
zation,  attempting  to exploit the  retrieval  capa- 
bilities of the underlying system.  Many  queries 
can  be handled by a simple nested-loop algorithm. 
However,  some  queries  require  further  process- 
ing, for example,  unions  and  sorts.  Each  agent, 
therefore,  includes  a  postprocessing engine that 
handles  the  processing  that  cannot  be  done effi- 
ciently by nested loops. The  postprocessing  en- 
gine must  be  capable of performing all the normal 
relational operations.  Some additional informa- 
tion on  these  agents  can  be found in Reference 15. 

Schema  integration 

The schema integration component of an MDBS 
provides  the  schema definitions and mappings re- 
quired to facilitate the global applications of the 
MDBS. Its main goal is  to help identify, and  inte- 
grate,  semantically similar objects in the  contrib- 
uting schemas.  This  process is made difficult, 
however, by semantic  heterogeneity;  that is, se- 
mantically equivalent objects  are  represented 
with different names, different structures, differ- 
ent  types,  and different constraints. 
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The problem of schema integration in an MDBS 
has  received  a  great deal of attention, and a num- 
ber of prototype  systems  that  attempt to perform 
integration have  been reported.’”l* The  only 
commercially available system, to  our knowl- 
edge, with  schema integration facilities is In- 
terViso**. l9 All of these  systems  only  address 
certain  aspects of the integration process.  Our 
work defines a  framework  for  the  entire integra- 
tion process  and aims to provide an integrated 
environment to support  schema integration. 

Common  data  model. The common data model 
used during integration is  an  extension of the  re- 
lational model. Two  types of tables  are in the 
model: export tables  and MDBS views. Export  ta- 
bles, as  stated  previously,  present the data avail- 
able from a CDS in a relational form. MDBS views 
span multiple heterogeneous  databases.  They are 
similar to relational views in that  they  are  not 
physically materialized but  rather  are  stored as 
mappings to  be invoked whenever  an MDBS view 
is  accessed. 

MDBS views form the  key  concept in our  approach 
to integration. They  provide  a mechanism to de- 
fine application schemas and to  specify  the map- 
pings from export  schemas to  the application 
schemas. The  query defining an MDBS view  can  be 
complex. We  currently  support unions, joins 
within a single CDS or  across CDSs, and  subque- 
ries. MDBS views  may  be defined on  top of export 
tables  or  other MDBS views. 

The  common  data model also includes trunsfor- 
mution functions, which  are user-defined func- 
tions  for resolving conflicts. They  are specified as 
part of the MDBSview definition and applied to  the 
attributes of the export  tables participating in the 
view. The  functions  are  executed  on  data coming 
from a CDS before the  data  are  presented  as  part 
of an MDBS view. Transformation  functions  may 
currently be defined  in C and then compiled  and 
placed in a function library. A description of a func- 
tion  is stored in the catalog to facilitate searching 
and retrieval of the functions. 

Schema  integration  environment. The  structure 
for  our  schema integration environment  is  shown 
in Figure 4. The  schema integration component, 
called the MDBS View Builder, consists of a  subset 
of the  tools  shown.  Conceptually,  the integration 
environment  consists of three  layers:  the infor- 
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Figure 4 Schema  integration  environment 

INTEGRATION  TASKS 

COMMON  SERVICES 1 

mation repository, the common services  layer, 
and  the integration task  layer. 

The information repository, as discussed  earlier, 
holds the MDBS catalog  that  contains  the  schemas 
and  the mappings between the schemas defined 
during integration. It links the  various  tools  to- 
gether by acting as a  common information store. 

The common  services  layer  contains  functions 
used by all, or at least  several, of the tools. It  also 
provides  the  interface  between the integration 
tools  and  the information repository. The  current 
functions  provided by  the common services  layer 
include: 

Edit-allows users  to modify the definitions of 
schema  objects  such  as tables, attributes,  and 
mappings during the integration process and to 

define transformation  functions for conflict res- 
olution 
Browse-allows users  to inspect  the  contents of 
the catalog by following relationships  between 
the  objects.  The  current implementation pro- 
vides  a graphical interface  that allows users  to 
follow links between catalog entries,  to  focus on 
the  details of particular  entries,  and  to specify 
filters that  restrict  the browsing to particular 
parts of the catalog. 
Catalog inte$ace-the API for the catalog; also 
used by  the  edit  and  browse  functions 
Graphical display-used by tools to display 
schemas 

The integration task  layer  consists of a  set of tools 
that  correspond to  the  tasks comprising the 
schema integration process.  These  tasks include 
the following: 
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Translate  a local schema  (or  portion of a local 
schema)  into  its  corresponding  representation 
in the  common  data model. The  current MDBS 
View Builder provides  a  number of translators 
based  on  structural  transformationz0  that  trans- 
late  between relational, entity-relationship, hi- 
erarchical,  and  network  schemas.  For  any pair 
of data models it is  important to identify those 
schema  transformations  that  are  guaranteed to 
preserve  the  semantics of the original schema 
so that information is not  lost as a  result of the 
translation. 
Standardize  the  translated  schemas  into  a  nor- 
malized form to remove syntactic conflicts such 
as name conflicts and  schema isomorphism con- 
flicts. For example, in two schemas,  the  names 
“employee” and “worker” could refer to equiv- 
alent objects and would be resolved in an MDBS 
view definition into a single name. Also, a seman- 
tic object may be represented syntactically in sev- 
eral ways; for example, an address may be rep- 
resented by  a single character string attribute 
“address,” or by multiple attributes such as 
“street,” “city,” and “province.” This would 
standardize to  a single representation by  the ap- 
plication of a transformation function such as  one 
to concatenate the values of “street,” “city,” and 
“province” into a single string. 
Analyze  the  contributing  schemas and specify 
the  correspondences  between  objects in the 
schemas. A schema  correspondence  describes 
a  set relationship, such as equality, inclusion, or 
exclusion, between  the  extensions of related 
objects in the  schemas. For example, an  “em- 
ployee”  table in a  department  database  may 
replicate  part of the  data in an “employee”  table 
in an  overall  company  database.  This would be 
represented  by an inclusion correspondence  be- 
tween  the  two tables. 
Resolve conflicts detected during the analysis. 
Objects  that  were  determined  to  be  related  may 
differ with  respect to properties  such as domain, 
scale,  and precision. Transformation  functions 
are defined to convert  data in the  extensions of 
the  objects  to a common format. 
Merge the  processed  schemas  into  an integrated 
view  by defining an MDBS view that  contains all 
of the  appropriate  transformation  functions  de- 
fined  in the  previous  steps. 

The schema integration environment is intended 
to  support  users during the integration process in 
the  same  way in which CASE (computer-aided 
software engineering) tools  support  developers 
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during the  software  creation  process. Users  start 
with the  set of local schemas and then perform the 
various integration tasks.  At  each  stage,  the  user 
is supported by specialized tools for the  particular 
task, and by facilities that  search  the information 
repository for relevant information and  store  the 
results of the  stage in the  repository for use in 
later  tasks. Details of the  prototype  system  can be 
found in Reference 21. 

Global query optimization 

As mentioned previously, multidatabase  query 
optimization differs from traditional distributed 
query optimization in two  respects: handling data 
sources with different query-processing capabil- 
ities and  lack of query optimization information at 
the global level. In  this  section, we focus  on  the 
second issue, that is, lack of information required 
to accurately  estimate  the  cost and resulting size 
of a  component  query to  be executed  by  a CDS. 
We ignore file systems and consider  only CDSs 
that  are  database  systems. 

Little  research  has been reported on query  opti- 
mization in multidatabase  systems. Lu et a1.22,z3 
discuss  some differences in global query optimi- 
zation  between  an MDBS and  a  traditional distrib- 
uted  database  system (DDBS). They  also  describe 
a  framework  for  a global query optimizer. Du 
et  aLZ4  proposed  a calibration method  for  deriv- 
ing local cost functions. However,  the  proposed 
method  has  several shortcomings. 

Estimating  component  query  cost  and  output size. 
An execution plan produced by  the CORDS-MDBS 
query  optimizer  consists of two parts:  component 
queries  and an integration plan. A  component 
query is an SQL query  to  be  executed  by  an  agent- 
CDS. The integration plan defines how to  process 
the  data  produced  by  component  queries  to  pro- 
duce  the final result. (A query  may not require 
any integration processing.) To perform its  task, 
the global query optimizer needs two crucial 
pieces of information: the  estimated  cost of exe- 
cuting  a  component query at a given CDS and the 
estimated  size of the  result.  However,  the  statis- 
tical data required to compute  these  estimates 
may not be available at  the global level. 

We divide component DBMSs into  four  classes  ac- 
cording to how the  cost  and  output  size of a  com- 
ponent  query  can  be  estimated: 
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1. Systems  that  provide  estimates of cost  and 
output  size.  In  this  case,  the global query  op- . 
timizer does  not need to compute  the  esti- 
mates. An example of a DBMS of this  type  is 

2. Systems  that  can explain their execution plan 
(but the plan does  not include cost  or size  es- 
timates). Many relational systems now include 
an explain facility that  can  be  used  to  extract 
a  description of the  execution plan for a  query. 
The level of detail varies from system  to  sys- 
tem,  but, typically, the  description  does  not 
include cost  or size  estimates.  The global 
query optimizer needs  to estimate  the  cost and 
output  size  for  each individual component 
query in the plan. Examples of this  type of 
DBMS are Oracle and DB2/6000. 

3. Systems with a catalog (but without  an explain 
facility). We assume  that  the catalog contains 
structural information and,  at  least,  some  sta- 
tistical information about  the  database.  Struc- 
tural information defines the  objects in the da- 
tabase: tables, columns, indexes, and so on. 
Statistical information refers to information 
such as  the  number of rows in a  table  and  the 
number of distinct values for a column. All 
relational database  systems provide at least 
this level of information. Many older,  nonre- 
lational systems  do  have  a  catalog (even 
though it may not be called a  catalog)  that  con- 
tains  structural information. The global query 
optimizer needs to predict  both  the local exe- 
cution plans and  the local cost  functions. 

4. Systems  without  a catalog. File systems  often 
do  not  have  an explicit catalog. 

RDBNMS. 

For  types 2, 3, and 4, the global query  optimizer 
needs  to approximate local cost functions. We are 
investigating three new techniques  for estimating 
the  parameters of local cost functions: query  sam- 
pling, probing queries, and piggybacking. 

Quely sampling. All component  queries  that  can 
be performed on  an agent-CDS are divided into 
classes  such  that  the  execution  cost of the  queries 
in each  class.  can  be  estimated  by  the  same for- 
mula. For example, queries  that  expect to employ 
the  same  access  method  (such as index-based 
join) can be put  into one class.  Most likely, they 
will have similar performance  behavior, and 
therefore, their cost  can  be  estimated by  the  same 
formula. Such  a classification can  be  based  on  the 
limited information available at  the global level, 
such  as  the  characteristics of queries  (unary or 
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join queries,  etc.),  characteristics of operand  ta- 
bles (indexed columns, etc.), and characteristics 
of the  component DBMS included in the  relevant 
agent-cDs (types of supported  access  methods, 
etc). Different agent-ass may  provide different 
levels of details of local information. The  more 
information that is available, the  better  a classi- 
fication can  be  obtained. 

After classification, a sample of queries is drawn 
from each class. The  sample  queries  are  per- 
formed on  the agent-CDS, and their costs  are  ob- 
served. Multiple regression is used to establish  a 
cost  estimation formula for each query class. Dur- 
ing global query  optimization,  the global query 
optimizer  uses  the  derived  cost  formulas  to  esti- 
mate  the  costs of component  queries.  The  cost 
estimation formulas can be dynamically revised 
to reflect the changing environment in an MDBS. 
More  details on this  method  can  be found in Ref- 
erence 25. 

Probing queries. Carefully designed probing que- 
ries  are  issued  on an agent-CDS to directly, or 
indirectly, retrieve  some required local informa- 
tion. For example, assume  that Rj is known to  be 
a  base  table in the  component databaseDBj at site 
j ,  but  its  cardinality  is  not available in the MDBS 
catalog. The global query optimizer can  then  (i) 
perform a  query  on  the catalog of DBj to get the 
size information if access is permitted, or (ii) per- 
form a probing query  on R j ,  which returns  some 
result from which the cardinality  can  be  esti- 
mated. The challenge is to find “cheap” probing 
queries  that allow estimation  with high accuracy. 
More  details  about  this method can  be found in 
Reference 26. 

Piggybacking. In addition to exploiting informa- 
tion about  intermediate  results during query  pro- 
cessing, we can also perform additional “side  re- 
trievals”  on  the underlying database to obtain 
necessary information. We may, for example, in- 
clude  an  extra column in the list of output col- 
umns in a  query  and  then  obtain  statistical infor- 
mation about  the  extra column. Although “side 
retrievals”  are  not  related to  query processing 
and may slow it down slightly, the information 
collected can  be used to  improve  the  processing 
of other  queries  through  better  cost estimation. In 
this  way,  statistical information for  the  data  re- 
ferred to  by popular queries  can  be maintained in 
the MDBS catalog. Additional information about 
this  method  can  be found in Reference 27. 
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Figure 5 Global  query  optimization  subsystem 
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Global query optimization  subsystem. Figure 5 
shows  the global query optimizer (GQO) and its 
connections with other CORDS-MDBS compo- 
nents. The optimizer is not yet fully implemented. 

At compile time, when  the CORDS-MDBS receives 
an SQL query from a global user, the parser in the 
system  checks  the  syntax and semantics of the 
query using the schema information stored in the 
MDBS catalog. The  semantic  query optimization 
module then  rewrites  the  parsed  query using se- 
mantic information stored in the MDBS catalog. 
The objective is to transform  the original query  to 
a semantically equivalent query  that  can  be pro- 
cessed  more efficiently. For  the transformed 
query,  the processing strategy analyzer generates 
and analyzes  alternative  strategies for processing 
the  query  to  select  a preferred one. The  process- 
ing strategy analyzer can perform probing queries 
on  the relevant agent-CDSs to  obtain the necessary 

local information. The processing strategy in- 
cludes  the major decisions about how to transfer 
data among agent-CDSs, where  to  execute join op- 
erations, and so on. According to the processing 
strategy,  the  execution plan generator  ships  the 
component queries contained in the plan to  the 
relevant agent-CDSs for local query optimization 
(done by both MDBS agents and the underlying 
component DBMSS in the agent-CDSs). A detailed 
(global) execution plan for the  query is then  cre- 
ated by the  execution plan generator. All execu- 
tion plans for global queries are managed by  the 
global execution plan manager for later use. An 
execution plan may be incomplete if some  re- 
quired information is not available at compile 
time. 

At run time, when  the CORDS-MDBS receives an 
execution  request for a  query,  the  execution  co- 
ordinator  interacts  with  the run-time optimizer. 
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The run-time optimizer retrieves  the  execution 
plan from the global execution plan manager. It 
first checks  the  validity of the plan. (Some invalid 
execution  plans may, however,  only  be  detected 
during execution.) If the  execution plan is invalid, 

Multidatabase applications access 
the MDBS through global 

transactions. 

the global query  optimizer  produces  a  new valid 
execution plan. If necessary,  the  run-time  opti- 
mizer performs  parametric  query optimization to 
improve  or  complete the execution plan. It  then 
passes  the possibly incomplete global execution 
plan to  the  execution  coordinator.  The  execution 
coordinator  coordinates  and  monitors  the  data 
transmissions among execution engines based on 
the global execution plan. The  execution  coordi- 
nator  also  returns  some run-time information to 
the run-time optimizer to  use  when performing 
adaptive  query optimization to improve  or com- 
plete the  execution plan. Improved  statistical in- 
formation  is  stored in the MDBS catalog and  can  be 
used  to  improve  cost  parameters. An improved or 
completed  execution plan is then  passed to  the 
execution  coordinator  for  further  execution. 

A utility, called Statistics  Collector, is periodi- 
cally invoked on component  databases  to collect 
and update  the  statistics  and  cost  parameters 
stored in the MDBS catalog by performing probing 
and sampling queries. For additional discussion 
of global query optimization in the CORDS-MDBS, 
see References 25 through 29. 

Managing  multidatabase  transactions 

In  a typical DBMS, access  to local data  is achieved 
through transactions. Transactions result from 
the execution of a  user  program segment, written 
in a high-level language, that  interacts with the 
data manipulation and  control facilities of the un- 
derlying database  system. A transaction manager 
ensures  that  the  execution of all concurrent  trans- 
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actions  is atomic, consistent,  isolated, and dura- 
ble. These four properties  are usually called the 
ACID properties of transactions. 

Multidatabase  applications  access  the MDBS 
through global transactions. Aglobal transaction 
consists of subtransactions  that  execute as local 
transactions at the  appropriate CDSS. As men- 
tioned earlier, GTM guarantees the ACID proper- 
ties in all global transactions  accessing  the MDBS. 
The GTM must do this in the  presence of local 
transactions,  that  are not under  its  control, and 
with the possibility of failures at CDSs. 

We  assume  that  each CDS provides  a local trans- 
action manager (LTM), whose  function is to guar- 
antee  the ACID properties of the transactions run- 
ning at its  site.  Unfortunately,  the  heterogeneous 
nature of the  various LTMS and the  desire  to  pre- 
serve  the local autonomy of the  data  sources 
participating in an MDBS make  transaction man- 
agement in an MDBS environment difficult. Multi- 
database composition, global serializability, global 
atomicity, deadlock handling, and  accessing non- 
structured  data all pose  important challenges for 
transaction management in an MDBS. 

Our  work  on transaction management focuses on 
implementing techniques  proposed in the  litera- 
ture  for dealing with transaction management is- 
sues. In particular, we investigate the empirical 
performance of these algorithms to determine 
their applicability in the  real  world.  Furthermore, 
we attempt  to  extend  the algorithms to deal with 
the  more  complex  issues of multidatabase com- 
position and integrating transaction management 
schemes for large objects. 

Related work. The  work on multidatabase  con- 
currency  control  focuses on guaranteeing global 
serializability through  rigorous scheduling and 
forced conflicts.3o  Garcia-Molina et al. 31 completed 
a comprehensive survey of alternative schemes for 
guaranteeing global serializability in multidatabase 
systems. The  survey also covers deadlock handling 
and concurrency control schemes in which either 
serializability or autonomy constraints are relaxed. 

Work on ~ P C  emulation through the  two-phase 
commit agent method (2PCA) was first published by 
Wolski and Veijalainen. 32733 Alternative schemes 
for guaranteeing global atomic commitment with 
one-phase commit resource managers are de- 
scribed by Gray34 and Breitbart et al.35 
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Work on superdatabases, published by P u , ~ ~  is 
the only known work on multidatabase  composi- 
tion. A superdatabase is analogous to a multida- 
tabase  and  can  have  other  superdatabases  as 
CDSS. In this  work,  superdatabase  composition is 
restricted to a  strict static  tree. Our  work on mul- 
tidatabase composition focuses on dynamic com- 
position. 

Research on an  interoperable  environment  con- 
sisting of structured  and  nonstructured  data 
sources  is in the initial stages.  Several  papers 
have recognized its  importance and highlighted 
some  issues. A survey of issues in MDBS trans- 
action management and nonstructured  data 
sources (large data  objects  and long transactions) 
can  be found in Reference 37. The multigranular- 
ity locking scheme3' is a well-known concurrency 
control  scheme for hierarchically structured large 
objects.  Variations or extensions to this  scheme 
have  been  described in References 39 and 40. 

Multidatabase  composition. Current work on MDBSs 
assumes  a two-level architecture comprising a 
monolithic multidatabase  server  and  a collection 
of component  database  systems. This centralized 
view  is  restrictive and does not scale to include 
multiple cooperating  multidatabase  systems. In 
the CORDS-MDBS transaction  subsystem, we elim- 
inate  these  restrictions  and  focus on a design of 
multiple cooperating  peer global transaction man- 
agers  distributed on a communication network. 
With this design, a global transaction  can  span 
multiple servers,  causing  some  multidatabase 
servers  to  act  as  both multidatabase  systems and 
component  database  systems.  Therefore, multi- 
database  systems  can  be  composed  arbitrarily 
and dynamically to resolve  any global transaction 
that  spans  at  least  two  multidatabase  environ- 
ments. 

We  have  shown  that  guaranteeing  multidatabase 
~erializability~~ at multidatabase  servers is suffi- 
cient for guaranteeing global multidatabase  seri- 
alizability for a dynamic hierarchically composed 
set of multidatabase  servers. 42 This follows from 
the  property  that  multidatabase serializability 
guarantees  both atomicity and  a  consistent  order- 
ing of global transactions as  they  execute  from 
leaf component  database  sites to  the root multi- 
database  server.  However, no sufficiency condi- 
tions have  been  developed for global serializabil- 
ity in arbitrary  execution  lattices. 
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Nested  transaction^^^^^ provide useful concep- 
tual  tools  for propagating work among multida- 
tabase  servers and encapsulating  failure  recov- 
ery.  Nested  transactions also furnish two useful 
properties:  intratransaction parallelism and fail- 
ure isolation. Unlike flat transactions,  nested 
transaction  blocks do  not have  to  execute  seri- 
ally. A nested  transaction  can be decomposed 
into  smaller  independent granules, or  subtrans- 
actions,  that  run in parallel. Subtransaction 
boundaries  act  as  afirewull to failures, and unlike 
flat distributed  transactions,  a  subtransaction fail- 
ure  does  not  necessarily imply the failure of the 
whole global transaction.  These  properties permit 
multidatabase  servers  to  delegate  concurrent 
transactional  work to  other multidatabase  servers 
and limit the propagation of transaction  failures 
across  servers.  Furthermore,  nested  transactions 
provide  static  structural  power  for composing 
strict  transaction  hierarchies while still maintain- 
ing global serializability. 

More detailed discussions on dynamic multidata- 
base composition, concurrency  control, and re- 
covery in the CORDS-MDBs can be found in Ref- 
erences 45 and 46. 

Global serializability. Generally, conflict serializ- 
ability is  adopted as  the  correctness  criterion  for 
the  execution of concurrent  transactions  at  a  data 
source. We say that  a  multidatabase  schedule is 
locally serializable if all the  schedules  at  compo- 
nent  data  sources in the MDBS are conflict serial- 
izable.6 A multidatabase  schedule is globally 
seriulizuble if it is locally serializable, and the rel- 
ative serialization order of global subtransactions 
is  the  same at  each data  source. 

Ensuring  that  schedules  are globally serializable 
is achieved by ensuring  that global subtransac- 
tions  execute in the same relative order  at  each 
data  source.  It is easily done  when global sub- 
transactions conflict directly  at  the  component 
data  sources.  Here, the local concurrency  control 
mechanism of the LTM and  an  atomic commit pro- 
tocol guarantee  synchronous global subtransac- 
tion commit orders  at  the  data  sources.  However, 
because of local autonomy  constraints, local 
transactions  are  not  under  the  control of the GTM 
and can unwittingly cause  indirect conflicts 
among global transactions, resulting in nonseri- 
alizable schedules. Even the serial  execution of 
global transactions  does not ensure global serial- 
izability. In general, global serializability cannot 

AlTALURI ET AL. 53 



be  achieved in a multidatabase  environment  with- 
out placing restrictions  on  the local concurrency 
control  mechanisms. 

Global serializability schemes. We now briefly de- 
scribe  some  concurrency  control  schemes  that 
can  be used to  ensure global serializability given 
an  atomic commitment protocol,  such  as the two- 
phase commit (~Pc)  protocol.6  Note  that the 
assumption of an  atomic commitment protocol 
compromises  execution  autonomy  at  component 
data  sources. If all CDSs guarantee locally serial- 
izable execution histories, the following concur- 
rency  control  mechanisms  guarantee globally se- 
rializable multidatabase  transaction  executions. 

Forced  conflicts. One  method  for  guaranteeing 
global serializability works by forcing direct  con- 
flicts among global transactions at component 
data  source^.^" This  method  uses a special  data 
item, called a ticket, that is maintained at  each 
local site. A single ticket is required for  each CDS, 
but  tickets  at different component  data  sources 
are distinct. Only global transactions  are allowed 
to  access a ticket.  Moreover,  each global trans- 
action  executing  at a cDS is  required to read  the 
ticket  value,  increment it, and  write  the  incre- 
mented  value  back  to  the  database.  Therefore, 
ticket  values maintain the serialization order of 
global transactions  at CDSs. Before a transaction 
commits,  at a CDS, it sends  its  ticket  value  to  the 
GTM. The global concurrency  control  scheduler of 
the GTM uses  ticket  values  to maintain a global 
serialization graph of  all uncommitted global 
transactions.  The  scheduler  guarantees serializ- 
ability by  either avoiding cycles  for  conservative 
concurrency  control  schemes,  or breaking cycles 
through transaction  abortion in more aggressive 
schemes. 

Strongly  recoverable data sources. Given some 
knowledge of the  properties of the  various local 
schedules  that are generated by  the local concur- 
rency  control  schedulers, effective global con- 
currency  control  schemes  can  be devised. Of par- 
ticular interest is the notion of a strongly 
recoverable schedule. 47,48 Strongly  recoverable 
schedulers produce serializable schedules in which 
the  order of transaction execution and serialization 
orders  are the same. If all CDSs generate strongly 
recoverable schedules, the serial execution of 
global transactions ensures global  serializability. 
Various concurrency control mechanisms dis- 
cussed in the literature-such as ZPL, time-stamp 
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ordering,49 and optimistic  method^,^" for exam- 
ple-can  be easily modified to generate strongly re- 
coverable schedules.48,51 

Rigorous  component  data  sources. Some  concur- 
rency  control  mechanisms  generate local sched- 
ules that  are  even  more  restrictive  than  strongly 

The global  atomicity 
property is ensured by using 
an  atomic  commit protocol. 

recoverable  schedules, and can, in turn, lead to 
even  more efficient global scheduling schemes. 
One such  concurrency  control  scheme  is  the 
strong-strict ~ P L  protocol  that  generates rigorous 
schedules. Rigorous schedulers  are  strongly  re- 
coverable  but,  moreover,  prevent read-write, 
write-read, and write-write conflicts among un- 
committed  transactions. In Reference 47, it is 
shown  that, if local DBMS schedulers are rigorous 
and the GTM guarantees  the  atomic commitment 
of  all global transactions,  the global schedule is 
serializable. Other  protocols  can  be easily mod- 
ified to generate  rigorous  schedules. For exam- 
ple, basic  time-stamp  ordering  can  be made rig- 
orous  by blocking transactions  that  either try  to 
read or write  data  that  were  previously  written by 
an uncommitted transaction or  try  to write  data 
that  were  read  by  an uncommitted transaction. 47 

Global  atomicity. Global atomicity specifies that 
either all subtransactions of a global transaction 
run  successfully at their local CDSs, or  they all 
abort.  Recovery specifies that  the effects of a 
global transaction  are  undone  completely  after it 
is  aborted or remain entirely  durable  after  system 
failures. In general, the global atomicity  property 
is ensured by using an atomic  commit protocol. 
Once CDSs are locally recoverable, global atomic 
commitment also guarantees global recovery. An 
atomic commitment protocol  requires  that  each 
participating CDS provides a prepared state for 
each  subtransaction.  The  subtransaction should 
remain in the  prepared  state until the  coordinator 
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decides  whether  to commit or abort  the  transac- 
tion. However, to preserve the execution  auton- 
omy of each of the participating CDSS, it must be 
assumed that  they do not export  a  prepared  state 
for global subtransactions. In such an environ- 
ment,  a CDS can unilaterally abort  a  subtransac- 
tion any time before it commits. This condition 
leads not only to global transactions  that  are  not 
atomic, but  also to incorrect global schedules. 

In the CORDS-MDBS, the  data  sources  that  do not 
support  the ~ P C  protocol emulate it through the 
two-phase commit agent (2PCA) algorithm. 32,33,52 

The 2 P c ~  intercepts all transactions from the GTM 
and passes  them  to  the local transaction manager 
at the  component site. All commands but  the pre- 
pare message are  forwarded. When it receives  a 
prepare message, the 2PcA determines  whether 
the corresponding transaction is ready to commit 
or abort, and responds to  the  coordinator  accord- 
ingly. If an agent prepares  to commit, but  the 
corresponding local subtransaction unilaterally 
aborts  at  the  component  site,  the 2PCA recovers 
by resubmitting the local transaction. 

Deadlock detection and handling. Global dead- 
locks occur  whenever  there is a  cyclic wait for 
locks among transactions  that run at CDSS that  use 
a locking mechanism for local concurrency  con- 
trol. Deadlock avoidance and detection  schemes 
depend on the avoidance or detection of cycles in 
a  lock wait-for graph (WFG). In  a lock WFG, each 
node corresponds  to  a  transaction, and there is a 
directed edge between two nodes if one  corre- 
sponding transaction is waiting for  a lock from the 
other. A WFG is  a  centralized  data  structure, and 
its maintenance incurs  delays and communica- 
tions  overheads in a decentralized environment. 
Although this problem is not unique to MDBSS, it 
is  further  exacerbated by autonomy  constraints 
that  prevent component databases from export- 
ing deadlock control information to  the GTM. 

We attempted to resolve the  deadlock  detection 
problem heuristically by  setting time-out inter- 
vals on global transactions. If a global transaction 
holds a  lock longer than  a specified time-out pe- 
riod, it is aborted. Heuristic detection can  be  dan- 
gerous if time-out intervals either increase  aborts 
or hold resources  too long. 

Nonstructured data sources. Computer-aided de- 
sign (very large-scale integration, mechanical and 
software engineering), geographical data, and 
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multimedia (voice and image) are emerging as im- 
portant application areas.  These  areas differ from 
the  structured  ones in their data modeling tools, 
nature of application programs, and types of stor- 
age structures and access methods. Moreover, 
they  require an interoperable environment of 
structured  data  sources (for example, relational 
systems) and nonstructured  data  sources (for ex- 
ample, object-oriented database  systems  and file 
systems).  Transactions would be an important 
part of such an environment. The CORDS-MDBS is 
intended to provide transactions  across  struc- 
tured and nonstructured  data  sources.  This  task 
involves several challenges; the important ones 
are mentioned below. 

First,  nonstructured  data  sources, similar to  ones 
that  are  structured, employ transactions  to  sup- 
port concurrent  access and withstand failures. 
However,  objects in nonstructured  data  sources 
are normally large and lack a uniform structure, 
and their application programs model long and 
complex design processes  that involve human in- 
teraction.  Large and unstructured  data  objects 
can  cause problems in an MDBS environment. Be- 
cause of the  absence of structure, an entire object 
has to be locked by a  transaction  to prevent con- 
flicting transactions from sharing. If entire  data 
objects  are locked, the number of lock and other 
recovery-related operations is minimized, but  the 
concurrency of this and other  data  sources in the 
MDBS is degraded. Alternatively, a  data object 
can  be granularized into small subobjects so that 
unused parts of a  data object are not held up. 
Efficient lock management is required to offset 
the  overhead of such fine granularity locking. 

Second, global transactions  cannot  be allowed to 
lock data  objects indefinitely. Because  a distrib- 
uted global transaction  can  take  a relatively long 
time, the resulting adverse effect on local trans- 
actions may not be acceptable  to  the administra- 
tor of the CDS. The GTM must ensure  that global 
subtransactions  share  data  objects with local 
transactions in a fair manner and with a lower 
priority. 

Finally, because of the autonomy and nonmodi- 
fiability of a CDS, any granularization of objects 
has to be implemented at the MDBS level. The 
implementation must guarantee the atomicity and 
serializability of transactions sharing the  sub- 
objects it created. It must do so even in the  pres- 
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Figure 6 LCC for nonstructured  data  sources 
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ence of transaction  abortions and site failures at 
the  data  source. 

Logical  concurrency  control  in  nonstructured  data 
sources. We are working on  a logical  concurrency 
control (LCC) scheme to manage large, unstruc- 
tured  data  objects of nonstructured CDSS effi- 
ciently. Whereas  the LTM uses  a  data  object  as  the 
unit of concurrency  control, the LCC scheme  en- 
ables  a  data  object  to be granularized and  shared 
among multiple conflicting transactions  concur- 
rently. As a  result, LCC could offer a much higher 
concurrency  than  the CDS alone. LCC would also 
facilitate specialized granularization schemes for 
various  types of objects  (that is, separate  schemes 
could be employed for two- or three-dimensional 
objects,  for  example). 
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Figure 6 illustrates  the  use of LCC in MDBS trans- 
action management. The LTM offers the physical 
transaction  service to its  users, namely local 
users and  the logical  concurrency  control  man- 
ager (LCCM). The physical transaction  service 
treats a  data  object  as  a unit of concurrency  con- 
trol and forbids  concurrent  access  by multiple 
conflicting transactions. In locking terminology, a 
data  object is the smallest lockable unit. The 
LCCM is  responsible for implementing an LCC 
scheme  and  exports  the logical transaction ser- 
vice to  the MDBS agent. The LCCM invokes mul- 
tiple physical transactions,  each  dedicated to a 
data  object.  Each of these physical transactions 
fetches  its  data  object from the LTM, granularizes 
it into smaller subobjects,  and offers those  sub- 
objects  to logical transactions.  Thus, in locking 
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terminology, the LCCM supports  a  subobject of a 
data  object  as  a lockable unit. 

The presence of LCCM improves the concurrency 
of logical transactions  from the MDBS agent; oth- 
erwise,  its  presence is transparent to  the MDBS 
agent. The MDBS agent can  assume  that  its logical 
transactions  are being executed on the  data 
source directly. The LCCM ensures  the  atomicity 
and serializability of logical transactions to  sup- 
port  this notion. 

Following are  the building blocks of an LCCM: 

LTM interface:  The LCCM uses this interface to 
create  and manage physical transactions  for 
carrying  out  tasks  described  above. 
MDBS agent interface: The MDBS agent uses this 
interface to have  its logical transactions  pro- 
cessed by  the LCCM. 
Logical transaction-physical transaction  map- 
ping: This  component  maintains  the  association 
between  the logical transactions of the MDBS 
agent and  the  physical  transactions of the 
LCCM. It  requires  stable  storage to record  these 
associations so as  to withstand  site failures. 
Concurrency  control  and  recovery:  This com- 
ponent  schedules  the  operations of the physical 
transactions of LCCM. It  is  responsible for en- 
suring the serializability and  atomicity of trans- 
actions. 
Logical transaction analysis: The LCCM ana- 
lyzes logical transactions to recognize an “un- 
used”  subobject of a  data  object locked by a 
logical transaction.  Unused  subobjects  are al- 
located to other  transactions to improve  con- 
currency. 
Data  object granularization: The main contri- 
bution of an LCCM is object granularization. 
This  component is application-domain-depen- 
dent.  It  granularizes  data  objects so that  the 
object  structure  suits  the  applications  on  hand. 

The  concurrency  control  and  recovery  compo- 
nent  is  the  most involved because,  for  each  data 
object,  concurrent  operations of logical transac- 
tions  have to be  supported  through  a single LTM 
physical  transaction. 

We proposed an LCC scheme in Reference 53. We 
described  the  concurrency  control  and  recovery 
mechanisms and important  implementations of an 
LCC assuming a locking based  data  source  and 
area-wise granularization of multidimensional 
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data  objects. We are implementing LCC schemes 
on  two  types of data  (text and multidimensional 
data) using Obje~tStore**,’~ an object-oriented 
database  system. 

Objectstore  does  not employ explicit object  or 
subobject locking but  uses  two levels of isolation: 
page locking and  object  check-in  and  check-out. 
A page lock is implicitly acquired by a  transaction 
when it accesses  a  part of an  object  located on 
that page. The  lock is released  when  the  trans- 
action  terminates (commits or aborts). Page locks 
guarantee the isolation of transactions. An object 
is checked  out by an application into  its  area for 
“long duration’’ access  by  its  transactions.  It  is 
not accessible to  other  applications until it is 
checked  back in. Of course, if the  object  is al- 
lowed to have multiple versions, new versions 
can be created  and  checked  out by these appli- 
cations. If objects are declared  as single-ver- 
sioned,  object  check-out  and page locking are lim- 
ited forms of object  and  subobject locking. In our 
implementation of LCC schemes,  check-out and 
check-in is used for object locking. 

Clearly, concurrency  control (locking or  any 
other  scheme)  contributes significant overhead in 
implementing an LCC scheme.  Subobject locking 
is more involved than locking a  table or a page 
in a relational system  for two reasons.  First, the 
lock space  is large and  consists of all possible 
subobjects  of  data  objects.  Second, determining 
whether  locks  on two subobjects conflict is non- 
trivial because of their nonuniform size. A solu- 
tion is to model subobjects as  one  or multidimen- 
sional ranges. Ranges can be dynamically in- 
dexed to lock  or  unlock  subobjects efficiently. An 
indexing algorithm for this  purpose  has  been  de- 
scribed in Reference 55. 

Multidatabase  transaction  management  subsystem. 
The transaction management subsystem consists of 
a global transaction manager (GTM), a  set of local 
transaction managers (LTM) at CDSS, and  multida- 
tabase transaction processing agents (MTA) that run 
as part of the MDBS agents at CDSS. The configura- 
tion of these components is illustrated in Figure 7. 
The GTM executes global transactions from both 
multidatabase servers, T,, and application pro- 
grams, Tk.  These transactions are decomposed into 
nested subtransactions and submitted to CDSS 
through the MTA. Notice that for nonstructured 
CDss, the nested subtransactions are submitted to 
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the LCCM at the CDS. The LCCM creates  a logical 
transaction and relays it to its corresponding LTM. 

Transactions  at CDss are committed by  the 2 p c  
protocol. If the CDS supports  the ~ P C  protocol,  the 
MTA simply relays  the global transaction  to  the 
LTM at  the CDS site. Otherwise, the MTA acts as a 
2PC agent. In  the GTM, the global concurrency 
control  scheduler and recovery manager coordi- 
nate commit orders  at  component  sites through 
the MTA. The  interaction  between  the GTM and 
MTA during global concurrency  control  depends 
on the global concurrency  control  scheme in use. 
For example, with implicit tickets, ~ P C  messages 
are enough; however, in the  optimistic ticketing 
scheme,  ticket conflict orders need to  be piggy- 
backed  on ~ P C  messages. 

Finally, a global transaction, Ti,  may  contain  ref- 
erences  to  data  items at CDSS under  the  control  of 
another  multidatabase  server.  These  references 

Conclusion 

Data integration systems  may  provide  many dif- 
ferent  levels of service.  The simplest systems 
may  provide nothing more than connectivity,  that 
is,  the  ability  for  an application to  access  data 
stored in multiple database  systems.  The  next log- 
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ical step  is  to provide  a uniform interface, hiding 
some of the details among the underlying data 
sources.  At the next level of service are  systems 
that  support  distributed  queries;  that is, a single 
sQL query  may  reference  data in multiple data- 
bases.  Many DBMS vendors  have  added,  or  are 
currently adding, support  for  distributed  queries 
into  their  systems. It  represents  a significant step 
forward,  but additional services are needed.  A 
full-function MDBS should  also provide: 

A globally available catalog so that multiple 
MDBS servers  can  be  run  at  the  same time 
Schema integration tools to  ease  the  task of im- 
porting and integrating schemas 
Global transaction management to allow dis- 
tributed  transactions 
Global security  services 

Integration of database  systems would be  greatly 
simplified if the underlying CDSS provided a  few 
additional features.  Three highly desirable  fea- 
tures  are explained below. We offer these  as sug- 
gestions  to  standardization  bodies  and  industry 
consortia in the  database  area. 

The first feature is to define a  common  interface 
for  retrieving  the  estimated  cost  and  output  size 
of a  query.  This  feature would greatly simplify 
MDBS query optimization. It  has  been claimed 
that  this  interface  requires  agreement on a com- 
mon  cost unit. We believe that  such  agreement is 
unnecessary:  Each  system  can  provide  its cost 
estimates in whatever  units it prefers. The  only 
requirements are  that  the  estimates  provided  by  a 
system  be  consistent  and  have sufficient resolu- 
tion. The global query optimizer can  scale  the 
estimates  obtained  from different systems,  and 
the  appropriate  scale  factors  can  be  obtained by 
running calibrating queries. 

The  second  feature is to define a way in which an 
MDBS can inform a CDS that it has  more  stringent 
serialization  requirements. To guarantee global 
serializability, the  serialization  order of global 
subtransactions  at  each  site  must  be  consistent, 
and the global transaction manager must  be  able 
to somehow inform a local transaction manager of 
what  serialization orders  are acceptable. We see 
two possible  approaches:  one implicit and one 
explicit. In  the implicit approach,  a global trans- 
action manager would inform a local transaction 
manager that all of its global subtransactions  must 
have  a  serialization  order  consistent with the  or- 
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der in which it submits ~ P C  prepare  requests.  The 
global transaction manager would then  process all 
~ P C  prepare  requests serially. A  drawback of this 
implicit approach is that  the global transaction 
manager cannot  submit  prepare  requests  for the 
next  transaction until all local transaction  man- 
agers involved in the  previous  transaction  have 
responded.  This  drawback  can  be  overcome by 
allowing the global transaction manager to in- 
clude  an explicit serialization number in 2PC pre- 
pare  requests. 

The third feature  is  to define a way  that  an MDBS 
can  generate unique transaction identifiers and 
have  a  transaction identifier passed along to all 
CDSs involved in the  transaction.  It would enable 
a CDS to recognize when  requests arriving 
through different routes  are in fact  part of the 
same global transaction and should be  treated  as 
one  transaction. If they  are  treated as separate 
transactions and conflict on some  data item, the 
global transaction will deadlock itself. 
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