
The CORDS
multidatabase project

by G. K. Attaluri
D. P. Bradshaw
N. oburn
P.- E . Larson
P. Martin
A. Silberschatz
J. Slonim
Q. Zhu

In virtually every organization, data are stored
in a variety of ways and managed by different
database and file systems. Applications requiring
data from multiple sources must recognize and
deal with the specifics of each data source
and must also perform any necessary data
integration. The objective of a multidatabase
system is to provide application developers and
end users with an integrated view of and a
uniform interface to all the required data. The
view and the interface should be independent of
where the data are stored and how the data are
managed. CORDS is a research project focused
on distributed applications. As part of this
project, we are designing and prototyping a
multidatabase system. This paper provides an
overview of the system architecture and
describes the approaches taken in the following
areas: management of catalog information,
schema integration, global query optimization,
(distributed) transaction management, and
interactions with component data sources. The
prototype system gives application developers
a view of a single relational database system.
Currently supported component data sources
include several relational database systems,
a hierarchical database system, and a network
database system.

A lmost every large organization faces a data
integration problem in which applications

require access to data stored in a variety of data
sources, possibly distributed over multiple plat-
forms. The data sources may be diverse, consist-
ing of, for example, file systems, relational data-
base systems, or nonrelational database systems.

Typically, each type of data source has its own
interface and protocols for retrieving and updat-
ing data.

Applications that require data from multiple data
sources become complex, expensive to develop
and maintain, and directly dependent on the spe-
cific data sources. Consider an application pro-
gram running on a machine that needs to access
data in two different database systems. Further-
more, assume that each database system runs on
a different machine and that different communi-
cation protocols are required to communicate
with the machines. The complexity of the appli-
cation program depends on the level of support
provided for connectivity and data integration.

Most modern database systems provide support
for remote clients; that is, an application running
on a separate machine can transparently access
the database systems. Remote access capability
provides connectivity-a necessary prerequisite
for distributed applications. However, the appli-
cation program still has to deal with two different

Wopyright 1995 by International Business Machines Corpo-
ration. Copying in printed form for private use is permitted
without payment of royalty provided that (1) each reproduc-
tion is done without alteration and (2) the Journal reference
and IBM copyright notice are included on the first page. The
title and abstract, but no other portions, of this paper may be
copied or distributed royalty free without further permission
by computer-based and other information-service systems.
Permission to republish any other portion of this paper must
be obtained from the Editor.

I IBM SYSTEMS JOURNAL, VOL 34, NO 1, 1995 0018-8670195153.00 0 1995 IBM AVALURI ET AL. 39

interfaces and two sets of error messages and
their codes. On retrieval, it also has to perform
the processing needed to combine data from the
two databases.

Application development is simplified if the two
database systems support a common interface.

An MDBS provides an integrated
view of data from multiple,

autonomous, heterogeneous,
distributed sources.

Examples of such interfaces are the Microsoft
Open Database Connectivity (ODBC)’ suite of
functions, the X/Open SQL (Structured Query
Language) Call Level Interface (C L I) , ~ ’ ~ and the
IBM Distributed Relational Database Architec-
ture* (DRDA*). The application still recognizes
that it is dealing with multiple data sources, but
now their interfaces are the same. Integration
processing, however, is still the responsibility of
the application.

Application development is simplified even fur-
ther if all details of how to access the two data-
base systems are delegated to a separate system.
The term multidatabase system (MDBS) describes
systems with this capability. The objective is to
provide the application with the view that it is
dealing with a single data source. If a request re-
quires data from multiple sources, the multidata-
base system will determine what data are required
from each source, retrieve the data, and perform
any integration processing needed.

Large user organizations consistently express a
strong need for systems that provide better data
connectivity and data integration. We believe that
the data connectivity problem is more or less
solved: applications are now able to retrieve or
update data in several different databases on sev-
eral different platforms. However, simply being
able to “get at” the data is not enough.

40 AITALURI ET AL.

CORDS (a name stemming from an early group
called “COnsortium for Research on Distributed
Systems”) is a research project focused on dis-
tributed applications. It is a collaborative effort
involving IBM and several universities. More in-
formation about the project can be found in Ref-
erence 5 . As part of this project, we have
designed and prototyped an MDBS, called the
CORDS-MDBS, that provides an integrated, rela-
tional view of multiple heterogeneous database
systems. Currently, five data sources are support-
ed: three different relational database systems, a
network database system, and a hierarchical da-
tabase system. In this paper, we present an over-
view of the architecture of the CORDS-MDBS and
the current state of the prototype implementa-
tion. We describe the approaches taken in man-
aging catalog information, schema integration,
global query optimization, distributed transaction
management, and interfacing to heterogeneous
data sources. We also recommend that a few ad-
ditional facilities be provided by database sys-
tems to ease the integration task.

Technical challenges

The objective of an MDBS is to provide an inte-
grated view of data from multiple, autonomous,
heterogeneous, distributed sources. Although an
MDBS resembles a “traditional” distributed data-
base system, there are major differences, mainly
caused by the autonomy and heterogeneity of the
underlying data sources.

Autonomy implies that, to a component data
source (CDS), the multidatabase system is just an-
other application with no special privileges. It has
no control over, or influence on, how the data are
modeled by the CDS, how requests are processed,
how transaction management is handled, and so
on. Simply put, when developing a multidatabase
system, we cannot rely on being able to change a
CDS; we have to use whatever interface and ca-
pabilities a target CDS provides.

Heterogeneity implies that the CDSS may differ in
terms of data models, data representation, capa-
bilities, and interfaces. Commonly used models
include flat (indexed) files, hierarchical, network,
relational, or object-oriented models. Different
data models provide different primitives for struc-
turing data, but many other properties and fea-
tures are typically associated with a data model.
These are, for example, the constraints that can

IBM SYSTEMS JOURNAL, VOL 34, NO 1, 1995

be expressed and enforced, the data definition
language, the data manipulation language, and the
application program interfaces (MI).

We now briefly summarize some of the main
challenges for MDBSs in global query optimiza-
tion, distributed transaction management, schema
integration, security, and catalog management in
multidatabase systems.

Query optimization-Global query optimization
in a multidatabase system is similar to query op-
timization in a homogeneous distributed database
system. However, there are two crucial differ-
ences: handling CDSS with different query pro-
cessing capabilities and lack of query optimiza-
tion information at the global level in an MDBS.

The query processing capabilities of CDSs may
vary greatly, ranging from object-oriented data-
base systems and relational database systems to
legacy database systems and file systems. The
global query optimizer must decompose a global
query into component queries to be processed at
the CDSS. It must also determine how and where
to perform any integration processing that is
needed. To correctly decompose a global query,
the global query optimizer needs to know what
operations can be performed by a CDS.

To determine an efficient execution plan, the
global query optimizer also needs to estimate the
cost of processing a component query at a CDS
and the amount of output data. The amount of
output data produced by component queries is a
decisive factor in finding an efficient plan for in-
tegration processing. Because CDSs are autono-
mous pre-existing systems, the global query op-
timizer may not be able to obtain the necessary
information from them to make accurate esti-
mates.

Transaction management-The function of an
MDBS transaction manager is to guarantee the
properties of global transactions such as atom-
icity and isolation. The difficulty stems from the
fact that local transactions, unknown to the MDBS,
may interfere. To ensure the atomicity property of
global transactions, the MDBS must, in general, use
an atomic commit protocol.6 However, an atomic
commit protocol is not sufficient to ensure correct
global schedules. Local transactions may cause a
situation where all local schedules are correct, but
the global schedule is not.

IBM SYSTEMS JOURNAL, VOL 34, NO 1, 1995

Schema integration-The key problems in schema
integration are related to semantic heterogeneity,
for example, the use and meaning of data by dif-
ferent applications, by different administrators,

The query processing
capabilities of CDSs may

vary greatly.

and by different end users. In general, semantic
concepts are not defined in database catalogs or
application code; they may be defined in support-
ing documentation. Therefore, automatically de-
tecting semantic differences and compensating
for them may be impossible. Another important
part of the integration process is the detection of
conflicts between CDS schemas in representations
of the same objects.

Security-The research community has not ad-
dressed the issue of security in MDBSs. Because
the CDSs are autonomous, it is unlikely that local
security managers will give up or share their con-
trol. In addition, heterogeneity means that differ-
ent CDSS may have different models of security-
perhaps even incompatible security systems. The
subject of MDBS security is still a major open
problem.

Multidatabase catalog-As does any other data-
base system, an MDBS requires a catalog: a data
repository storing meta-data and system informa-
tion. For performance and availability reasons, it
must be possible to have multiple MDBS servers
running simultaneously at sites distributed in the
computing network. At least some of the catalog
information must be globally available so that a
request can effectively be serviced by any MDBS
server.

Architecture and prototype implementation

Within the CORDS project, the MDBS acts as one of
the data services offered by the CORDS service
environment (CSE) (see Bauer et ai?,’). It is de-

A ~ A L U R I ET AL. 41

Figure 1 A possible MDBS run-time configuration

signed to offer the full functionality of an existing
commercial database management system (DBMS).

This section presents the overall architecture of
the CORDS-MDBS and briefly describes the current
prototype implementation. The prototype system
serves as a proof of concept and as a test bed for
MDBS functionality. It also helps us to gain some
understanding of the practicality of using existing
standards and products for modules, interfaces,
and protocols.

Design objectives. The main design objective was
to present applications with a single-image view;
that is, from the point of view of an application,
the MDBS appears as a single, relational database
system. To achieve this view, the MDBS must pro-
vide the same functions as a regular database sys-
tem, and it must hide the heterogeneity and dis-
tribution of the underlying CDSS. The design also
aims to ensure that the system is scalable and
expandable. A practical system needs to scale at
least three orders of magnitude: from tens of
users on a few platforms to tens of thousands of
users on thousands of platforms. In a large sys-
tem, then, it must be possible to run multiple in-
stances of the MDBS.

Expandability refers to the complexity and cost of
incorporating new data sources. The need for
easy expandability requires that all CDSS should
support the same common data model and
present the same interface to the MDBS. If the data

42 ATTALURI ET AL.

model or the interface of a particular underlying
CDS, or both, differs from the chosen standard, a
CDS-Specific MDBS agent can be developed to hide
the differences. In our design, MDBS agents are
strictly separated from the main MDBS software;
no other components of the system are aware of
the details of a CDS. There is one exception: an
MDBS agent may provide only a subset of the
processing capabilities required by the common
model. For example, an MDBS agent for an in-
dexed file system may support only single-table
SQL queries. It must be possible to describe the
capabilities in a generic manner. This information
is included in the catalog.

Figure 1 depicts a possible run-time configuration.
Six “servers” are distributed at nodes across a
communications network: three agent-CDS in-
stances, a catalog server, and two MDBS servers.
The term agent-COS refers to an MDBS agent and its
associated CDS. The two MDBS servers use the
(global) catalog server to maintain MDBS meta-data.
They issue component queries to the agent-CDSs
and, if required, process the data further to produce
the final result.

We believe that the MDBS should present exactly
the same interface as MDBS agents. The immedi-
ate benefit of this uniformity is flexibility in pro-
totype testing. However, a more important ben-
efit is flexibility in MDBS composition. Since the
MDBS presents the same interface as a CDS agent,
an MDBS instance can be included as a CDS in any

IBM SYSTEMS JOURNAL, VOL 34, NO 1, 1995

Figure 2 Main components of CORDS-MDBS prototype

MDBS SERVER

-
D DECOMPO$ITIQN

-U t3 OpFlMlZATlOf%J
A LIBRARY

' CL,ENT

other MDBS. Thus, instead of having a one-level
structure of MDBSs, one can build a hierarchy of
MDBSs.

Prototype implementation. The main components
of the CORDS-MDBS are shown in Figure 2. This
structure does not represent our final goal for the
architecture of a complete MDBS but it provides a
reasonable subset of the functionality of a com-
plete system. The system was built on top of the
Advanced Interactive Executive* (AIX*) and Open
Software FoundationDistributed Computing Envi-
ronment (OSFDCE**).* The amount of prototype
code exceeds 200 000 lines.

Communication. Interprocess communication is
supported by the MDBS client and server libraries.
The client library supports a (draft) version of the
Microsoft ODBC interface. It translates ODBC Calls
into IBM Distributed Data Management (DDM)9
messages that it ships via Sun RPC (remote
procedure ca1l)'O or the Encina** Transactional
RPC" according to the DRDA protocol. The server
library accepts the RPC calls and translates them
back into ODBC calls.

Schema integration. The schema integration com-
ponent is an environment to support users during
the integration process. It consolidates a set of

IBM SYSTEMS JOURNAL, VOL 34, NO 1, 1995 AlTALURI ET AL. 43

tools to help with the various tasks involved in the
integration process, in particular schema transla-
tion, conflict resolution, and schema merging.
The current prototype, called the MDBS View
Builder, supports an X Windows System** inter-
face built on Motif** and provides facilities for
schema translation among several data models,
for browsing and querying the MDBS catalog, and
for creating and managing MDBS views and the
transformation functions used for conflict resolu-
tion. Schema integration is discussed in more de-
tail in the next section.

Motif inteqace. The user interface is a simple
X-Windows/Motif-based graphical user interface.
It is a normal MDBS application, used primarily for
testing. A user can edit and submit SQL queries
and updates posed against MDBS tables. The in-
terface module submits these queries, via the
MDBS client and server libraries, to the MDBS
server. The resulting rows are retrieved and pre-
sented in a display window.

Request coordinator. As its name indicates, the
request coordinator coordinates the actual pro-
cessing of user requests. A request corresponds
to an ODBC call. A single request may require the
coordinator to interact with several MDBS mod-
ules: parser, view integrator, global query opti-
mizer, execution engine, and transaction man-
ager. The current version of the coordinator can
operate in multiuser mode but is single-threaded.
In other words, it supports multiple simultaneous
connections, but it can only process one RPC call
at a time.

Catalog. The MDBS catalog serves a purpose sim-
ilar to the catalog of a relational DBMS. Catalog
data are of two types: (1) structural data-de-
scriptions of objects in the system and their re-
lationships, and (2) statistical data-mainly sta-
tistics from CDSs used during query optimization.
The objects described in the catalog include the
sites in the network, the CDSS on the sites, the
schemas defining the data from the CDSS, and the
users. For example, a cDS is described by prop-
erties such as the type of the data source, the data
model used, if any, and the functionality avail-
able; the schemas are presented in relational
form, and the information maintained in the cat-
alog includes the names of the tables in the
schema, the name and type of each attribute in the
tables, and the mappings from the local schema of
the CDS to its relational representation.

44 ATALURI ET AL.

To achieve scalability, it must be possible to run
several instances of the MDBS server distributed
in a network. Each of the servers must have ac-
cess to the same catalog information. This re-

To achieve scalability, it must be
possible to run several instances

of the MDBS server distributed
in a network.

quires a single logical MDBS catalog on top of dis-
tributed physical copies. The MDBS catalog must
also support a global naming scheme that can be
used to uniquely identify objects on distributed
heterogeneous CDSS. For these reasons, we de-
cided to implement the prototype MDBS catalog
using an x.500 directory.

The catalog module is implemented on top of the
EAN x.500 Directory Service,13 which was ex-
tended to provide full transaction support. The
catalog module interacts with the directory ser-
vice via a directory user agent (DUA) that is re-
sponsible for querying the directory. The direc-
tory service itself is transparently distributed
over physically separated entities called directory
system agents (DSA). AI1 catalog information is
currently stored in the x.500 directory. However,
it is not mandatory: the xsoo directory could con-
tain only top-level information and references to
other (local) catalogs.

Parser. The parser module is a straightforward
SQL parser built using YACC (Yet Another Com-
piler Compiler). We found that YACC is not an
ideal tool for building parsers to be used in long-
running, multithreaded servers. Parsers gener-
ated by YACC are not reentrant, and they cause
memory leaks when syntax errors are encoun-
tered. We have subsequently solved both these
problems.

View integration. View definitions are expressed
in terms of CDS export tables, which define the
data available from a CDS in a relational form or
in terms of other views. To process a user re-

IBM SYSTEMS JOURNAL, VOL 34, NO 1, 1995

quest, the request must be transformed into one
that is expressed solely in terms of export tables.

The view integration module takes a user query
and merges it with the view definitions that are
referenced in the query. The module recursively
integrates a view definition with a user query so
that it can handle a view defined in terms of views.
The parse trees representing the views referenced
in the user query are stored in the catalog. The
output of this module is a single parse tree rep-
resentation of the merged query parse tree and
view definition parse trees. Queries and view def-
initions may contain simple selects, joins on one
site or across multiple sites, unions across sites,
and subqueries.

Query decomposition and optimization. All MDBS
agents provide the global query optimizer with
the same relational interface, even though the un-
derlying CDS may not be relational. The only ex-
ception is that an MDBS agent may only support a
subset of SQL. The current prototype of the global
query optimizer has limited capabilities. It sup-
ports SQL SELECT-FROM-WHERE queries with
ORDER BY, GROUP BY, and HAVING Clauses. It also
allows a restricted set of subqueries: a subquery
can only refer to tables in a single CDS schema. It
uses heuristic rules to perform decomposition and
optimization. Global query optimization is fur-
ther discussed in a later section of this paper.

Execution engine. The execution engine takes a
global execution plan, submits the SQL requests
contained in the plan to the appropriate CDSS, and
then performs integration processing on the re-
sulting data streams. This module is basically the
same as any relational execution engine. The cur-
rent version of our execution engine can perform
joins and unions across multiple CDSS. They are
performed in a pipelined, data-driven fashion by
(internally) buffering intermediate results.

Transaction management subsystem. The trans-
action manager maintains unique transaction
identifiers, guarantees global “serializability,”
and manages distributed global commitment. The
CORDS-MDBS transaction management prototype
employs the Encina distributed transaction man-
agement toolkit,” the X/Open XA interface pro-
tocol, l4 OSF/DCE, and the IBM DRDA protocol. The
prototype supports both CDSs embedded in a DCE
environment and those external to DCE. We first
consider CDSs embedded in DCE and then the

IBM SYSTEMS JOURNAL, VOL 34, NO 1, 1995

changes necessary to support CDSs that are not
DCE-Compliant.

DCE-compliant component data sources. Figure 3
illustrates the CORDS-MDBS transaction manage-
ment subsystem, its components, and their inter-
faces. SQL requests are submitted from client ap-
plications to the MDBS server using Encina
transactional remote procedure calls (TRPC). The
MDBS server parses client requests and decom-
poses them to component requests that are sub-
mitted to CDSS. Transactions begin in the client
application. The transaction context for a given
request is propagated implicitly through TRPCS.

Client agents submit the component requests
through TRPCs to ODBC libraries of server agents
at the target CDSS. When a server agent receives
an ODBC request, it starts a thread that invokes
the corresponding native ODBC function from its
underlying CDS. With use of the native XA inter-
face, the transaction is then mapped from the
thread to a local CDS transaction, in whose con-
text the native ODBC call is executed.

The global transaction manager (GTM) is based on
the Encina distributed transaction toolkit and is
distributed through linked libraries in each MDBS
component: the client application, the MDBS
server and client agents, and the server agents.
The GTM is responsible for global transaction pro-
cessing. The transaction context is propagated
among distributed components through TRPCs.
Each CDS registers itself with the local component
of the GTM. The GTM starts and manages local
transactions at a CDS through XA calls at the cor-
responding GTM component and the server agent.
Global serializability is guaranteed through a mul-
tidatabase concurrency control scheduler that
manages the serializable execution and order of
commitment of global subtransactions at CDSs.

Transactions are terminated by commit or roll-
back calls from the client application. Rollback
calls may also arise from exceptions during con-
currency control scheduling at the MDBS server or
CDS, respectively. When an application requests
a commit from the GTM, the two-phase commit
protocol is initiated at each GTM component par-
ticipating in the transaction. The MDBS server is
selected as the two-phase commit (ZPC) coordi-
nator and submits prepare and commit or roll-
back requests to the GTM components embedded
in the server agents.

ATTALURI ET AL. 45

~ ~~~~~~

Figure 3 CORDS-MDBS transaction management subsystem
~~~ 

I ............................... 

L 
CLIENT  AGENTS 

TRPC  RPC I 
1.2 " 

................................................. 

' i  1 

L 

r I 

I 

2. XA  SUPPORT INTERFACE 
1. ODEC  INTERFACE 

3. MDES  SERVER - GTM  INTERFACE 
4. XA INTERFACE 
0 NON-DCE  ENVIRONMENT 

COMPONENT I DATA SOURCE I I I DATA SOURCE I I COMPONENT 

SERVER 
4GENTS 

Non-DCE component data sources. Use of the 
Encina toolkit in managing distributed  transac- 
tions  mandates  that all CDSs run in a DCE envi- 
ronment. When DCE is not available at  a CDS site, 
the  server agent is split into two parts:  the  server 
agent client running under DCE, and  the  server 
agent server running at  the CDS site. The  server 
agent client gives the MDBS server  the illusion that 
the CDS runs  under DCE by converting all TRPC 
calls and XA callbacks to (Sun) RPC calls to  the 
native ODBC and XA calls at  the  server agent 
server. In effect, the client end of the  server agent 

acts  as  a  protocol  converter  that  converts TRPC 
and XA protocol calls to simple RPC calls to  the 
server  end of the  server agent. 

MDBS agents. MDBS agents  serve two purposes: 
to provide  a  standardized  interface  to  a CDS and 
to simulate required functionality that is absent 
from, or not exposed  by,  the CDS. 

The CORDS-MDBS prototype  currently  incorpo- 
rates five component  database  systems.  Three of 
them are relational database systems: Oracle**, 

46 ATALURI ET AL. IBM  SYSTEMS  JOURNAL,  VOL 34, NO 1, 1995 



DB2/6000*, and EMPRESS**;  all three run on AIX. 
Two are older nonrelational systems: VAXDBMS* * 
on VMS** (network) and IMS* (Information Man- 
agement System*) on MVS (Multiple  Virtual Stor- 
age) (hierarchical). Agents communicate with an 
execution engine through the MDBS server library 
which is linked in. Each agent provides an ODBC 
interface, returns data in a standard format, and 
conforms to our standard error-handling and re- 
porting rules. 

Relational agents-Agents for relational systems 
implement a  subset of the ODBC call suite  on  top 
of the native call-level interface of the DBMS. Re- 
turn  codes  are mapped, as appropriate, to ODBC 
error messages. 

Nonrelational agents-The agents  for IMS and 
V N D B M S  are much more  complex  than  the  re- 
lational agents. Both agents implement an SQL 
front  end on top of the  record-at-a-time  interface 
provided by  the underlying systems.  The  current 
hplementation Supports SQL SELECT-FROM-WHERE 
queries, including subqueries, grouping, and ag- 
gregation. ORDER BY, set  operations,  and  host 
variables  are  not  yet  supported. 

Both  nonrelational  agents perform query optimi- 
zation,  attempting  to exploit the  retrieval  capa- 
bilities of the underlying system.  Many  queries 
can  be handled by a simple nested-loop algorithm. 
However,  some  queries  require  further  process- 
ing, for example,  unions  and  sorts.  Each  agent, 
therefore,  includes  a  postprocessing engine that 
handles  the  processing  that  cannot  be  done effi- 
ciently by nested loops. The  postprocessing  en- 
gine must  be  capable of performing all the normal 
relational operations.  Some additional informa- 
tion on  these  agents  can  be found in Reference 15. 

Schema  integration 

The schema integration component of an MDBS 
provides  the  schema definitions and mappings re- 
quired to facilitate the global applications of the 
MDBS. Its main goal is  to help identify, and  inte- 
grate,  semantically similar objects in the  contrib- 
uting schemas.  This  process is made difficult, 
however, by semantic  heterogeneity;  that is, se- 
mantically equivalent objects  are  represented 
with different names, different structures, differ- 
ent  types,  and different constraints. 

IBM  SYSTEMS JOURNAL, VOL 34, NO 1, 1995 

The problem of schema integration in an MDBS 
has  received  a  great deal of attention, and a num- 
ber of prototype  systems  that  attempt to perform 
integration have  been reported.’”l* The  only 
commercially available system, to  our knowl- 
edge, with  schema integration facilities is In- 
terViso**. l9 All of these  systems  only  address 
certain  aspects of the integration process.  Our 
work defines a  framework  for  the  entire integra- 
tion process  and aims to provide an integrated 
environment to support  schema integration. 

Common  data  model. The common data model 
used during integration is  an  extension of the  re- 
lational model. Two  types of tables  are in the 
model: export tables  and MDBS views. Export  ta- 
bles, as  stated  previously,  present the data avail- 
able from a CDS in a relational form. MDBS views 
span multiple heterogeneous  databases.  They are 
similar to relational views in that  they  are  not 
physically materialized but  rather  are  stored as 
mappings to  be invoked whenever  an MDBS view 
is  accessed. 

MDBS views form the  key  concept in our  approach 
to integration. They  provide  a mechanism to de- 
fine application schemas and to  specify  the map- 
pings from export  schemas to  the application 
schemas. The  query defining an MDBS view  can  be 
complex. We  currently  support unions, joins 
within a single CDS or  across CDSs, and  subque- 
ries. MDBS views  may  be defined on  top of export 
tables  or  other MDBS views. 

The  common  data model also includes trunsfor- 
mution functions, which  are user-defined func- 
tions  for resolving conflicts. They  are specified as 
part of the MDBSview definition and applied to  the 
attributes of the export  tables participating in the 
view. The  functions  are  executed  on  data coming 
from a CDS before the  data  are  presented  as  part 
of an MDBS view. Transformation  functions  may 
currently be defined  in C and then compiled  and 
placed in a function library. A description of a func- 
tion  is stored in the catalog to facilitate searching 
and retrieval of the functions. 

Schema  integration  environment. The  structure 
for  our  schema integration environment  is  shown 
in Figure 4. The  schema integration component, 
called the MDBS View Builder, consists of a  subset 
of the  tools  shown.  Conceptually,  the integration 
environment  consists of three  layers:  the infor- 

AlTALURI ET F L .  47 



Figure 4 Schema  integration  environment 

INTEGRATION  TASKS 

COMMON  SERVICES 1 

mation repository, the common services  layer, 
and  the integration task  layer. 

The information repository, as discussed  earlier, 
holds the MDBS catalog  that  contains  the  schemas 
and  the mappings between the schemas defined 
during integration. It links the  various  tools  to- 
gether by acting as a  common information store. 

The common  services  layer  contains  functions 
used by all, or at least  several, of the tools. It  also 
provides  the  interface  between the integration 
tools  and  the information repository. The  current 
functions  provided by  the common services  layer 
include: 

Edit-allows users  to modify the definitions of 
schema  objects  such  as tables, attributes,  and 
mappings during the integration process and to 

define transformation  functions for conflict res- 
olution 
Browse-allows users  to inspect  the  contents of 
the catalog by following relationships  between 
the  objects.  The  current implementation pro- 
vides  a graphical interface  that allows users  to 
follow links between catalog entries,  to  focus on 
the  details of particular  entries,  and  to specify 
filters that  restrict  the browsing to particular 
parts of the catalog. 
Catalog inte$ace-the API for the catalog; also 
used by  the  edit  and  browse  functions 
Graphical display-used by tools to display 
schemas 

The integration task  layer  consists of a  set of tools 
that  correspond to  the  tasks comprising the 
schema integration process.  These  tasks include 
the following: 

IBM SYSTEMS JOURNAL,  VOL 34, NO 1, 1995 48 AT~ALURI ET AL. 



Translate  a local schema  (or  portion of a local 
schema)  into  its  corresponding  representation 
in the  common  data model. The  current MDBS 
View Builder provides  a  number of translators 
based  on  structural  transformationz0  that  trans- 
late  between relational, entity-relationship, hi- 
erarchical,  and  network  schemas.  For  any pair 
of data models it is  important to identify those 
schema  transformations  that  are  guaranteed to 
preserve  the  semantics of the original schema 
so that information is not  lost as a  result of the 
translation. 
Standardize  the  translated  schemas  into  a  nor- 
malized form to remove syntactic conflicts such 
as name conflicts and  schema isomorphism con- 
flicts. For example, in two schemas,  the  names 
“employee” and “worker” could refer to equiv- 
alent objects and would be resolved in an MDBS 
view definition into a single name. Also, a seman- 
tic object may be represented syntactically in sev- 
eral ways; for example, an address may be rep- 
resented by  a single character string attribute 
“address,” or by multiple attributes such as 
“street,” “city,” and “province.” This would 
standardize to  a single representation by  the ap- 
plication of a transformation function such as  one 
to concatenate the values of “street,” “city,” and 
“province” into a single string. 
Analyze  the  contributing  schemas and specify 
the  correspondences  between  objects in the 
schemas. A schema  correspondence  describes 
a  set relationship, such as equality, inclusion, or 
exclusion, between  the  extensions of related 
objects in the  schemas. For example, an  “em- 
ployee”  table in a  department  database  may 
replicate  part of the  data in an “employee”  table 
in an  overall  company  database.  This would be 
represented  by an inclusion correspondence  be- 
tween  the  two tables. 
Resolve conflicts detected during the analysis. 
Objects  that  were  determined  to  be  related  may 
differ with  respect to properties  such as domain, 
scale,  and precision. Transformation  functions 
are defined to convert  data in the  extensions of 
the  objects  to a common format. 
Merge the  processed  schemas  into  an integrated 
view  by defining an MDBS view that  contains all 
of the  appropriate  transformation  functions  de- 
fined  in the  previous  steps. 

The schema integration environment is intended 
to  support  users during the integration process in 
the  same  way in which CASE (computer-aided 
software engineering) tools  support  developers 

IBM SYSTEMS JOURNAL, VOL 34, NO 1 ,  1995 

during the  software  creation  process. Users  start 
with the  set of local schemas and then perform the 
various integration tasks.  At  each  stage,  the  user 
is supported by specialized tools for the  particular 
task, and by facilities that  search  the information 
repository for relevant information and  store  the 
results of the  stage in the  repository for use in 
later  tasks. Details of the  prototype  system  can be 
found in Reference 21. 

Global query optimization 

As mentioned previously, multidatabase  query 
optimization differs from traditional distributed 
query optimization in two  respects: handling data 
sources with different query-processing capabil- 
ities and  lack of query optimization information at 
the global level. In  this  section, we focus  on  the 
second issue, that is, lack of information required 
to accurately  estimate  the  cost and resulting size 
of a  component  query to  be executed  by  a CDS. 
We ignore file systems and consider  only CDSs 
that  are  database  systems. 

Little  research  has been reported on query  opti- 
mization in multidatabase  systems. Lu et a1.22,z3 
discuss  some differences in global query optimi- 
zation  between  an MDBS and  a  traditional distrib- 
uted  database  system (DDBS). They  also  describe 
a  framework  for  a global query optimizer. Du 
et  aLZ4  proposed  a calibration method  for  deriv- 
ing local cost functions. However,  the  proposed 
method  has  several shortcomings. 

Estimating  component  query  cost  and  output size. 
An execution plan produced by  the CORDS-MDBS 
query  optimizer  consists of two parts:  component 
queries  and an integration plan. A  component 
query is an SQL query  to  be  executed  by  an  agent- 
CDS. The integration plan defines how to  process 
the  data  produced  by  component  queries  to  pro- 
duce  the final result. (A query  may not require 
any integration processing.) To perform its  task, 
the global query optimizer needs two crucial 
pieces of information: the  estimated  cost of exe- 
cuting  a  component query at a given CDS and the 
estimated  size of the  result.  However,  the  statis- 
tical data required to compute  these  estimates 
may not be available at  the global level. 

We divide component DBMSs into  four  classes  ac- 
cording to how the  cost  and  output  size of a  com- 
ponent  query  can  be  estimated: 

AlTALURl ET AL. 49 



1. Systems  that  provide  estimates of cost  and 
output  size.  In  this  case,  the global query  op- . 
timizer does  not need to compute  the  esti- 
mates. An example of a DBMS of this  type  is 

2. Systems  that  can explain their execution plan 
(but the plan does  not include cost  or size  es- 
timates). Many relational systems now include 
an explain facility that  can  be  used  to  extract 
a  description of the  execution plan for a  query. 
The level of detail varies from system  to  sys- 
tem,  but, typically, the  description  does  not 
include cost  or size  estimates.  The global 
query optimizer needs  to estimate  the  cost and 
output  size  for  each individual component 
query in the plan. Examples of this  type of 
DBMS are Oracle and DB2/6000. 

3. Systems with a catalog (but without  an explain 
facility). We assume  that  the catalog contains 
structural information and,  at  least,  some  sta- 
tistical information about  the  database.  Struc- 
tural information defines the  objects in the da- 
tabase: tables, columns, indexes, and so on. 
Statistical information refers to information 
such as  the  number of rows in a  table  and  the 
number of distinct values for a column. All 
relational database  systems provide at least 
this level of information. Many older,  nonre- 
lational systems  do  have  a  catalog (even 
though it may not be called a  catalog)  that  con- 
tains  structural information. The global query 
optimizer needs to predict  both  the local exe- 
cution plans and  the local cost  functions. 

4. Systems  without  a catalog. File systems  often 
do  not  have  an explicit catalog. 

RDBNMS. 

For  types 2, 3, and 4, the global query  optimizer 
needs  to approximate local cost functions. We are 
investigating three new techniques  for estimating 
the  parameters of local cost functions: query  sam- 
pling, probing queries, and piggybacking. 

Quely sampling. All component  queries  that  can 
be performed on  an agent-CDS are divided into 
classes  such  that  the  execution  cost of the  queries 
in each  class.  can  be  estimated  by  the  same for- 
mula. For example, queries  that  expect to employ 
the  same  access  method  (such as index-based 
join) can be put  into one class.  Most likely, they 
will have similar performance  behavior, and 
therefore, their cost  can  be  estimated by  the  same 
formula. Such  a classification can  be  based  on  the 
limited information available at  the global level, 
such  as  the  characteristics of queries  (unary or 

50 AITALURI ET AL. 

join queries,  etc.),  characteristics of operand  ta- 
bles (indexed columns, etc.), and characteristics 
of the  component DBMS included in the  relevant 
agent-cDs (types of supported  access  methods, 
etc). Different agent-ass may  provide different 
levels of details of local information. The  more 
information that is available, the  better  a classi- 
fication can  be  obtained. 

After classification, a sample of queries is drawn 
from each class. The  sample  queries  are  per- 
formed on  the agent-CDS, and their costs  are  ob- 
served. Multiple regression is used to establish  a 
cost  estimation formula for each query class. Dur- 
ing global query  optimization,  the global query 
optimizer  uses  the  derived  cost  formulas  to  esti- 
mate  the  costs of component  queries.  The  cost 
estimation formulas can be dynamically revised 
to reflect the changing environment in an MDBS. 
More  details on this  method  can  be found in Ref- 
erence 25. 

Probing queries. Carefully designed probing que- 
ries  are  issued  on an agent-CDS to directly, or 
indirectly, retrieve  some required local informa- 
tion. For example, assume  that Rj is known to  be 
a  base  table in the  component databaseDBj at site 
j ,  but  its  cardinality  is  not available in the MDBS 
catalog. The global query optimizer can  then  (i) 
perform a  query  on  the catalog of DBj to get the 
size information if access is permitted, or (ii) per- 
form a probing query  on R j ,  which returns  some 
result from which the cardinality  can  be  esti- 
mated. The challenge is to find “cheap” probing 
queries  that allow estimation  with high accuracy. 
More  details  about  this method can  be found in 
Reference 26. 

Piggybacking. In addition to exploiting informa- 
tion about  intermediate  results during query  pro- 
cessing, we can also perform additional “side  re- 
trievals”  on  the underlying database to obtain 
necessary information. We may, for example, in- 
clude  an  extra column in the list of output col- 
umns in a  query  and  then  obtain  statistical infor- 
mation about  the  extra column. Although “side 
retrievals”  are  not  related to  query processing 
and may slow it down slightly, the information 
collected can  be used to  improve  the  processing 
of other  queries  through  better  cost estimation. In 
this  way,  statistical information for  the  data  re- 
ferred to  by popular queries  can  be maintained in 
the MDBS catalog. Additional information about 
this  method  can  be found in Reference 27. 

IBM SYSTEMS JOURNAL, VOL 34, NO 1, 1995 



Figure 5 Global  query  optimization  subsystem 

L 

PARSED 
QUERY 

COMPONENT 
PROBING 
QUERY  COMPONENT PROBING/ 

SAMPLING  ACCESS 
QUERY PLAN ID 

8 AGENT-CDS 

Global query optimization  subsystem. Figure 5 
shows  the global query optimizer (GQO) and its 
connections with other CORDS-MDBS compo- 
nents. The optimizer is not yet fully implemented. 

At compile time, when  the CORDS-MDBS receives 
an SQL query from a global user, the parser in the 
system  checks  the  syntax and semantics of the 
query using the schema information stored in the 
MDBS catalog. The  semantic  query optimization 
module then  rewrites  the  parsed  query using se- 
mantic information stored in the MDBS catalog. 
The objective is to transform  the original query  to 
a semantically equivalent query  that  can  be pro- 
cessed  more efficiently. For  the transformed 
query,  the processing strategy analyzer generates 
and analyzes  alternative  strategies for processing 
the  query  to  select  a preferred one. The  process- 
ing strategy analyzer can perform probing queries 
on  the relevant agent-CDSs to  obtain the necessary 

local information. The processing strategy in- 
cludes  the major decisions about how to transfer 
data among agent-CDSs, where  to  execute join op- 
erations, and so on. According to the processing 
strategy,  the  execution plan generator  ships  the 
component queries contained in the plan to  the 
relevant agent-CDSs for local query optimization 
(done by both MDBS agents and the underlying 
component DBMSS in the agent-CDSs). A detailed 
(global) execution plan for the  query is then  cre- 
ated by the  execution plan generator. All execu- 
tion plans for global queries are managed by  the 
global execution plan manager for later use. An 
execution plan may be incomplete if some  re- 
quired information is not available at compile 
time. 

At run time, when  the CORDS-MDBS receives an 
execution  request for a  query,  the  execution  co- 
ordinator  interacts  with  the run-time optimizer. 

IBM  SYSTEMS  JOURNAL,  VOL 34, NO 1. 1995 



The run-time optimizer retrieves  the  execution 
plan from the global execution plan manager. It 
first checks  the  validity of the plan. (Some invalid 
execution  plans may, however,  only  be  detected 
during execution.) If the  execution plan is invalid, 

Multidatabase applications access 
the MDBS through global 

transactions. 

the global query  optimizer  produces  a  new valid 
execution plan. If necessary,  the  run-time  opti- 
mizer performs  parametric  query optimization to 
improve  or  complete the execution plan. It  then 
passes  the possibly incomplete global execution 
plan to  the  execution  coordinator.  The  execution 
coordinator  coordinates  and  monitors  the  data 
transmissions among execution engines based on 
the global execution plan. The  execution  coordi- 
nator  also  returns  some run-time information to 
the run-time optimizer to  use  when performing 
adaptive  query optimization to improve  or com- 
plete the  execution plan. Improved  statistical in- 
formation  is  stored in the MDBS catalog and  can  be 
used  to  improve  cost  parameters. An improved or 
completed  execution plan is then  passed to  the 
execution  coordinator  for  further  execution. 

A utility, called Statistics  Collector, is periodi- 
cally invoked on component  databases  to collect 
and update  the  statistics  and  cost  parameters 
stored in the MDBS catalog by performing probing 
and sampling queries. For additional discussion 
of global query optimization in the CORDS-MDBS, 
see References 25 through 29. 

Managing  multidatabase  transactions 

In  a typical DBMS, access  to local data  is achieved 
through transactions. Transactions result from 
the execution of a  user  program segment, written 
in a high-level language, that  interacts with the 
data manipulation and  control facilities of the un- 
derlying database  system. A transaction manager 
ensures  that  the  execution of all concurrent  trans- 

52 ATTALURI ET AL. 

actions  is atomic, consistent,  isolated, and dura- 
ble. These four properties  are usually called the 
ACID properties of transactions. 

Multidatabase  applications  access  the MDBS 
through global transactions. Aglobal transaction 
consists of subtransactions  that  execute as local 
transactions at the  appropriate CDSS. As men- 
tioned earlier, GTM guarantees the ACID proper- 
ties in all global transactions  accessing  the MDBS. 
The GTM must do this in the  presence of local 
transactions,  that  are not under  its  control, and 
with the possibility of failures at CDSs. 

We  assume  that  each CDS provides  a local trans- 
action manager (LTM), whose  function is to guar- 
antee  the ACID properties of the transactions run- 
ning at its  site.  Unfortunately,  the  heterogeneous 
nature of the  various LTMS and the  desire  to  pre- 
serve  the local autonomy of the  data  sources 
participating in an MDBS make  transaction man- 
agement in an MDBS environment difficult. Multi- 
database composition, global serializability, global 
atomicity, deadlock handling, and  accessing non- 
structured  data all pose  important challenges for 
transaction management in an MDBS. 

Our  work  on transaction management focuses on 
implementing techniques  proposed in the  litera- 
ture  for dealing with transaction management is- 
sues. In particular, we investigate the empirical 
performance of these algorithms to determine 
their applicability in the  real  world.  Furthermore, 
we attempt  to  extend  the algorithms to deal with 
the  more  complex  issues of multidatabase com- 
position and integrating transaction management 
schemes for large objects. 

Related work. The  work on multidatabase  con- 
currency  control  focuses on guaranteeing global 
serializability through  rigorous scheduling and 
forced conflicts.3o  Garcia-Molina et al. 31 completed 
a comprehensive survey of alternative schemes for 
guaranteeing global serializability in multidatabase 
systems. The  survey also covers deadlock handling 
and concurrency control schemes in which either 
serializability or autonomy constraints are relaxed. 

Work on ~ P C  emulation through the  two-phase 
commit agent method (2PCA) was first published by 
Wolski and Veijalainen. 32733 Alternative schemes 
for guaranteeing global atomic commitment with 
one-phase commit resource managers are de- 
scribed by Gray34 and Breitbart et al.35 

IBM SYSTEMS JOURNAL, VOL 34, NO 1, 1995 



Work on superdatabases, published by P u , ~ ~  is 
the only known work on multidatabase  composi- 
tion. A superdatabase is analogous to a multida- 
tabase  and  can  have  other  superdatabases  as 
CDSS. In this  work,  superdatabase  composition is 
restricted to a  strict static  tree. Our  work on mul- 
tidatabase composition focuses on dynamic com- 
position. 

Research on an  interoperable  environment  con- 
sisting of structured  and  nonstructured  data 
sources  is in the initial stages.  Several  papers 
have recognized its  importance and highlighted 
some  issues. A survey of issues in MDBS trans- 
action management and nonstructured  data 
sources (large data  objects  and long transactions) 
can  be found in Reference 37. The multigranular- 
ity locking scheme3' is a well-known concurrency 
control  scheme for hierarchically structured large 
objects.  Variations or extensions to this  scheme 
have  been  described in References 39 and 40. 

Multidatabase  composition. Current work on MDBSs 
assumes  a two-level architecture comprising a 
monolithic multidatabase  server  and  a collection 
of component  database  systems. This centralized 
view  is  restrictive and does not scale to include 
multiple cooperating  multidatabase  systems. In 
the CORDS-MDBS transaction  subsystem, we elim- 
inate  these  restrictions  and  focus on a design of 
multiple cooperating  peer global transaction man- 
agers  distributed on a communication network. 
With this design, a global transaction  can  span 
multiple servers,  causing  some  multidatabase 
servers  to  act  as  both multidatabase  systems and 
component  database  systems.  Therefore, multi- 
database  systems  can  be  composed  arbitrarily 
and dynamically to resolve  any global transaction 
that  spans  at  least  two  multidatabase  environ- 
ments. 

We  have  shown  that  guaranteeing  multidatabase 
~erializability~~ at multidatabase  servers is suffi- 
cient for guaranteeing global multidatabase  seri- 
alizability for a dynamic hierarchically composed 
set of multidatabase  servers. 42 This follows from 
the  property  that  multidatabase serializability 
guarantees  both atomicity and  a  consistent  order- 
ing of global transactions as  they  execute  from 
leaf component  database  sites to  the root multi- 
database  server.  However, no sufficiency condi- 
tions have  been  developed for global serializabil- 
ity in arbitrary  execution  lattices. 

IBM SYSTEMS JOURNAL, VOL 34, NO 1. 1995 

Nested  transaction^^^^^ provide useful concep- 
tual  tools  for propagating work among multida- 
tabase  servers and encapsulating  failure  recov- 
ery.  Nested  transactions also furnish two useful 
properties:  intratransaction parallelism and fail- 
ure isolation. Unlike flat transactions,  nested 
transaction  blocks do  not have  to  execute  seri- 
ally. A nested  transaction  can be decomposed 
into  smaller  independent granules, or  subtrans- 
actions,  that  run in parallel. Subtransaction 
boundaries  act  as  afirewull to failures, and unlike 
flat distributed  transactions,  a  subtransaction fail- 
ure  does  not  necessarily imply the failure of the 
whole global transaction.  These  properties permit 
multidatabase  servers  to  delegate  concurrent 
transactional  work to  other multidatabase  servers 
and limit the propagation of transaction  failures 
across  servers.  Furthermore,  nested  transactions 
provide  static  structural  power  for composing 
strict  transaction  hierarchies while still maintain- 
ing global serializability. 

More detailed discussions on dynamic multidata- 
base composition, concurrency  control, and re- 
covery in the CORDS-MDBs can be found in Ref- 
erences 45 and 46. 

Global serializability. Generally, conflict serializ- 
ability is  adopted as  the  correctness  criterion  for 
the  execution of concurrent  transactions  at  a  data 
source. We say that  a  multidatabase  schedule is 
locally serializable if all the  schedules  at  compo- 
nent  data  sources in the MDBS are conflict serial- 
izable.6 A multidatabase  schedule is globally 
seriulizuble if it is locally serializable, and the rel- 
ative serialization order of global subtransactions 
is  the  same at  each data  source. 

Ensuring  that  schedules  are globally serializable 
is achieved by ensuring  that global subtransac- 
tions  execute in the same relative order  at  each 
data  source.  It is easily done  when global sub- 
transactions conflict directly  at  the  component 
data  sources.  Here, the local concurrency  control 
mechanism of the LTM and  an  atomic commit pro- 
tocol guarantee  synchronous global subtransac- 
tion commit orders  at  the  data  sources.  However, 
because of local autonomy  constraints, local 
transactions  are  not  under  the  control of the GTM 
and can unwittingly cause  indirect conflicts 
among global transactions, resulting in nonseri- 
alizable schedules. Even the serial  execution of 
global transactions  does not ensure global serial- 
izability. In general, global serializability cannot 

AlTALURI ET AL. 53 



be  achieved in a multidatabase  environment  with- 
out placing restrictions  on  the local concurrency 
control  mechanisms. 

Global serializability schemes. We now briefly de- 
scribe  some  concurrency  control  schemes  that 
can  be used to  ensure global serializability given 
an  atomic commitment protocol,  such  as the two- 
phase commit (~Pc)  protocol.6  Note  that the 
assumption of an  atomic commitment protocol 
compromises  execution  autonomy  at  component 
data  sources. If all CDSs guarantee locally serial- 
izable execution histories, the following concur- 
rency  control  mechanisms  guarantee globally se- 
rializable multidatabase  transaction  executions. 

Forced  conflicts. One  method  for  guaranteeing 
global serializability works by forcing direct  con- 
flicts among global transactions at component 
data  source^.^" This  method  uses a special  data 
item, called a ticket, that is maintained at  each 
local site. A single ticket is required for  each CDS, 
but  tickets  at different component  data  sources 
are distinct. Only global transactions  are allowed 
to  access a ticket.  Moreover,  each global trans- 
action  executing  at a cDS is  required to read  the 
ticket  value,  increment it, and  write  the  incre- 
mented  value  back  to  the  database.  Therefore, 
ticket  values maintain the serialization order of 
global transactions  at CDSs. Before a transaction 
commits,  at a CDS, it sends  its  ticket  value  to  the 
GTM. The global concurrency  control  scheduler of 
the GTM uses  ticket  values  to maintain a global 
serialization graph of  all uncommitted global 
transactions.  The  scheduler  guarantees serializ- 
ability by  either avoiding cycles  for  conservative 
concurrency  control  schemes,  or breaking cycles 
through transaction  abortion in more aggressive 
schemes. 

Strongly  recoverable data sources. Given some 
knowledge of the  properties of the  various local 
schedules  that are generated by  the local concur- 
rency  control  schedulers, effective global con- 
currency  control  schemes  can  be devised. Of par- 
ticular interest is the notion of a strongly 
recoverable schedule. 47,48 Strongly  recoverable 
schedulers produce serializable schedules in which 
the  order of transaction execution and serialization 
orders  are the same. If all CDSs generate strongly 
recoverable schedules, the serial execution of 
global transactions ensures global  serializability. 
Various concurrency control mechanisms dis- 
cussed in the literature-such as ZPL, time-stamp 

54 AlTALURl ET AL. 

ordering,49 and optimistic  method^,^" for exam- 
ple-can  be easily modified to generate strongly re- 
coverable schedules.48,51 

Rigorous  component  data  sources. Some  concur- 
rency  control  mechanisms  generate local sched- 
ules that  are  even  more  restrictive  than  strongly 

The global  atomicity 
property is ensured by using 
an  atomic  commit protocol. 

recoverable  schedules, and can, in turn, lead to 
even  more efficient global scheduling schemes. 
One such  concurrency  control  scheme  is  the 
strong-strict ~ P L  protocol  that  generates rigorous 
schedules. Rigorous schedulers  are  strongly  re- 
coverable  but,  moreover,  prevent read-write, 
write-read, and write-write conflicts among un- 
committed  transactions. In Reference 47, it is 
shown  that, if local DBMS schedulers are rigorous 
and the GTM guarantees  the  atomic commitment 
of  all global transactions,  the global schedule is 
serializable. Other  protocols  can  be easily mod- 
ified to generate  rigorous  schedules. For exam- 
ple, basic  time-stamp  ordering  can  be made rig- 
orous  by blocking transactions  that  either try  to 
read or write  data  that  were  previously  written by 
an uncommitted transaction or  try  to write  data 
that  were  read  by  an uncommitted transaction. 47 

Global  atomicity. Global atomicity specifies that 
either all subtransactions of a global transaction 
run  successfully at their local CDSs, or  they all 
abort.  Recovery specifies that  the effects of a 
global transaction  are  undone  completely  after it 
is  aborted or remain entirely  durable  after  system 
failures. In general, the global atomicity  property 
is ensured by using an atomic  commit protocol. 
Once CDSs are locally recoverable, global atomic 
commitment also guarantees global recovery. An 
atomic commitment protocol  requires  that  each 
participating CDS provides a prepared state for 
each  subtransaction.  The  subtransaction should 
remain in the  prepared  state until the  coordinator 

IBM SYSTEMS JOURNAL, VOL 34, NO 1, 1995 



decides  whether  to commit or abort  the  transac- 
tion. However, to preserve the execution  auton- 
omy of each of the participating CDSS, it must be 
assumed that  they do not export  a  prepared  state 
for global subtransactions. In such an environ- 
ment,  a CDS can unilaterally abort  a  subtransac- 
tion any time before it commits. This condition 
leads not only to global transactions  that  are  not 
atomic, but  also to incorrect global schedules. 

In the CORDS-MDBS, the  data  sources  that  do not 
support  the ~ P C  protocol emulate it through the 
two-phase commit agent (2PCA) algorithm. 32,33,52 

The 2 P c ~  intercepts all transactions from the GTM 
and passes  them  to  the local transaction manager 
at the  component site. All commands but  the pre- 
pare message are  forwarded. When it receives  a 
prepare message, the 2PcA determines  whether 
the corresponding transaction is ready to commit 
or abort, and responds to  the  coordinator  accord- 
ingly. If an agent prepares  to commit, but  the 
corresponding local subtransaction unilaterally 
aborts  at  the  component  site,  the 2PCA recovers 
by resubmitting the local transaction. 

Deadlock detection and handling. Global dead- 
locks occur  whenever  there is a  cyclic wait for 
locks among transactions  that run at CDSS that  use 
a locking mechanism for local concurrency  con- 
trol. Deadlock avoidance and detection  schemes 
depend on the avoidance or detection of cycles in 
a  lock wait-for graph (WFG). In  a lock WFG, each 
node corresponds  to  a  transaction, and there is a 
directed edge between two nodes if one  corre- 
sponding transaction is waiting for  a lock from the 
other. A WFG is  a  centralized  data  structure, and 
its maintenance incurs  delays and communica- 
tions  overheads in a decentralized environment. 
Although this problem is not unique to MDBSS, it 
is  further  exacerbated by autonomy  constraints 
that  prevent component databases from export- 
ing deadlock control information to  the GTM. 

We attempted to resolve the  deadlock  detection 
problem heuristically by  setting time-out inter- 
vals on global transactions. If a global transaction 
holds a  lock longer than  a specified time-out pe- 
riod, it is aborted. Heuristic detection can  be  dan- 
gerous if time-out intervals either increase  aborts 
or hold resources  too long. 

Nonstructured data sources. Computer-aided de- 
sign (very large-scale integration, mechanical and 
software engineering), geographical data, and 

IBM SYSTEMS JOURNAL, VOL 34, NO 1, 1995 

multimedia (voice and image) are emerging as im- 
portant application areas.  These  areas differ from 
the  structured  ones in their data modeling tools, 
nature of application programs, and types of stor- 
age structures and access methods. Moreover, 
they  require an interoperable environment of 
structured  data  sources (for example, relational 
systems) and nonstructured  data  sources (for ex- 
ample, object-oriented database  systems  and file 
systems).  Transactions would be an important 
part of such an environment. The CORDS-MDBS is 
intended to provide transactions  across  struc- 
tured and nonstructured  data  sources.  This  task 
involves several challenges; the important ones 
are mentioned below. 

First,  nonstructured  data  sources, similar to  ones 
that  are  structured, employ transactions  to  sup- 
port concurrent  access and withstand failures. 
However,  objects in nonstructured  data  sources 
are normally large and lack a uniform structure, 
and their application programs model long and 
complex design processes  that involve human in- 
teraction.  Large and unstructured  data  objects 
can  cause problems in an MDBS environment. Be- 
cause of the  absence of structure, an entire object 
has to be locked by a  transaction  to prevent con- 
flicting transactions from sharing. If entire  data 
objects  are locked, the number of lock and other 
recovery-related operations is minimized, but  the 
concurrency of this and other  data  sources in the 
MDBS is degraded. Alternatively, a  data object 
can  be granularized into small subobjects so that 
unused parts of a  data object are not held up. 
Efficient lock management is required to offset 
the  overhead of such fine granularity locking. 

Second, global transactions  cannot  be allowed to 
lock data  objects indefinitely. Because  a distrib- 
uted global transaction  can  take  a relatively long 
time, the resulting adverse effect on local trans- 
actions may not be acceptable  to  the administra- 
tor of the CDS. The GTM must ensure  that global 
subtransactions  share  data  objects with local 
transactions in a fair manner and with a lower 
priority. 

Finally, because of the autonomy and nonmodi- 
fiability of a CDS, any granularization of objects 
has to be implemented at the MDBS level. The 
implementation must guarantee the atomicity and 
serializability of transactions sharing the  sub- 
objects it created. It must do so even in the  pres- 

ATTALURI ET AL. 55 



Figure 6 LCC for nonstructured  data  sources 

MULTIDATABASE SYSTEM 

GSTs 

LOCAL 
USER 

GSTs 

ence of transaction  abortions and site failures at 
the  data  source. 

Logical  concurrency  control  in  nonstructured  data 
sources. We are working on  a logical  concurrency 
control (LCC) scheme to manage large, unstruc- 
tured  data  objects of nonstructured CDSS effi- 
ciently. Whereas  the LTM uses  a  data  object  as  the 
unit of concurrency  control, the LCC scheme  en- 
ables  a  data  object  to be granularized and  shared 
among multiple conflicting transactions  concur- 
rently. As a  result, LCC could offer a much higher 
concurrency  than  the CDS alone. LCC would also 
facilitate specialized granularization schemes for 
various  types of objects  (that is, separate  schemes 
could be employed for two- or three-dimensional 
objects,  for  example). 

56 ATALURI ET AL. 

Figure 6 illustrates  the  use of LCC in MDBS trans- 
action management. The LTM offers the physical 
transaction  service to its  users, namely local 
users and  the logical  concurrency  control  man- 
ager (LCCM). The physical transaction  service 
treats a  data  object  as  a unit of concurrency  con- 
trol and forbids  concurrent  access  by multiple 
conflicting transactions. In locking terminology, a 
data  object is the smallest lockable unit. The 
LCCM is  responsible for implementing an LCC 
scheme  and  exports  the logical transaction ser- 
vice to  the MDBS agent. The LCCM invokes mul- 
tiple physical transactions,  each  dedicated to a 
data  object.  Each of these physical transactions 
fetches  its  data  object from the LTM, granularizes 
it into smaller subobjects,  and offers those  sub- 
objects  to logical transactions.  Thus, in locking 

IBM SYSTEMS JOURNAL, VOL 34, NO 1, 1995 



terminology, the LCCM supports  a  subobject of a 
data  object  as  a lockable unit. 

The presence of LCCM improves the concurrency 
of logical transactions  from the MDBS agent; oth- 
erwise,  its  presence is transparent to  the MDBS 
agent. The MDBS agent can  assume  that  its logical 
transactions  are being executed on the  data 
source directly. The LCCM ensures  the  atomicity 
and serializability of logical transactions to  sup- 
port  this notion. 

Following are  the building blocks of an LCCM: 

LTM interface:  The LCCM uses this interface to 
create  and manage physical transactions  for 
carrying  out  tasks  described  above. 
MDBS agent interface: The MDBS agent uses this 
interface to have  its logical transactions  pro- 
cessed by  the LCCM. 
Logical transaction-physical transaction  map- 
ping: This  component  maintains  the  association 
between  the logical transactions of the MDBS 
agent and  the  physical  transactions of the 
LCCM. It  requires  stable  storage to record  these 
associations so as  to withstand  site failures. 
Concurrency  control  and  recovery:  This com- 
ponent  schedules  the  operations of the physical 
transactions of LCCM. It  is  responsible for en- 
suring the serializability and  atomicity of trans- 
actions. 
Logical transaction analysis: The LCCM ana- 
lyzes logical transactions to recognize an “un- 
used”  subobject of a  data  object locked by a 
logical transaction.  Unused  subobjects  are al- 
located to other  transactions to improve  con- 
currency. 
Data  object granularization: The main contri- 
bution of an LCCM is object granularization. 
This  component is application-domain-depen- 
dent.  It  granularizes  data  objects so that  the 
object  structure  suits  the  applications  on  hand. 

The  concurrency  control  and  recovery  compo- 
nent  is  the  most involved because,  for  each  data 
object,  concurrent  operations of logical transac- 
tions  have to be  supported  through  a single LTM 
physical  transaction. 

We proposed an LCC scheme in Reference 53. We 
described  the  concurrency  control  and  recovery 
mechanisms and important  implementations of an 
LCC assuming a locking based  data  source  and 
area-wise granularization of multidimensional 

IEM SYSTEMS JOURNAL,  VOL 34, NO 1, 1995 

data  objects. We are implementing LCC schemes 
on  two  types of data  (text and multidimensional 
data) using Obje~tStore**,’~ an object-oriented 
database  system. 

Objectstore  does  not employ explicit object  or 
subobject locking but  uses  two levels of isolation: 
page locking and  object  check-in  and  check-out. 
A page lock is implicitly acquired by a  transaction 
when it accesses  a  part of an  object  located on 
that page. The  lock is released  when  the  trans- 
action  terminates (commits or aborts). Page locks 
guarantee the isolation of transactions. An object 
is checked  out by an application into  its  area for 
“long duration’’ access  by  its  transactions.  It  is 
not accessible to  other  applications until it is 
checked  back in. Of course, if the  object  is al- 
lowed to have multiple versions, new versions 
can be created  and  checked  out by these appli- 
cations. If objects are declared  as single-ver- 
sioned,  object  check-out  and page locking are lim- 
ited forms of object  and  subobject locking. In our 
implementation of LCC schemes,  check-out and 
check-in is used for object locking. 

Clearly, concurrency  control (locking or  any 
other  scheme)  contributes significant overhead in 
implementing an LCC scheme.  Subobject locking 
is more involved than locking a  table or a page 
in a relational system  for two reasons.  First, the 
lock space  is large and  consists of all possible 
subobjects  of  data  objects.  Second, determining 
whether  locks  on two subobjects conflict is non- 
trivial because of their nonuniform size. A solu- 
tion is to model subobjects as  one  or multidimen- 
sional ranges. Ranges can be dynamically in- 
dexed to lock  or  unlock  subobjects efficiently. An 
indexing algorithm for this  purpose  has  been  de- 
scribed in Reference 55. 

Multidatabase  transaction  management  subsystem. 
The transaction management subsystem consists of 
a global transaction manager (GTM), a  set of local 
transaction managers (LTM) at CDSS, and  multida- 
tabase transaction processing agents (MTA) that run 
as part of the MDBS agents at CDSS. The configura- 
tion of these components is illustrated in Figure 7. 
The GTM executes global transactions from both 
multidatabase servers, T,, and application pro- 
grams, Tk.  These transactions are decomposed into 
nested subtransactions and submitted to CDSS 
through the MTA. Notice that for nonstructured 
CDss, the nested subtransactions are submitted to 

ATTALURI ET AL. 57 



GLOBAL TRANSACTIONS 

I T  
1 v 

GTM 

COMMUNICATION 
TIONAL-(MDB SERVER 

I I I I 

ii_l MDBS AGENT 

1 
MTA 
MDBS AGENT P MDBS AGENT 

the LCCM at the CDS. The LCCM creates  a logical 
transaction and relays it to its corresponding LTM. 

Transactions  at CDss are committed by  the 2 p c  
protocol. If the CDS supports  the ~ P C  protocol,  the 
MTA simply relays  the global transaction  to  the 
LTM at  the CDS site. Otherwise, the MTA acts as a 
2PC agent. In  the GTM, the global concurrency 
control  scheduler and recovery manager coordi- 
nate commit orders  at  component  sites through 
the MTA. The  interaction  between  the GTM and 
MTA during global concurrency  control  depends 
on the global concurrency  control  scheme in use. 
For example, with implicit tickets, ~ P C  messages 
are enough; however, in the  optimistic ticketing 
scheme,  ticket conflict orders need to  be piggy- 
backed  on ~ P C  messages. 

Finally, a global transaction, Ti,  may  contain  ref- 
erences  to  data  items at CDSS under  the  control  of 
another  multidatabase  server.  These  references 

Conclusion 

Data integration systems  may  provide  many dif- 
ferent  levels of service.  The simplest systems 
may  provide nothing more than connectivity,  that 
is,  the  ability  for  an application to  access  data 
stored in multiple database  systems.  The  next log- 

58 ATTALURI ET AL. IBM SYSTEMS  JOURNAL,  VOL 34, NO 1, 1995 



ical step  is  to provide  a uniform interface, hiding 
some of the details among the underlying data 
sources.  At the next level of service are  systems 
that  support  distributed  queries;  that is, a single 
sQL query  may  reference  data in multiple data- 
bases.  Many DBMS vendors  have  added,  or  are 
currently adding, support  for  distributed  queries 
into  their  systems. It  represents  a significant step 
forward,  but additional services are needed.  A 
full-function MDBS should  also provide: 

A globally available catalog so that multiple 
MDBS servers  can  be  run  at  the  same time 
Schema integration tools to  ease  the  task of im- 
porting and integrating schemas 
Global transaction management to allow dis- 
tributed  transactions 
Global security  services 

Integration of database  systems would be  greatly 
simplified if the underlying CDSS provided a  few 
additional features.  Three highly desirable  fea- 
tures  are explained below. We offer these  as sug- 
gestions  to  standardization  bodies  and  industry 
consortia in the  database  area. 

The first feature is to define a  common  interface 
for  retrieving  the  estimated  cost  and  output  size 
of a  query.  This  feature would greatly simplify 
MDBS query optimization. It  has  been claimed 
that  this  interface  requires  agreement on a com- 
mon  cost unit. We believe that  such  agreement is 
unnecessary:  Each  system  can  provide  its cost 
estimates in whatever  units it prefers. The  only 
requirements are  that  the  estimates  provided  by  a 
system  be  consistent  and  have sufficient resolu- 
tion. The global query optimizer can  scale  the 
estimates  obtained  from different systems,  and 
the  appropriate  scale  factors  can  be  obtained by 
running calibrating queries. 

The  second  feature is to define a way in which an 
MDBS can inform a CDS that it has  more  stringent 
serialization  requirements. To guarantee global 
serializability, the  serialization  order of global 
subtransactions  at  each  site  must  be  consistent, 
and the global transaction manager must  be  able 
to somehow inform a local transaction manager of 
what  serialization orders  are acceptable. We see 
two possible  approaches:  one implicit and one 
explicit. In  the implicit approach,  a global trans- 
action manager would inform a local transaction 
manager that all of its global subtransactions  must 
have  a  serialization  order  consistent with the  or- 

IBM SYSTEMS JOURNAL. VOL 34, NO 1, 1995 

der in which it submits ~ P C  prepare  requests.  The 
global transaction manager would then  process all 
~ P C  prepare  requests serially. A  drawback of this 
implicit approach is that  the global transaction 
manager cannot  submit  prepare  requests  for the 
next  transaction until all local transaction  man- 
agers involved in the  previous  transaction  have 
responded.  This  drawback  can  be  overcome by 
allowing the global transaction manager to in- 
clude  an explicit serialization number in 2PC pre- 
pare  requests. 

The third feature  is  to define a way  that  an MDBS 
can  generate unique transaction identifiers and 
have  a  transaction identifier passed along to all 
CDSs involved in the  transaction.  It would enable 
a CDS to recognize when  requests arriving 
through different routes  are in fact  part of the 
same global transaction and should be  treated  as 
one  transaction. If they  are  treated as separate 
transactions and conflict on some  data item, the 
global transaction will deadlock itself. 

Acknowledgments 

We would like to thank the following participants 
in the CORDS-MDBS project  who  have  contributed 
to performing the  research investigations or the 
prototype implementation, or  both, reported in 
this paper: Pravin Baliga (X.500 Catalog  Inter- 
face), Lauri J. Brown (prototype implementa- 
tion),  Zenith  Keeping (EMPRESS agent), Brian Mi- 
nard (view integration and schema integration), 
Shahrokh  Namvar (EMPRESS agent), Glenn N. 
Paulley (query optimization, IMS agent, ORACLE 
agent),  Wendy Powley (prototype implementa- 
tion), Zhanpeng Wang (schema integration), 
Weipeng Yan (user  interface  and  query optimi- 
zation), and  Jianchun Zhang (schema integra- 
tion). We would also like to thank Ann Gawman 
of the IBM Toronto  Laboratory  for  her  excellent 
editorial suggestions. 

This  research  was  supported by  the  Centre for 
Advanced Studies of the IBM Toronto  Labora- 
tory and by the  Natural  Sciences  and Engineering 
Research Council of Canada. 

*Trademark or registered trademark of International Business 
Machines Corporation. 

**Trademark or registered trademarkof Open Software Foun- 
dation, Inc., Transarc Corporation, Massachusetts Institute 
of Technology, Oracle Corporation, Empress Software, Inc., 
Digital Equipment Corporation, Data Integration, Inc., or 
Object Design,  Inc. 

AlTALURI ET AL. 59 



Cited  references 

I .  Microsoft ODBC Application  Programmer’s  Guide, draft 
edition, Microsoft Corporation, Redmond, WA  (1991). 

2. Data  Management: SQL Call  Level  Interface (CLI), 
XIOpen Company Limited, CA  (1992). 

3. XIOpen  Portability  Guide:  Data  Management, 1st edi- 
tion, X/Open Company Limited, Englewood Cliffs, NJ 
07632 (August 1988). 

4. DistributedRelational  Database  Architecture  Reference, 
SC26-4651-0,  IBM Corporation (1990); available through 
IBM branch offices. 

5. M. A. Bauer, NbCoburn, D. L. Erickson, P. J. Finnigan, 
J. W. Hong, P.-A. Larson, J. Pachl, J. Slonim, D. J .  Tay- 
lor, andT. J. Teorey, “A Distributed System Architecture 
for a Distributed Application Environment,” IBM Sys- 
tems Journal 33, No. 3, 399425 (1994). 

6. P.  A. Bernstein, V. Hadzilacos, and N. Goodman, Con- 
currency  Control  and  Recovery in Database  Systems, Ad- 
dison-Wesley Series in Computer Science, Addison-Wes- 
ley Publishing Co., Reading, MA  (1987). 

7. M. A. Bauer, NbCoburn, D. L. Erickson, P. J. Finnigan, 
J.  W. Hong, P.-A.  Larson, and J. Slonim, “An Integrated 
Architecture for Distributed Applications,” Proceedings 
of the 1993 CAS  Conference, Centre for Advanced Stud- 
ies, Toronto Laboratory, IBM Canada, Ltd., 844  Don 
Mills Road, North York, Ontario, Canada M3C  1V7 
(1993). 

8. Introduction to OSF DCE, Open Software Foundation, 
Cambridge, MA  (1991). 

9. IBM Distributed Data  Management  Level  3  Architecture: 
Implementation  Programmer’s  Guide, SC21-9529,  IBM 
Corporation (1990); available through IBM branch offices. 

IO. J. R. Corbin, The Art of Distributed  Applications, Sun 
Technical Reference Library, Springer-Verlag, New 
York  (1991). 

11. Encina:  Product  Overview, Transarc Corporation, Pitts- 
burgh, PA  (1991). 

12. XSOO Directory  Services  1992, International Telegraph 
and Telephone Consultative Committee, Geneva (1991). 

13. G. Neufeld, B. Brachman, M. Goldberg, and  D. Stick- 
ings, “The EAN X.500 Directory Service,” Journal of 
Internetworking  Research  and  Experience 3, No. 2,55-82 
(June 1992). 

14. CAE  Spec~cation-Distributed Transaction  Processing: 
The XA Specijication, X/Open Company Limited, Read- 
ing, Berkshire, United Kingdom  (1991). 

15. G. N. Paulley, “Engineering an IMS SQL Gateway,” The 
1993 Workshop on Interoperability of Database  Systems 
and  Database  Applications, Fribourg, Switzerland (Sep- 
tember 1993). 

16. C. Chung, “DATAPLEX: An Access to Heterogeneous 
Distributed Databases,” Communications of the ACM  33, 
No. I ,  70-80 (January 1990). 

17. U. Dayal and H. Hwang, “View Definition  and General- 
ization for Database Integration in a Multidatabase Sys- 
tem,” IEEE Transactions on Software Engineering 10, 
No. 6, 628-644 (November 1984). 

18.  A. Motro, “Superviews: Virtual Integration of Multiple 
Databases,” IEEE Transactions on Software Engineering 

19. InterViso  User’s  Manual, Data Integration Inc., Los An- 
geles, CA  (1992). 

20. J. R. Cordy, C. D. Halpern, andE. M. Promislow, “TXL: 
A Rapid Prototyping System for Programming  Language 

13, NO. 7,  785-798 (July 1987). 

60 AUALURI ET AL. 

21. 

22. 

23. 

24. 

25. 

26. 

27. 

28. 

29. 

30. 

31. 

32. 

33. 

Dialects,” Computer  Languages  16, No. 1 ,  97-107 (Jan- 
uary  1991). 
P. Martin and W. Powley, “Database Integration Using 
Multidatabase Views,” Proceedings of the 1993 CAS 
Conference, Centre for Advanced Studies, Toronto Lab- 
oratory, IBM Canada, Ltd., 844  Don Mills Road, North 
York, Ontario, CanadaM3C 1V7 (October 1993), pp. 779- 
788. 
H. Lu, B.-C. Ooi, and C.-H. Goh, “On Global Multida- 
tabase Query Optimization,” SIGMOD  Record21, No. 4, 
6-11 (December 1992). 
H. Lu  and M.-C. Shan, “On Global Query Optimization 
in Multidatabase Systems,” Second  International  Work- 
shop on Research  Issues  on  Data  Engineering, Tempe, 
AZ (1992),  p. 217. 
W. Du, R. Krishnamurthy, and M. C. Shan, “Query Op- 
timization in Heterogeneous DBMS,” Proceedings of the 
Eighteenth  International  Conference on Very  Large  Data 
Bases, Vancouver, British Columbia, Canada (1992), pp. 

Q. Zhu and P.-A. Larson, “A Query Sampling Method of 
Estimating Local Cost Parameters in a Multidatabase 
System,” Proceedings of the IOth International  Confer- 
ence on Data  Engineering, Houston, TX (February 1994), 
pp. 144-153. 
Q. Zhu, “Query Optimization in Multidatabase Sys- 
tems,” Proceedings  of the 1992 CAS  Conference,  Volume 
11, Centre for Advanced Studies, Toronto  Laboratory, 
IBM Canada, Ltd., 844 Don Mills Road, North York, 
Ontario, Canada M3C  1V7 (November 1992), pp. 111- 
127. 
Q. Zhu, “An Integrated Method of Estimating Selectiv- 
ities in a Multidatabase System,” Proceedings of the 1993 
CAS  Conference,  Volume 11, Centre for Advanced Stud- 
ies, Toronto Laboratory, IBM Canada, Ltd., 844 Don 
Mills Road, North York, Ontario, Canada M3C  1V7 (Oc- 
tober 1993), pp. 832-847. 
Q. Zhu and P.-A. Larson, “Query Optimization Using 
Fuzzy Set Theory for Multidatabase Systems,” Proceed- 
ings of the 1993 CAS  Conference,  Volume 11, Centre for 
Advanced Studies, Toronto  Laboratory, IBM Canada, 
Ltd., 844 Don  Mills Road, North York, Ontario, Canada 
M3C lV7 (October 1993), pp. 848-859. 
Q, Zhu and P.-A. Larson, “Establishing a  Fuzzy Cost 
Model for Query Optimization in a Multidatabase Sys- 
tem,” Proceedings of the 27th  Hawaii  International  Con- 
ference on System  Sciences, Maui, HI (January 1994), pp. 

D. Georgakopoulos, M. Rusinkiewicz, and A. Sheth, “On 
Serializability of Multidatabase Transactions Through 
Forced Local Conflicts,” Proceedings of the  Seventh  In- 
ternational  Conference  on Data Engineering, Kobe, Ja- 
pan  (April 1991), pp.  314-323. 
H. Garcia-Molina, Y. Breitbart, and A. Silberschatz, 
“Overview of Multidatabase Transaction Management,” 
VLDB Journal 1, No. 2, 181-239 (1992). 
J. Veijalainen and A. Wolski, The 2PCAgent  Method  for 
Transaction  Management in Heterogeneous  Multidata- 
bases,  and  Its  Correctness, Technical Report J-10, Lab- 
oratory for Information Processing, Technical Research 
Centre of Finland (VTT), Helsinki, Finland (June 1992). 
A.  Wolski and J. Veijalainen, “2PC Agent Method: 
Achieving Serializability in Presence of Failures in a  Het- 
erogeneous Multidatabase,” Proceedings of the IEEE 
Parbase-90  Conference (March 1990), pp. 321-330. 

277-291. 

263-272. 

IBM SYSTEMS JOURNAL, VOL 34, NO 1, 1995 



34. J. N. Gray  and A. Reuters, Transaction  Processing:  Con- 
cepts  and  Techniques, Morgan  Kaufmann  Series in Data 
Management Systems, Morgan  Kaufmann  Publishers, 
San  Mateo,  CA (1993). 

35. Y.  Breitbart,  A.  Silberschatz,  and G .  R.  Thompson, “Re- 
liable Transaction Management in a  Multidatabase Sys- 
tem,”  H. Garcia-Molina and  H.  V. Jagadish, Editors, 
Proceedings of the 1990 ACM  SIGMOD  International 
Conference on Management of Data, Atlantic  City,  NJ 
(May 1990). 

36. C.  Pu,  “Superdatabases  for Composition of Heteroge- 
neous Databases,” Proceedings of the Fourth  Interna- 
tional Conference on Data Engineering (May 1988), pp. 

37. J. Slonim, G. K. Attaluri, and  P.-A.  Larson,  “Advanced 
Transaction  Systems in the CORDS  Multidatabase Sys- 
tem  Environment,” Proceedings of the Workshop on 
Next  Generation  Information  Technologies  and  Systems, 
Haifa, Israel  (June 1993), pp. 130-146. 

38. J. N. Gray,  R.  A.  Lorie, G. F. Putzolu, and I. Traiger, 
“Granularity of Locks  and Degrees of Consistency in a 
Shared  Data  Base,” G. N.  Nijssen,  Editor, Modeling in 
Data  Base  Management  Systems, North-Holland, Am- 
sterdam (1976), pp. 365-394. 

39. A. M. Joshi,  “Adaptive Locking  Strategies in a Multi- 
Node  Data  Sharing  Environment,” Proceedings of the 
Seventeenth  International  Conference on Very  Large 
Data  Bases, Catalonia,  Spain (1991), pp. 181-191. 

40. D. Lomet, Private  Lock  Management, Technical Report 
CRL 9219, Digital Equipment  Corporation, Cambridge 
Research  Lab, Cambridge, MA (November 1992). 

41. S. Mehrotra,  R. Rastogi, Y.  Breitbart, H. F. Korth,  and 
A. Silberschatz,  “Ensuring  Transaction Atomicity in 
Multidatabase Systems,” Proceedings of the 1992 Con- 
ference on Principles of Database  Systems (1992), pp. 
164-175. 

42. D. P. Bradshaw,  “Open  Nested Serializability in Multi- 
database  Systems,”  M.  Bauer,  J.  Botsford, P.-A. Larson, 
and  J.  Slonim,  Editors, Proceedings of the 1992 CAS  Con- 
ference,  Volume 11, Centre  for Advanced Studies, Tor- 
onto  Laboratory, IBM Canada,  Ltd., 844 Don Mills Road, 
North  York,  Ontario, M3C 1V7, Canada  (November 

43. J. Elliot and B. Moss, Nested  Transactions:An  Approach 
to  Reliable  Distributed  Computing, MIT  Press Series in 
Information Systems,  The MIT Press, Cambridge, MA 
(1985). 

44. D.  Reed, Naming and Synchronization in a  Decentralized 
Computer  System, Ph.D.  thesis,  Massachusetts  Institute 
of Technology,  Cambridge,  MA (1978). Also  available as 
Technical Report MIT-LCS-205, Massachusetts  Institute 
of Technology,  Cambridge,  MA (1978). 

45. D.  P.  Bradshaw, P.-A. Larson,  and J. Slonim, Transac- 
tion  Scheduling in Dynamic  Composite  Multidatabase 
Systems, Technical Report CS-94-11, Department of 
Computer  Science, University of Waterloo,  Waterloo, 
Ontario,  Canada (March 1994). 

46. D. P. Bradshaw, “Composite  Multidatabase System Con- 
currency  Control and Recovery,” Proceedings of the 
1993 CAS  Conference,  Volume 11: Distributed  Comput- 
ing, Centre  for  Advanced  Studies,  Toronto  Laboratory, 
IBM Canada,  Ltd., 844 Don Mills Road,  North  York, 
Toronto,  Ontario,  Canada M3C 1V7 (October 1993), pp. 

47. Y.  Breitbart,  D.  Georgakopoulos,  M. Rusinkiewicz, and 

548-555. 

1992), pp. 93-109. 

895-909. 

IBM SYSTEMS JOURNAL, VOL 34, NO 1, 1995 

A. Silberschatz,  “On Rigorous Transaction Scheduling,” 
IEEE Transactions on Software Engineering 17, NO.  4, 
954-960 (September 1991). 

48. Y. Raz, The Principle of Commit  Ordering, or Guaran- 
teeing  Serializability in a  Heterogeneous  Environment of 
Multiple  Autonomous  Resource  Managers, Technical 
Report, Digital Equipment  Corporation,  Maynard, MA 
(1991). 

49. K.  Eswaran,  J.  Gray, R. Lorie,  and  I.  Traiger,  “The  No- 
tion of Consistency  and  Predicate  Locks in a Database 
System,” Communications of the ACM 19, No. 11, 624- 
633 (November 1976). 

50. H. Kung and  J. Robinson, “On Optimistic Methods  for 
Concurrency  Control,” ACM  Transactions on Database 
Systems 6 ,  No. 2, 213-226 (June 1981). 

51. Y. Breitbart and A. Silberschatz, Complexity of Global 
Transaction  Management in Multidatabase  Systems, 
Technical Report 198-91, University of Kentucky,  Lex- 
ington, KY  (November 1991). 

52. J. Veijalainen and  A. Wolski, “Prepare  and Commit  Cer- 
tification for Decentralized Transaction Management in 
Rigorous Heterogeneous  Multidatabases,” Proceedings 
of the Eighth International  Conference on Data Engineer- 
ing, Tempe, AZ (February 1992). 

53. G. K. Attaluri,  “Logical Concurrency  Control  for  Large 
Objects in a  Multidatabase System,” Proceedings of the 
1993 CAS  Conference,  Volume II ,  Centre for Advanced 
Studies,  Toronto  Laboratory, IBM Canada,  Ltd., 844 
Don Mills Road,  North  York,  Ontario,  Canada M3C 1V7 
(October 1993), pp. 860-872. 

54. Reference  Manual:  ObjectStore  Release  3.0 for OS12 and 
AIXIxlC 300-320-002 3C, Object  Design, Inc., Burlington, 
MA (January 1994). 

55. G. K. Attaluri, “An Efficient Algorithm for Dynamic  In- 
dexing of Spatial Objects,”  to  be published in Proceed- 
ings of CASCON  ’94, IBM Canada,  Ltd.,  Toronto. 

56. G. Attaluri and D. P.  Bradshaw,  “Architecture  for  Trans- 
action  Management in the  CORDS  Multidatabase  Ser- 
vice,” Proceedings of the 1993 CAS  Conference, Centre 
for  Advanced Studies,  Toronto  Laboratory, IBM Can- 
ada,  Ltd., 844 Don Mills Road,  North  York,  Ontario, 
Canada M3C lV7  (October 1993), pp. 873-887. 

Accepted  for publication  September 12, 1994. 

Gopi K. Attaluri Department of Computer  Science,  Univer- 
sity of Waterloo,  Waterloo,  Ontario,  Canada  N2L 3G1 (elec- 
tronic mail: gkattalu@neumann.uwaterloo.ca). Mr. Attaluri 
obtained his master’s  degree in computer  science  from  the 
Indian Institute of Technology, Kanpur,  India, in 1989. He 
worked in the library automation project at  Kanpur during 
1989-1990. He has  been a Ph.D.  student  at  the  University of 
Waterloo  since 1990. He received the ITRCiICR  fellowship at 
the University of Waterloo.  He  is  currently  supported by the 
Ontario  Graduate  Scholarship  from  the  province of Ontario, 
and a student Fellowship from IBM Canada,  Ltd. Mr.  Atta- 
luri’s interests include transaction  management, multidata- 
base  systems,  and object-oriented database  systems. 

Dexter P. Bradshaw Department of Computer  Science,  Uni- 
versity of Waterloo,  Waterloo,  Ontario,  Canada  N2L 3G1 
(electronic  mail: dpbradsh@bluebox.uwaterloo.ca). Mr. 
Bradshaw is a Ph.D. candidate in the  Department of Computer 
Science, University of Waterloo. He holds a B.Sc.  degree in 

ATALURI ET AL. 61 



mathematics and computer science from the University of the 
West Indies, and an M.Math. degree in computer science from 
the University of Waterloo. He is currently involved in the 
multidatabase research project at the University of Waterloo, 
and his current research interests include distributed trans- 
action management, distributed systems, distributed object 
management systems, and multidatabase systems. 

Neil  Coburn Antares  Alliance  Group  Canada,  Ltd.,  Software 
Development  Centre, 2000 Argentia  Road, Plaza 2 ,  Suite 
2000,  Mississauga,  Ontario,  Canada  L5N 1V8 (electronic 
mail:  nzcaO@amdahlcsdc.com). Dr. Coburn completed his 
Ph.D. in computer science at the University of Waterloo in 
1988 and subsequently held the position of research assistant 
professor in the Department of Computer Science. During that 
time he worked on several projects sponsored by ITRC (In- 
formation Technology Research Centre), NSERC (Natural 
Sciences and Engineering Research Council of Canada), and 
CAS (Centre for Advanced Studies) at the IBM Toronto Lab- 
oratory. Since 1993 he has worked as  a staff systems analyst 
for the Antares Alliance Group Canada, Ltd. His interests 
include multidatabases, parallel databases, constraints on 
complex objects, formalizations of rule-based query optimi- 
zation, architectures for distributed environments, and the 
development and maintenance of large software systems. 

Per-Ake  Larson Department of Computer  Science,  Univer- 
sity of Waterloo,  Waterloo,  Ontario, Canada N2L 3G1 (elec- 
tronic  mail: palarson@bluebox.uwaterloo.ca). Dr. (Paul) 
Larson received his Ph.D. from Abo Swedish University, Fin- 
land, in 1976. He joined the Department of Computer Science 
at the University of Waterloo in 1981 and was promoted to full 
professor in 1987. He served as chairman of the department 
during 1989-1992. He was a principal investigator in the 
CORDS project. His research interests include multidatabase 
systems, query optimization and processing, and parallel da- 
tabases. 

Patrick  Martin Department of Computing  and  Information 
Science,  Queen’s  University,  Kingston,  Ontario,  Canada 
K7L  3N6  (electronic  mail: martin@qucis,queensu.ca). Dr. 
Martin is an associate professor at Queen’s University at 
Kingston and is a principal investigator in the CORDS project. 

Abraham  Silberschatz Department of Computer  Sciences, 
University of Texas  at  Austin,  Austin,  Texas 78712 (electronic 
mail:  avi@cs.utexas.edu). Dr. Silberschatz is an endowed 
professor in the Department of Computer Sciences of the Uni- 
versity of Texas at Austin, specializing in the area of concur- 
rent processing. His research interests include operating sys- 
tems, database systems, and distributed systems. He received 
the Ph.D. degree in computer science from the State Univer- 
sity of New York, Stony Brook, in 1976. He joined the Uni- 
versity of Texas at Austin faculty as an associate professor in 
1980, earned the rank of full professor in 1984, and received 
the endowed professorship in 1988. He has been on leave at 
AT&T  Bell Labs since January 1993, where he  is currently 
serving as  a senior research scientist. In addition to his aca- 
demic position, he served as  an advisor for the National Sci- 
ence Foundation and as  a consultant for several private in- 
dustry companies. He is active in the field  of databases and 
has served as program committee and general conference 
chair for a number of symposia in the area. Dr. Silberschatz 
is a recognized educator, author, and researcher. He is a re- 

62 ATTALURI ET AL. 

cipient of the IEEE Computer Society Outstanding Paper 
Award for the article “Capability Manager” which appeared 
in IEEE Transactions on Software  Engineering, He has had 
articles appear in numerous ACM and IEEE publications, and 
is coauthor of two well-known textbooks: Operating  System 
Concepts and Database  System  Concepts. 

Jacob  Slonim IBM Software  Solutions  Division,  Centre for 
Advanced  Studies,  Toronto  Laboratory, IBM Canada,  Ltd., 
844 Don Mills Road, North  York,  Ontario,  Canada M3C 1 V7 
(electronic  mail:  jslonim@vnet.ibm.com). Dr. Slonim  is head 
of research at the Centre for Advanced Studies of the IBM 
Toronto Software Solutions Laboratory. He received his 
Ph.D. from Kansas State University in 1979. He is an adjunct 
professor at the University of Waterloo. He served on several 
international standards committees and has helped to organize 
numerous international conferences. In 1993, he became a 
member of the IBM Academy of Technology. Dr. Slonim was 
project leader for the CORDS project. His research interests 
include databases, distributed file systems, and software en- 
gineering. 

Qiang  Zhu Department of Computer  Science,  University of 
Waterloo,  Waterloo,  Ontario,  Canada  N2L 3G1 (electronic 
mail: qzhu@bluebox.uwaterloo.ca). Mr. Zhu is a Ph.D. can- 
didate in the Department of Computer Science at the Univer- 
sity of Waterloo. He holds an M.Sc. in applied mathematics 
from McMaster University in Canada, and an M.Eng. in com- 
puter science and a B.Sc. in mathematics both from the South- 
east University in  China.. He was a principal developer of a 
relational database management system. He is currently in- 
volved in the MDBS research project within the CORDS proj- 
ect. His current research interests include distributed data- 
base systems, query optimization, and query processing. 

Reprint Order No. (3321-5557. 

IBM SYSTEMS JOURNAL, VOL 34, NO 1, 1995 


