
Proceedings of 16th IEEE Int’l Conf. on Data Eng. (ICDE2000), San Diego, Feb. 29 - March 3, 2000 413

Developing Cost Models with Qualitative Variables for Dynamic
Multidatabase Environments�

Qiang Zhu Yu Sun S. Motheramgari
Department of Computer and Information Science

The University of Michigan, Dearborn, MI 48128, U.S.A.
fqzhu, yusun, motheramg@umich.edu

Abstract

A major challenge for global query optimization in a multi-
database system (MDBS) is lack of local cost information
at the global level due to local autonomy. A number of
methods to derive local cost models have been suggested
recently. However, these methods are only suitable for a
static multidatabase environment. In this paper, we pro-
pose a new multi-states query sampling method to develop
local cost models for a dynamic environment. The system
contention level at a dynamic local site is divided into a
number of discrete contention states based on the costs of
a probing query. To determine an appropriate set of con-
tention states for a dynamic environment, two algorithms
based on iterative uniform partition and data clustering, re-
spectively, are introduced. A qualitative variable is used to
indicate the contention states for the dynamic environment.
The techniques from our previous (static) query sampling
method, including query sampling, automatic variable se-
lection, regression analysis, and model validation, are ex-
tended so as to develop a cost model incorporating the qual-
itative variable for a dynamic environment. Experimental
results demonstrate that this new multi-states query sam-
pling method is quite promising in developing useful cost
models for a dynamic multidatabase environment.

1. Introduction

A multidatabase system (MDBS) integrates data from
multiple local (component) databases and provides users
with a uniform global view of data. A global user can issue
a (global) query on an MDBS to retrieve data from multiple
databases without having to know where the data is stored
and how the data is retrieved. How to process such a global
query efficiently is the task of global query optimization.

�Research supported by the US National Science Foundation under
Grant # IIS-9811980 and The University of Michigan under OVPR and
UMD grants.

A major challenge, among others [4, 7, 8, 9, 14], for
global query optimization in an MDBS is that some nec-
essary local information, such as local cost models, may
not be available at the global level due to local autonomy
preserved in the system. However, the global query opti-
mizer needs such information to decide how to decompose
a global query into local (component) queries and where to
execute the local queries. Hence, methods to derive cost
models for an autonomous local database system (DBS) at
the global level are required. Several such methods have
been proposed in the literature recently.

In [3], Du et al. proposed a calibration method to deduce
necessary local cost parameters. The key idea is to con-
struct a special local synthetic calibrating database and use
the costs of some special queries run on the database to de-
duce the parameters in cost models. In [5], Gardarin et al.
extended the above method so as to calibrate cost models
for object-oriented local database systems in an MDBS.

In [17, 18, 19], Zhu and Larson proposed a query sam-
pling method. The key idea is as follows. It first groups
local queries that can be performed on a local DBS in an
MDBS into homogeneous classes, based on some informa-
tion available at the global level in an MDBS such as the
characteristics of queries, operand tables and the underlying
local DBS. A sample of queries are then drawn from each
query class and run against the user local database. The
costs of sample queries are used to derive a cost model for
each query class by multiple regression analysis. The cost
model parameters are kept in the MDBS catalog and utilized
during query optimization. To estimate the cost of a local
query, the class to which the query belongs is first identified.
The corresponding cost model is retrieved from the catalog
and used to estimate the cost of the query. Based on the
estimated local costs, the global query optimizer chooses a
good execution plan for a global query.

There are several other approaches to tackling this prob-
lem. In [16], Zhu and Larson introduced a fuzzy method
based on fuzzy set theory to derive cost models in an
MDBS. In [10], Naacke et al. suggested an approach to

combining a generic cost model with specific cost informa-
tion exported by wrappers for local DBSs. In [1], Adali
et al. suggested to maintain a cost vector database to record
cost information for every query issued to a local DBS. Cost
estimation for a new query is based on the costs of similar
queries. In [13], Roth et al. introduced a framework for
costing in the Garlic federated system.

All the methods proposed so far only considered a static
system environment, i.e., assuming that it does not change
significantly over time. However, in reality, many factors
in an MDBS environment such as contention factors (e.g.,
number of concurrent processes), database physical charac-
teristics (e.g., index clustering ratio), and hardware config-
urations (e.g., memory size) may change significantly over
time. Hence, a cost model derived for a static system en-
vironment cannot give good cost estimates for queries in a
dynamic environment. Figure 1 shows how the cost of a
sample query is affected by the number of concurrent pro-
cesses in a dynamic system environment. We can see that
the cost of the same query can dramatically change (from
3.80 sec. to 124.02 sec.) in a dynamic environment. This
raises an interesting research issue, that is, how to derive
cost models that can capture the performance behavior of
queries in a dynamic environment.

50 60 70 80 90 100 110 120 130
0

20

40

60

80

100

120

140

The Number of Concurrent Processes in SUN UltraSparc 2

Q
ue

ry
 C

os
t (

E
la

ps
e

T
im

e
in

 S
ec

.)
 o

n
O

ra
cl

e
8.

0

Table R7(a1, a2, ..., a9) has 50,000 tuples of random numbe rs

Query:
 select a1, a5, a7
 from R7
 where a3 > 300 and a8 < 2000

Figure 1. Effect of Dynamic Factor on Query Cost

In this paper, we propose a new qualitative approach to
deriving a cost model that can capture the performance be-
havior of queries in a dynamic environment. We notice that
there are numerous dynamic factors that affect query costs.
To simplify the development of a cost model for a dynamic
environment, our approach considers the combined net ef-
fect of dynamic factors on a query cost together rather than
individually. The system contention level that reflects such
a combined effect is gauged by the cost of a probing query.
To capture such contention information in a cost model, we
divide the system contention level (based on the costs of a
probing query) in a dynamic environment into a number of
discrete contention states and use a qualitative variable to
indicate the contention states in the cost model. To deter-
mine an appropriate set of contention states for a dynamic
environment, two algorithms, called the iterative uniform

partition with merging adjustment (IUPMA) and the iter-
ative clustering with merging adjustment (ICMA) respec-
tively, are introduced. The former is used for general cases,
while the latter is specifically designed for a dynamic envi-
ronment with the contention level following a non-uniform
distribution with clusters. Our previous query sampling
method in [17, 18, 19] is extended so as to develop a re-
gression cost model incorporating the qualitative variable
for a dynamic environment. Our approach in this paper
is therefore an extension of our previous query sampling
method. In this paper, we call our previous method as the
static query sampling method and the new approach in this
paper as the multi-states query sampling method. In fact,
the static method is a special case of the multi-states one
when only one contention state is allowed.

The rest of the paper is organized as follows. Section 2
analyzes the dynamic factors at a local site in an MDBS.
Section 3 discusses how to develop a regression model with
a qualitative variable and how to determine contention states
of a qualitative variable for a dynamic environment. Section
4 extends our previous static query sampling method so as
to derive cost models with a qualitative variable for different
query classes in a dynamic environment. Section 5 shows
some experimental results. Section 6 summarizes the con-
clusions.

2. Dynamic environmental factors

In an MDBS, many environmental factors may change
over time1. Some may change more often than others. They
can be classified into the following three types based on
their changing frequencies.

� Frequently-changing factors. The main characteristic
of this type of factors is that they change quite often.
Examples of such factors are CPU load, number of
I/Os per second, and size of memory space being used,
etc. The operating system at a local site typically pro-
vides commands (such as top, ps, and iostats in Unix)
to display system statistics reflecting such environmen-
tal factors. Table 1 lists some system statistics in Unix.

� Occasionally-changing factors. These factors change
occasionally. Examples of such factors are local
database management system (DBMS) configuration
parameters (e.g., number of buffer blocks, and shared
pool size), local database physical/conceptual schema
(e.g., new indexes, new tables/columns), and local
hardware configurations (e.g, physical memory size).
Note that some other factors such as local database

1Since we concern ourselves with local cost models for an MDBS, only
dynamic factors at local sites are considered. In general, there are also
dynamic network environmental factors in an MDBS. Some of them were
considered in [15]

414

Types Statistics for Frequently-Changing Environmental Factors
� rp— number of running processes; � sp— number of sleeping processes

CPU � tp— number of stopped processes; � zp— number of zombie processes
Statistics �us— percentage of user time; � sy — percentage of system time

� id— percentage of idle time
� ld�� ld�� ld� — load averages for the past 1, 5, and 15 minutes, respectively
� am— available memory; �um— used memory

Memory � sm— shared memory; � bm— buffer memory
Statistics � as— available swap; �us— used swap

� fs— free swap; � as— cached swap
� si— amount of memory swapped in; � so— amount of memory swapped out

I/O � bi— number of reads per sec.; � bo— number of writes per sec.
Statistics � du— percentage of disk utilization

Other �nu— number of current users; � in— number of interrupts per sec.
Statistics � cs— number of context switches per sec.; � sc— number of system calls per sec.

Table 1. System Stats for Frequently-Changing Factors in Unix

size, physical data distribution, and index clustering
ratio may change quite frequently. However, they
may not have an immediate significant impact on
query cost until such changes accumulate to a cer-
tain degree. Thus we also consider these factors
as occasionally-changing factors. The changes of
occasionally-changing factors can be found via check-
ing the local database catalog and/or system configu-
ration files.

� Steady factors. These factors rarely change. Exam-
ples of such factors are local DBMS type (e.g., rela-
tional or object-oriented), local database location (e.g.,
local or remote), and local CPU speed (e.g., 300MHz).
Although these factors may have an impact on a cost
model, the chance for them to change is very small.

Clearly, the steady factors usually do not cause a prob-
lem for a query cost model. If significant changes for such
factors occur at a local site, they can be handled in a sim-
ilar way as described below for the occasionally-changing
factors.

For the occasionally-changing factors, a simple and ef-
fective approach to capturing them in a cost model is to
invoke the static query sampling method periodically or
whenever a significant change for the factors occurs. Since
these factors do not change very often, rebuilding cost
models from time to time to capture them is acceptable.
However, this approach cannot be used for the frequently-
changing factors because frequent invocations of the static
query sampling method would significantly increase the
system load and the cost model maintenance overhead. On
the other hand, if a cost model cannot capture the dramatical
changes in a system environment, poor query cost estimates
may be used by the query optimizer, resulting in inefficient
query execution plans.

Theoretically speaking, to capture the frequently-
changing factors in a cost model, one approach is to include
all explanatory variables that reflect such factors in the cost
model. However, this approach encounters several difficul-
ties. First, the ways in which these factors affect a query
cost are not clear. As a result, the appropriate format of
a cost model that directly includes the relevant variables is
hard to determine. Second, the large number of such fac-
tors (see Table 1) makes a cost model too complicated to
derive and maintain even if the previous difficulty could be

overcome. In the rest of this paper, we introduce a feasible
method to capture the frequently-changing factors in a cost
model.

3. Regression with qualitative variable

As mentioned before, the key idea of our method is to
determine a number of contention states for a dynamic envi-
ronment and use a qualitative variable to indicate the states.
A cost model with the qualitative variable can be used to
estimate the cost of a query in different contention states.
The issues on how to include a qualitative variable in a cost
model and how to determine an appropriate set of system
contention states are discussed in this section.

3.1. Qualitative variable

To simplify the problem, we consider the combined
effect of all the frequently-changing factors on a query
cost together rather than individually. Although these dy-
namic factors may change differently in terms of the chang-
ing frequency and degree, they all contribute to the con-
tention level of the underlying system environment. The
cost of a query increases as the contention level. The sys-
tem contention level can be divided into a number of dis-
crete states (categories) such as “High Contention” (SH),
“Medium Contention”(SM), “Low Contention” (SL),
and “No Contention” (SN). A qualitative variable W is
used to indicate the contention states. This qualitative vari-
able, therefore, reflects the combined effect of foregoing
frequently-changing environmental factors. A cost model
incorporating such a qualitative variable can capture the dy-
namic environmental factors to certain degree.

As shown in [17, 19], a statistical relationship between
query costs and their affecting factors such as operand and
result table sizes can be established by multiple regres-
sion. The established relationship can be then used as a
cost model to estimate query costs.

Usually, only quantitative variables are considered in a
regression model. These variables such as operand table
size take values on a well-defined scale. However, many
variables of interest may not be quantitative but qualitative.
Qualitative variables only have several discrete categories
(states). For example, the foregoing qualitative variable W
indicating system contention states may have states SH , SM ,
SL, and SN . Such a qualitative variable can also be incor-
porated into a regression model.

A qualitative variable can be represented by a set of in-
dicator variables. For example, the above contention state
variable W with four states can be represented by three in-
dicator variables: Z�, Z�, and Z�, where Z� � � indicates
W � SH , while Z� � � indicates W �� SH ; Z� � � indi-
cates W � SM , while Z� � � indicates W �� SM ; Z� � �

415

indicates W � SL, while Z� � � indicates W �� SL.
Clearly, Z� � Z� � Z� � � indicate W � SN . Note
that no more than one indicator variable can be 1 simultane-
ously (i.e., W can only take one state at a time). In general,
a qualitative variable that have m categories (states) need
m� � indicator variables to represent it.

3.2. General regression model

Let Y and X�� X�� � � � � Xn be the response variable
and (quantitative) explanatory variables in a regression
model, respectively. Let a qualitative variable W with
m states (categories) be represented by indicator variables
Z�� Z�� � � � � Zm��. The qualitative variable can influence
the regression model in the following four different ways
(see Table 2):

Type Regression Equation

Coincident: Y � B�
�

�

Pn

i��
B�
i
Xi

Parallel: Y � �B�
�

�

P
m��

j��
B
j
�
Zj � �

P
n

i��
B�
i
Xi

Concurrent: Y � B�
�

�
Pn

i��
�B�
i
�
Pm��

j��
B
j
i
Zj �Xi

General: Y �

�B
�
� �

P
m��

j��
B
j
�
Zj �� �z �

intercepts

�

P
n

i��
�B

�
i �

P
m��

j��
B
j
i
Zj �� �z �

slopes

Xi

Table 2. Qualitative Regression Equation Forms

� Coincident. The relationship between the response and
explanatory variables stays the same for all states of
W . In other words, the equations for all states are co-
incident. This in fact is the situation for a static sys-
tem environment assumed by the static query sampling
method.

� Parallel. The relationship between the response and
explanatory variables may differ in the intercept term
but not the slope terms for different states of W . The
relevant equation in Table 2 shows that the intercept
term for the jth state of the qualitative variable is B�

��
Bj
� (j � �� �� � � � �m; and Bm

� � �). Since the slope
terms remain the same for all states, the equations for
different states are parallel.

� Concurrent. The relationship between the response
and explanatory variables may differ in the slope terms
but not the intercept term for different states ofW . The
relevant equation in Table 2 shows that the ith slope
term (i � �� �� � � � � n) for the jth state of the qualitative
variable is B�

i � Bj
i (j � �� �� � � � �m; and Bm

i � �).
The equations for different states have the same inter-
cept term. They are said to be concurrent.

� General. The relationship between the response and
explanatory variables may differ in both the intercept
term and the slope terms for different states of the qual-
itative variable. This is the most general case.

Note that the cost of a query usually consists of (1) ini-
tialization cost such as moving a disk head to the right po-
sition; (2) I/O cost such as fetching a tuple from an operand
table; and (3) CPU cost such as evaluating the qualification
condition for a given tuple. A typical cost model for a unary
query class may look like:

Y � B� � B� �NU � B� � RNU � (1)

where NU and RNU are the cardinalities of the operand
table and result table, respectively; B�, B� and B� are the
parameters representing the initialization cost, the cost of
retrieving a tuple from the operand table, and the cost of
processing a tuple in the result table, respectively. Both B�

andB� may reflect I/O as well as CPU costs. Therefore, the
initialization cost affects the intercept term in a cost model,
while the I/O and CPU costs affect the slope terms in the
cost model. Clearly, the contention level of a system can
significantly affect not only the initialization cost but also
the I/O and CPU costs of a query because the resources like
the disk, I/O bandwidth and CPU are shared by multiple
processes. As a result, both the intercept and slope terms in
a query cost model may change when the system contention
level changes. Therefore, to incorporate a qualitative vari-
able representing the system contention states into a query
cost model, the general qualitative regression model is more
appropriate.

3.3. Determining system contention states

Combining multiple dynamic environmental factors into
a composite qualitative variable with a number of discrete
contention states greatly simplifies the development of a
cost model for a dynamic environment. The question now
is how to determine an appropriate set of system contention
states for a dynamic environment.

Two extremes

There are two extremes in determining a set of contention
states. One extreme is to consider only one contention state
for the system environment. A cost model developed in
such a case is useful if the system environment is static.
This, in fact, was the case that the static query sampling
method assumed. However, as pointed out before, a real
system environment may change dynamically over time.
Using one contention state is obviously insufficient to de-
scribe the dynamic environment. For a dynamic environ-
ment, usually, the more the contention states are considered,
the better a cost model. In principle, as long as we consider
a sufficient number of contention states for the environment,
we can get a satisfactory cost model. Another extreme is to
consider an infinite number of contention states. However,
the more the contention states are considered, the more the
indicator variables are used in the cost model. The number

416

of coefficients that need to be determined in a cost model
therefore increases. Hence, if too many contention states
are considered, the cost model can be very complicated,
which is not good for either the development or mainte-
nance of the cost model. In practice, as we will see in Sec-
tion 5, a small number of contention states (three to six) are
usually sufficient to yield a good cost model.

Determining states via iterative uniform partition

Notice that, for a given query, its cost increases as the sys-
tem contention level increases (see Figure 1). Based on this
observation, we can use the cost of a probing query to gauge
the system contention level2. The range of probing costs
(therefore, the contention level) is divided into subranges,
each of which represents a contention state for the dynamic
environment.

Let the cost CQp of probing query Qp fall in the
range �Cmin� Cmax� in a dynamic environment. A sim-
ple way to determine the system contention states is to par-
tition range �Cmin� Cmax� into subranges with an equal
size. In other words, to determine m contention states3

Sm� Sm��� � � � � S�, we divide range �Cmin� Cmax� into m
subranges Ii � �Cmin��m�i	�D� Cmin��m�i��	�D	
and I� � �Cmin � �m � �	 � D� Cmin � m � D� where
i � m�m � �� ���� � and D � �Cmax � Cmin	�m. The
system environment is said to be in contention state Si if
CQp � Ii (i � m�m � �� ���� �). To obtain more sys-
tem contention states, we can simply increase m. Hence,
f Im� Im��� ���� I� g yields a set
m of the system con-
tention states for the dynamic environment.

Using this partition, it is easy to determine the system
contention state in which a query is executed. Let SP �
f Qj j j � �� �� ���� s g be a set of sample queries which are
performed in a dynamic environment and whose observed
data (costs, result table sizes, etc.) are to be used to derive
a regression cost model for a query class. To determine the
system contention state SQj in which Qj is executed, the
cost CQp of probing query Qp in the same environment is
measured. SQj � Si if CQ � Ii (� � i � m). We call the
costs of a probing query associated with the sample queries
are sampled probing query costs.

One basic question is how to determine a proper m. An-
other question is how to eliminate some unnecessary sepa-
rations of subranges. Clearly, if the performance behaviors
of queries in contention states Sj�� and Sj (for some j)
are similar, separating Sj�� and Sj is unnecessary. The de-
termination of system contention states should balance the
accuracy and simplicity (hence low maintenance overhead)
of a derived cost model.

2Our experiments showed that most queries, except the ones with ex-
tremely small cost (e.g., several hundredths of a second), can well serve as
a probing query to gauge the system contention level.

3A decreasing index is used here to simplify the descriptions of the
algorithms and derived cost models.

To solve these two problems, the following algorithm is
used to improve the above straightforward uniform parti-
tion:

ALGORITHM 3.1 : Contention States Determination via Iterative
Uniform Partition with Merging Adjustment (IUPMA)

Input: Observed data of sample queries and their associated
probing query costs

Output: A set of system contention states4
Method:

1. begin
2. Derive a qualitative regression model with one contention

state using the sample query data;
3. Let R�

new be the coefficient of total determination of the
current regression model;

4. Let snew be the standard error of estimation of the
current regression model;

5. m �� �;
6. do
7. R�

old
�� R�

new ; sold �� snew
8. m �� m� �;
9. Obtain a set �m of m contention states for the system

environment via the straightforward uniform partition;
10. Derive a qualitative regression model with m contention

states using sample query data;
11. Let R�

new be the coefficient of total determination for the
current regression model;

12. Let snew be the standard error of estimation of the current
regression model;

13. until (j�R�
new �R�

old
��R�

old
j and j�snew � sold��soldj) are

sufficiently small or m is too large;
14. m �� m � �;
15. Let Sj (j � m�m� �� ���� �) represent the current m contention

states in �m;
16. Let Aj

i
� B�

i �Bj
i

(i � �� �� ���� n) be the adjusted coefficient
of ith variable Xi for state Sj in the general model in Table 2,
where X� � � is a dummy variable for the intercept term;

17. for k � m down to 	 do
18. Ek ��

max
i�f����������ng f j�Ak��

i � Ak
i ��A

k
i j g

19. if Ek is too small then
20. tag that states Sk and Sk�� should be merged;
21. end for
22. if some states are tagged to be merged then
23. Derive a qualitative regression model with new merged states

using sample query data;
24. goto step 15;
25. end if;
26. return the current set �m of contention states;
27. end.

There are two phases in Algorithm 3.1. The first phase
is to determine a set of contention states via the uniform
partition. The algorithm iteratively checks each qualitative
regression model with an incremental number of contention
states until (1) the model cannot be significantly improved
in terms of the coefficient of total determination5 R� and the
standard error of estimation6 s; or (2) too many contention
states have been determined. Condition (2) is used here to
prevent that a derived cost model becomes too complicated
(in terms of the number of variables involved). The set of
contention states obtained from the first phase are based on

4In fact, the algorithm integrates the contention states determination
procedure with the cost model development procedure (to be discussed in
the next section). As a result, a cost model is also produced as an output of
the algorithm.

5The coefficient of total determination measures the proportion of vari-
ability in the response variable explained by the explanatory variables in a
regression model [12]. The higher, the better.

6The standard error of estimation is an indication of the accuracy of
estimation given by the model [12]. The smaller, the better

417

the uniform partition of the probing query cost range (see
Figure 2). The partition does not consider whether two
states actually have significantly different effects on the cost
model or not. It is possible that some neighboring states
have only slight different effects on the cost model. If so,
the states should be merged into one to simplify the cost
model. Such a merging adjustment is done during the sec-
ond phase of the algorithm. If the maximum of relative er-
rors of the corresponding pairs of adjusted coefficients (i.e.,
B�
i �Bk

i , and B�
i �Bk��

i , i � �� �� ���� n) for two states Sk
and Sk�� is too small, these two states are considered not to
have significantly different effects on the cost model. The
subranges in the final adjusted partition of probing query
cost range may not have an equal size.

Cmin

Im Im-1 Im-2 Im-3

I’k2nd phase:
after

1st phase:
after

I’k-1 I’k-3

uniform partition

adjusted partition

I2 I1

I’1

Cmax

probing
query
cost

Figure 2. Contention States Determination via IUPMA

Determining states via data clustering

To capture the effect of every contention level on query
costs for a dynamic environment in a cost model, we can
let each contention level point have an equal chance to be
chosen for running a given sample query. In other words,
the probing query costs associated with the sample queries
to indicate the sampled contention level points follow the
uniform distribution within their range. A cost model de-
rived by using such sample data can be used to estimate
the cost of a query executed at any contention level. How-
ever, in a real dynamic application environment, the con-
tention level may occur more often in some subranges than
the others. To better capture the performance behavior of a
dynamic environment, we can choose the contention level
points for running sample queries based on the actual distri-
bution of the contention level in the dynamic environment.
As a result, the associated probing query costs may not fol-
low the uniform distribution in their range. More often they
are grouped into clusters.

Although Algorithm 3.1 is designed for uniformly dis-
tributed probing query costs, it usually can also handle clus-
tered probing query costs well due to its iterating and ad-
justing mechanisms. However, the resulting partition of the
probing query cost range for the clustered cases may not
be the best since the boundaries considered at each itera-
tion in the algorithm are fixed, regardless of the distribution
of the system contention level. To overcome the problem,
a data mining algorithm for data clustering can be incor-
porated into the contention states determination procedure
here.

An agglomerative hierarchical algorithm is often used
for data clustering�6�. The main idea of the algorithm is
to place each data object in its own cluster initially and then
gradually merge clusters into larger and larger clusters until
a desired number of clusters have been found. The criterion
used to merge two clusters �� and �� is to make their dis-
tance minimized. One widely used distance measure is the
distance between the centroids or means m���	 and m���	
of two clusters, i.e., Dmean���� ��	 � jjm���	�m���	jj.

Let K be the maximum allowed number of system con-
tention states. The above clustering algorithm can be used
to obtain clusterings �m � f �m� �m��� ���� �� g (m �
K�K � �� ���� �; �i’s are clusters such that m��i��	 �
m��i	 for i � m � ��m � �� ���� �) for sampled prob-
ing query costs. Let subranges Ij � �aj��� aj	 and
I� � �a�� a��, where j � m�m � �� ���� � and am�� �
Cmin� am � �min��m	 � max��m��		��� ���� a� �
�min���	�max���		��� a� � Cmax, here min��i	 and
max��i	 are the minimum and maximum probing query
costs in cluster �i. Clearly, f Im� Im��� ���� I� g gives
a set
m of the system contention states for the dynamic
environment, which reflects the distribution information of
probing query costs (the contention level). If we use such

m in Line 9 in Algorithm 3.1, we get a new algorithm,
termed as the Contention States Determination via Iterative
Clustering with Merging Adjustment (ICMA).

Note that, for clustered probing query costs, it is possible
that a cluster may not have a sufficient number of sampled
data points to meet the minimum requirement for regres-
sion analysis. In such a case, we draw additional sample
data points (via executing more sample queries) to make
the cluster meet the minimum requirement rather than sim-
ply treat the data points in the cluster as outliers and ignore
them. Although this way may change the distribution of the
contention level sightly, no useful contention level points
are ignored in the derived cost model.

Probing costs estimation

To minimize the overhead for determining a system con-
tention state, a query with a small cost is preferred as a
probing query. To further reduce the overhead, estimated
costs (rather than observed costs) of probing query Qp can
be used to determine the contention states of a dynamic en-
vironment. The idea is to first develop a regression equation
between the probing query cost YQp and some major system
contention parameters7 (such as CPU load ld�, I/O utiliza-
tion io, and size of used memory space um for a dynamic
environment in Table 1), i.e.,

YQp � E� �E� � ld� �E� � io�E� � um� (2)

7A standard statistical procedure can be used to determine the signifi-
cant parameters for a system environment.

418

where Ei (i � �� �� �� �) are regression coefficients. Af-
terwards, every time when we want to determine the sys-
tem contention state in which a query is executed we only
need to check which subrange the estimated cost YQp of
probing query Qp lies in by using (2) without actually ex-
ecuting the probing query. Since obtaining the parameter
values (ld�� io� um) in (2) usually requires less overhead
than executing a probing query, using the estimated costs
of a probing query to determine system contention states
is usually more efficient. However, estimation errors may
introduce certain inaccuracy.

4. Development of cost models

As mentioned before, we extend the query sampling
method for a static environment in [17] so as to develop
cost models for a dynamic environment via introducing a
qualitative variable. Such extensions are discussed in this
section.

4.1. Query classification and sampling

Similar to the static query sampling method, we group
local queries on a local database system into classes based
on their potential access methods to be employed. The pre-
vious classification rules and procedures in [17] can be uti-
lized. For example,

G� � � f ����F �R�� j � is a list of columns in table R and

qualification F has at least one conjunct R�a � C�

where R�a is a clustered� indexed column� � and

� are project and select opreations respectivelyg

is a class of unary queries that are most likely performed
by using a clustered-index scan access method in a DBMS.
Hence a similar performance behavior is shared among the
queries in the class and can be described by a common cost
model.

A sample of queries are then drawn from each query
class in a similar way as before. However, since more
parameters associated with the indicator variables are in-
cluded in a cost model, more sample queries need to be
drawn in order to meet the commonly-used rule for sam-
pling in statistics, i.e., sample at least 10 observations for
every parameter to be estimated [12]. The following propo-
sition gives a guideline on the minimum number of sample
queries needed for regression analysis.

PROPOSITION 4.1 For the general qualitative regression
cost model in Table 2 with n quantitative explanatory vari-
ables and one qualitative variable for m states, at least
�� � �m � �n� �	 � �	 observations need to be sampled.

PROOF. Notice that there are �n � �	 groups of regression
coefficients in the cost model, one for each independent

quantitative variable plus the intercept term. Each group
has m coefficients, one for each state of the qualitative vari-
able. In addition, the variance of error terms need also to be
estimated.

Sample queries drawn from a query class are performed
in a dynamic environment. Their observed data as well as
their associated probing query costs are recorded and used
to derive a regression cost model for the query class. A load
builder, which is part of the MDBS agent for each local
DBS [2], is used to simulate a dynamic application environ-
ment at a local site in an MDBS during the query sampling
procedure. The MDBS agent may also have an environment
monitor which collects system statistics used for estimating
the probing query costs when the estimation approach in
Section 3.3 is employed.

4.2. Regression cost models

A qualitative regression cost model contains a set VQ
of quantitative explanatory variables and a set VD of in-
dicator variables for a qualitative variable indicating sys-
tem contention states. Similar to the static query sam-
pling method, we divide the cost model into two parts:
basicmodel�secondary part. The basic model represents
the essential part of the model, while the secondary part is
used to further improve the model. The qualitative variable
(i.e., the indicator variables) is included in both parts of the
cost model to capture the dynamic environmental factors.
Set VQ is split into two subsets VB and VS, where VB con-
tains basic (quantitative) explanatory variables in the basic
model, while VS contains secondary (quantitative) explana-
tory variables in the secondary part. Table 3 lists poten-
tial explanatory variables in each of the subsets for a unary
query class and a join query class. If all variables (including
indicator variables) are included, the full cost model is:

Y � ��B�

� �

m��X
j��

Bj
�
� Zj� �

X
X�VB

�B�

X �

m��X
j��

Bj
X � Zj� �X�

� �z �
basic model

� �
X
X�VS

�B�

X �

m��X
j��

Bj
X � Zj� �X�

� �z �
secondary part

However, usually, not all variables are necessary for a
given cost model.

To determine the variables to be included in a regression
cost model for a query class, a mixed backward and for-
ward procedure described below is adopted. We start with
the full basic model which includes all variables in VB and
use a backward procedure to eliminate insignificant basic
explanatory variables one by one. Note that, in our algo-
rithm, if an explanatory variable X is removed from the

419

Class Basic Explanatory Variables Secondary Explanatory Variables

Unary NU – size (cardinality) of operand table LU – tuple length of operand table
Query TNU – size of intermediate table RLU – tuple length of result table
Class RNU – size of result table NZU – operand table lengthNU � LU

RZU – result table lengthRNU � RLU

NJ� – size of 1st operand table LJ� – tuple length of 1st operand table
Join NJ� – size of 2nd operand table LJ� – tuple length of 2nd operand table
Query TNJ� – size of 1st intermediate table RLJ – tuple length of result table
Class TNJ� – size of 2nd intermediate table NZJ� – 1st operand table lengthNJ� � LJ�

RNJ – size of result table NZJ� – 2nd operand table lengthNJ� � LJ�
TNJ�� – size of Cartesian product of RZJ – result table lengthRNJ � RLJ

intermediate tables

Table 3. Potential Explanatory Variables for Cost Models

model, its coefficients �B�
X
�
Pm��

j�� Bj
X � Zj	 for all con-

tention states (determined by indicator variables Zj’s) are
removed. We then use a forward selection procedure to add
more significant secondary explanatory variables from VS
into the cost model. This procedure tries to further improve
the cost model. Similar to the backward procedure, if a sec-
ondary variable X is added into the model, its coefficients
�B�

X�
Pm��

j�� Bj
X�Zj	 for all contention states are included.

Since it is expected that most basic variables are important
to a cost model and only a few secondary explanatory vari-
ables are important, both the backward elimination and the
forward selection procedures most likely terminate soon af-
ter they start.

Assume that we have nj sampling observations in con-
tention state Sj (� � j � m), with

Pm

j�� nj observations
in total. Consider the simple correction coefficient between
variables X and Y in contention state Sj :

rjX�Y � �

njX
i��

XijYij � �

njX
i��

Xij

njX
i��

Yij��nj ��

vuut�

njX
i��

X�

ij � �

njX
i��

Xij���nj��

njX
i��

Y �

ij � �

njX
i��

Yij���nj�

where Xij � Yij are the values from the ith sampling ob-
servation (� � i � nj) in state Sj . For any explanatory
variable X , if its maximum simple correlation coefficient
max
��j�m frjX�Y g with response variable Y is too small, it has
little linear relationship with Y in any state. Such explana-
tory variables should be removed from consideration.

In the backward elimination procedure, the next variable
X to be removed from the current model is the one which
satisfies two conditions (a) its average simple correlation
coefficient rX�Y � �

Pm
j�� r

j
X�Y 	�m with response variable

Y for all contention states is the smallest among all explana-
tory variables in the current model; (b) it makes s� � s or
j�s�s�	�sj � �, where s� is the standard error of estimation
for the reduced model (i.e., with X removed) given by:

s� �

vuutPm

j��

Pnj
i��

�Yij �cY �
ij��Pm

j��
nj �m � �k � ��

(3)

here Yij � bYij � k denote the observed query cost, estimated
query cost given by the reduced model, and number of ex-
planatory variables in the model, respectively; s is the stan-
dard error of estimation for the original model given by a

formula similar to (3); � is a given small positive constant.
Since the average simple correlation coefficient rX�Y indi-
cates the degree of linear relationship between X and Y on
average in all states, foregoing condition (a) selects an ex-
planatory variable X that contributes the least (on average
in all states) in explaining the response variable Y . Since
the standard error of estimation is an indication of estima-
tion accuracy, foregoing condition (b) ensures that removing
variable X from the model improves the estimation accu-
racy or affects the model very little. Removing a variable
that has a little effect on the model can reduce the complex-
ity and maintenance overhead of the model.

In the forward selection procedure, the next variable X
from VS to be added into the current model is the one sat-
isfies (a) its average simple correlation coefficient rX�Ys �
�
Pm

j�� r
j
X�Ys

	�m with the residuals Ys of the current model
for all states is the largest among all explanatory variables
in the model; i.e., it can explain the most (on average for
all states) about the variations that the current model cannot
explain; and (b) it significantly improves the estimation ac-
curacy, i.e., s� � s and j�s� s�	�sj � �, where s�� s denote
the standard errors of estimation for the augmented model
(i.e., with X included) and the original model, respectively;
and � is a given small positive constant.

Note that the exact number of explanatory variables in a
cost model is determined after the above mixed backward
and forward procedure is done. However, we need such in-
formation to determine the query sample size from Propo-
sition 4.1 at the beginning of the cost model development.
Since it is expected that most basic explanatory variables in
VB are selected and only a few secondary explanatory vari-
ables in VS are used for a cost model, we expect the number
of explanatory variables in a cost model usually not exceed
jVBj�djVS j��e. Based on experiments, the maximum num-
ber M of contention states for a dynamic environment in
practice can also be estimated. Hence, a reasonable query
sample size is:

�� � �M � �jVBj� djVSj�	e � �� � ��� (4)

from Proposition 4.1.

4.3. Measures for developing useful models

Multicollinearity occurs when explanatory variables are
highly correlated among themselves. In such a case, the es-
timated regression coefficients tend to have large sampling
variability. It is better to avoid multicollinearity.

The presence of multicollinearity is detected by means of
the variance inflation factor V IF [11]. When an explana-
tory variable has a strong linear relationship with the other
explanatory variables, its V IF is large. In a dynamic envi-
ronment with multiple contention states, let V IFj (� � j �
m) be the variance inflation factor of explanatory variable

420

Query Class Cost Estimation Model with Qualitative Variable (i.e., Multi-States Cost Models)

G��DB� �����	��e+1���	
��e+0�Z� � ���
�e+1�Z�� � ��������e-4�������e-3�Z� � ���
��e-4�Z�� � TNU � ���	�
e-5�������e-4�Z�
���	��	e-4�Z�� �NU � �����
�e-2 � �����e-2�Z� � ������e-2�Z�� � RNU � �������e-7�����e-4�Z� � �����e-5�Z�� �NZU

G��DB� ���
	�e+1����	�e+1�Z	 � ������e+2�Z� � �����e+1�Z� � ������e+2�Z� � ������e+1�Z�� � ���
��e-4����	�	e-4�Z	 � �����e-4�Z�
������	e-3�Z� � ����	�e-3�Z� � ����		e-3�Z�� �NU � ����	�e-3���
���e-3�Z	 � ����
�e-2�Z� � ���
��e-2�Z� � ���
��e-2�Z�
������	e-2�Z�� � RNU � ���	���e-1����	��e+0�Z	 � ���	�e+0�Z� � �����e+1�Z� � ����	�e+1�Z� � �����e+1�Z�� � RLU � ������		e+1
���
�e+0�Z	 � ������e+1�Z� � ������e+0�Z� � ����
e+1�Z� � �����e+1�Z�� � LU

G��DB� �������e+2����	e+2�Z� � ���	�	e+2�Z�� � ���	��e-7������e-8�Z� � ���
�
e-6�Z�� � TNJ�� � �������e-3����	�e-2�Z�
����	e-2�Z�� � RNJ

G��Oracle ������e-1���	���e+0�Z� � ������e+1�Z�� � ��������e-3����	�e-3�Z� � ������e-3�Z�� � TNU � �����	��e-4������e-4�Z�
������e-4�Z�� �NU � ������e-2 � �����e-2�Z� � ���
��e-2�Z�� � RNU � ����	��e-4�������e-4�Z� � ������e-4�Z�� � RZU � ����		
e-5
�������e-5�Z� � ������e-6�Z�� �NZU

G��Oracle ���	��e+1���

�e+1�Z	 � ����
�e+1�Z� � ��
���e+1�Z� � ��
���e+1�Z� � �����
e+1�Z�� � ��������e-3����
��e-3�Z	 � ���	�e-3�Z�
�������e-3�Z� � ���	�e-3�Z� � ���	��e-3�Z�� � NU � ���	���e-3�������e-2�Z	 � ����		e-2�Z� � ������e-2�Z� � ���
e-2�Z�
���	��e-2�Z�� � RNU

G��Oracle ������	
e � �� ������e+2�Z� � ��
���e+2�Z� � ��

�e+2�Z�� � �����

e-7�������e-6�Z� � ������e-6�Z� � ����
�e-6�Z�� � TNJ��
� �����	
e-2����
�
e-2�Z� � ������e-2�Z� � ��	
��e-2�Z�� � RNJ � ���

��e-3�������e-3�Z� � ������e-3�Z� � ���

�e-6�Z�� � TNJ�
� �������
e+1����
��e+1�Z� � ���

e+1�Z� � �����e+1�Z�� � RLJ � ���	�
e+1������e-1�Z� � ������e+2�Z� � ����
�e+1�Z�� � LJ�

Table 4. Multi-State Cost Models for DB2 and Oracle

X in state Sj . If min
��j�m fV IFjg is large, X is not included

in a cost model to avoid multicollinearity.
F -test, the standard error of estimation s, the coefficient

of multiple determination R�, as well as the percentage of
good cost estimates for test queries are used to validate the
significance of a developed regression cost model.

5. Experimental results

To verify the feasibility of our multi-states query sam-
pling method for developing cost models in a dynamic en-
vironment, experiments were conducted in a multidatabase
environment using a research prototype called CORDS-
MDBS [2]. Two commercial DBMSs, i.e., Oracle v8.0 and
DB2 v5.0, were used as local database systems running un-
der Solaris 5.1 on two SUN UltraSparc 2 workstations. Fig-
ure 3 shows the experimental environment. Local queries
are submitted to a local DBS via an MDBS agent. The
MDBS agent provides a uniform relational ODBC interface
for the global server. It also contains a load builder which
generates dynamic loads to simulate dynamic application
environments.

CORDS-MDBS Server

(.)(DB2 5.0)(Oracle 8.0)

local queries

Local DBS 1

Local

Local

Local

Local Local

Local

Local DBS 2 Local DBS n

DBMSDBMSDBMS

MDBS AgentMDBS AgentMDBS Agent

DBDBDB

Figure 3. Experimental Environment

The local databases used in the experiments were the
same as those in [17, 19], except that each table is ten-
time larger than before due to the improved space availabil-
ity and CPU capability in our experimental environment.
More specifically, each local database has 12 randomly-

generated tables Ri�a�� a�� ���� aj	 (i � �� �� ���� ��� j �
f�� �� �� �� ��� ��g) with cardinalities ranging from 3,000 �
250,000. Each table has a number of indexed columns and
various selectivities for different columns.

In the experiments, queries on each local DBS were clas-
sified first according to the same rules in the static query
sampling method. A sample of queries with the size meet-
ing condition (4) were then drawn from each query class and
performed in the simulated dynamic environments at the lo-
cal sites. Their observed costs together with the associated
probing query costs are used to derive a cost model with
a qualitative variable for each query class using the tech-
niques suggested in the previous sections. Some randomly-
generated test queries [17] in the relevant query classes were
also performed in the dynamic environment, and their ob-
served costs were compared with the estimated costs given
by the derived cost models. Note that, unlike the scientific
computation in engineering, the accuracy of cost estimation
in query optimization is not required to be very high. The
estimated costs with relative errors within 30% are consid-
ered to be very good, and the estimated costs that are within
the range of one-time larger or smaller than the correspond-
ing observed costs (e.g., 2 minutes vs. 4 minutes) are con-
sidered to be good. Only those estimated costs which are
not of the same order of magnitude with the observed costs
(e.g., 2 minutes vs. 3 hours) are not acceptable.

Table 4 shows the cost models derived by applying the
multi-states query sampling method suggested in this paper
for three representative query classes for each local DBS,
namely8, a unary query class G� without usable indexes,
a unary query class G� with usable non-clustered indexes
for ranges, and a join query class G� without usable in-
dexes. Table 5 shows some statistical measures for the de-
rived cost models9. For the comparison purpose, two static
experimental cases were also considered. In the first case,
cost models were derived by applying the static query sam-
pling method to sampling data obtained from a static en-
vironment (Static Approach 1). In the second static case,

8The three query classes correspond to G� �, G� �, and G� � in [17].
9The number in parentheses beside ‘multi-states’ in Table 5 indicates

the number of contention states used for the relevant cost model.

421

cost models were derived by applying the static query sam-
pling method to sampling data obtained from a dynamic en-
vironment (Static Approach 2). This in fact is to restrict the
multi-states query sampling method to consider only one
contention state.

query cost model R� s average very good good
class type cost estimates estimates

G� for multi-states (3) 0.972 0.157e+2 0.528e+2 55% 78%

DB� one-state 0.798 0.363e+2 0.511e+2 30% 58%

static 0.972 0.672e+0 0.290e+1 3% 5%

G� for multi-states (6) 0.994 0.997e+1 0.620e+2 60% 76%

DB� one-state 0.779 0.620e+2 0.690e+2 24% 48%

static 0.986 0.733e+0 0.359e+1 7% 14%

G� for multi-states (3) 0.996 0.230e+3 0.735e+3 37% 62%

DB� one-state 0.910 0.254e+3 0.431e+3 27% 45%

static 0.992 0.116e+2 0.381e+2 9% 13%

G� for multi-states (3) 0.982 0.160e+2 0.680e+2 69% 81%

Oracle one-state 0.876 0.576e+2 0.865e+2 35% 60%

static 0.999 0.917e-1 0.402e+1 3% 6%

G� for multi-states (6) 0.993 0.143e+2 0.873e+2 63% 74%

Oracle one-state 0.901 0.672e+2 0.108e+3 35% 62%

static 0.999 0.301e+0 0.493e+1 4% 8%

G� for multi-states (4) 0.999 0.148e+3 0.998e+3 51% 67%

Oracle one-state 0.951 0.507e+3 0.882e+3 22% 44%

static 0.999 0.503e+1 0.492e+2 0% 1%

Table 5. Statistics for Cost Models

From the experimental results, we can have the following
observations:

� The multi-states query sampling method presented in
this paper can derive good cost models in a dynamic
environment. The coefficients of total determination
in Table 5 indicate that all derived models can cap-
ture 98.9% variations in query cost on average. The
standard errors of estimation are acceptable, compared
with the magnitude of the average cost of relevant sam-
ple queries (only 22% of average costs on average).
The statistical F-tests at significance level 	 � ����
were also conducted, which showed that all cost mod-
els are useful for estimating query costs in a dynamic
environment.

� The (static) cost models derived by the static query
sampling method for a static environment (i.e., Static
Approach 1) are not suitable for estimating query costs
in a dynamic environment. Although such cost mod-
els may have good coefficients of total determination
(99.1% on average in Table 5) for the sampling data
in a static environment, they can hardly give good cost
estimates in a dynamic environment (gave only 7.8%
good cost estimates on average in Table 5 for the test
queries in our experiments).

� The (multi-states) cost models derived by using the
multi-states query sampling method for a dynamic en-
vironment significantly improve the (one-state) cost
models derived by applying the static query sampling
method for the dynamic environment (i.e., Static Ap-
proach 2). In fact, compared with the one-state cost

models, the multi-states cost models increase the num-
ber of very good cost estimates (i.e., with relative er-
rors� 0.3) and the number of good cost estimates (i.e.,
within one time range) by 27.0% and 20.2% (on av-
erage) respectively for the test queries. Figures 6 �
5 show comparisons among the observed costs, esti-
mated costs by the multi-states cost models, and esti-
mated costs by the one-state cost models for the test
queries in a dynamic environment.

� The more contention states are considered, the better
the derived cost model usually is. For example, the co-
efficients of total determination for the cost models for
query class G��Oracle with 1 to 6 contention states
are 0.7788, 0.9636, 0.9674, 0.9899, 0.9922, respec-
tively. However, the improvement may be very small
after the number of contention states reaches certain
point. Table 5 shows that usually considering 3 to 6
contention states for a dynamic environment is suffi-
cient to obtain a good cost model.

� Like static techniques [3, 17], it is also true to the
multi-states query sampling method that small-cost
queries usually have worse cost estimates than large-
cost queries. The main reason for this is that even a
small momentary change in the system environment
may have a significant impact on the cost of a small-
cost query. It is not easy to capture all such small
environmental changes in a cost model. Fortunately,
estimating the costs of small-cost queries is not as im-
portant as estimating the costs of large-cost queries be-
cause it is more important to identify large-cost queries
so that inefficient execution plans can be avoided.

� Contention states determination algorithm IUPMA
works well for both uniformly-distributed and clus-
tered probing query costs, while algorithm ICMA can
determine an even better set of system contention
states for the clustered cases. Note that the sampled
probing query costs were drawn by following the dis-
tribution of the contention level in a dynamic environ-
ment. In fact, the experimental results shown in Tables
4 � 5 and Figures 4 � 9 were obtained for the uni-
form case. Extensive experiments were also conducted
for clustered cases. The experimental results showed
that, for a given query class, the cost model derived
in the clustered cases is usually better than the one
derived for the uniform case even if IUPMA is used.
This is because the cost models for the clustered cases
only need to capture performance behavior of queries
in more focused and narrower subrange(s) of the con-
tention level. Table 6 shows some typical experimental
results for a query class in a dynamic environment with
clustered contention levels (see Figure 10 for the rel-
evant frequency distribution of the contention level).

422

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
5

-100

0

100

200

300

400

500

600

700

800

No. of Result Tuples

Q
ue

ry
 C

os
t

 (
E

la
ps

e
T

im
e

in
 S

ec
.)

solid line --- observed cost
dashed line (o) --- estimated cost by qualitative approach (multi-states)
dotted line (+) --- estimated cost by static approach (on e-state)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
5

-200

0

200

400

600

800

1000

1200

1400

No. of Result Tuples

Q
ue

ry
 C

os
t

 (
E

la
ps

e
T

im
e

in
 S

ec
.)

solid line --- observed cost
dashed line (o) --- estimated cost by qualitative approach (multi-states)
dotted line (+) --- estimated cost by static approach (on e-state)

Figure 4. Costs for Test Queries in G� on DB2 5.0 Figure 5. Costs for Test Queries in G� on Oracle 8.0

0 0.5 1 1.5 2 2.5

x 10
5

-200

0

200

400

600

800

1000

1200

No. of Result Tuples

Q
ue

ry
 C

os
t

 (
E

la
ps

e
T

im
e

in
 S

ec
.)

solid line --- observed cost
dashed line (o) --- estimated cost by qualitative approach (multi-states)
dotted line (+) --- estimated cost by static approach (on e-state)

0 0.5 1 1.5 2 2.5

x 10
5

-200

0

200

400

600

800

1000

1200

1400

1600

1800

No. of Result Tuples

Q
ue

ry
 C

os
t

 (
E

la
ps

e
T

im
e

in
 S

ec
.)

solid line --- observed cost
dashed line (o) --- estimated cost by qualitative approach (multi-states)
dotted line (+) --- estimated cost by static approach (on e-state)

Figure 6. Costs for Test Queries in G� on DB2 5.0 Figure 7. Costs for Test Queries in G� on Oracle 8.0

0 1 2 3 4 5 6 7 8 9 10

x 10
5

-1000

0

1000

2000

3000

4000

5000

6000

No. of Result Tuples

Q
ue

ry
 C

os
t

 (
E

la
ps

e
T

im
e

in
 S

ec
.)

solid line --- observed cost
dashed line (o) --- estimated cost by qualitative approach (multi-states)
dotted line (+) --- estimated cost by static approach (on e-state)

0 1 2 3 4 5 6 7 8 9 10

x 10
5

-1000

0

1000

2000

3000

4000

5000

6000

7000

No. of Result Tuples

Q
ue

ry
 C

os
t

 (
E

la
ps

e
T

im
e

in
 S

ec
.)

solid line --- observed cost
dashed line (o) --- estimated cost by qualitative approach (multi-states)
dotted line (+) --- estimated cost by static approach (on e-state)

Figure 8. Costs for Test Queries in G� on DB2 5.0 Figure 9. Costs for Test Queries in G� on Oracle 8.0

423

query states # of R� s average very good good
class determination states cost estimates estimates

G� for IUPMA 3 0.978 0.128e+2 0.488e+2 58% 82%

DB� ICMA 3 0.991 0.740e+1 0.465e+2 82% 95%

Table 6. Statistics for Cost Models in a Clustered Case

0 10 20 30 40 50 60
0

5

10

15

20

25

System Contention Level (Probing Query Cost in Sec.).

F
re

qu
en

cy

Figure 10. Histogram of Contention Level in a Clustered Case

6. Conclusions

The techniques proposed so far in the literature to de-
velop local cost models in an MDBS are only suitable for
a static environment. Many dynamically-changing environ-
mental factors have significant effects on query cost. To
develop a cost model for a dynamic environment, we have
proposed a new qualitative approach, called the multi-states
query sampling method, in this paper. This method solves
the dynamic problem by dividing the system contention
level, which reflects the combined net effect of dynamic fac-
tors on query cost, in a dynamic environment into a number
of discrete contention states based on the costs of a probing
query and then incorporating a qualitative variable indicat-
ing the contention states into a cost model. The costs of a
probing query can be either observed or estimated. An ap-
propriate set of system contention states can be determined
based on either an iterative uniform partition with merging
adjustment or a clustering-based partition. The former is de-
signed for a dynamic environment with the contention level
following the uniform distribution, while the latter is suit-
able for a dynamic environment with the contention level
following a non-uniform distribution with clusters. Due to
the iterating and adjusting mechanisms, the former usually
can also handle the cases with non-uniform distributions al-
though the latter may do a better job. The development of
regression cost models for a dynamic environment is based
on the extensions of techniques from our previous static
query sampling method. Our experimental results demon-
strate that the multi-states query sampling method presented
in this paper is quite promising in developing useful cost
models in a dynamic environment. It represents a signifi-
cant improvement over the static techniques in a dynamic

environment. Usually, considering a small number of con-
tention states is sufficient to yield a good cost model.

Although dynamic environmental factors have signifi-
cant effects on query cost, they were ignored in most exist-
ing cost models for MDBSs or other database systems due
to lack of appropriate techniques. This paper introduces a
promising approach to tackling the problem. However, fur-
ther research needs to be done in order to fully solve all
relevant issues.

References

[1] S. Adali et al. Query caching and optimization in distributed
mediator systems. In Proc. of SIGMOD, pp 137–48, 1996.

[2] G.K. Attaluri, D.P. Bradshaw, N. Coburn, P.-Å. Larson,
P. Martin, A. Silberschatz, J. Slonim, and Q. Zhu. The
CORDS multidatabase project. IBM Systems Journal,
34(1):39–62, 1995.

[3] W. Du, et al. Query optimization in heterogeneous DBMS.
In Proc. of VLDB, pp 277–91, 1992.

[4] W. Du, M. C. Shan, and U. Dayal. Reducing Multidatabase
Query Response Time by Tree Balancing. In Proc. of SIG-
MOD, pp 293 – 303, 1995.

[5] G. Gardarin, et al. Calibrating the query optimizer cost
model of IRO-DB, an object-oriented federated database
system. In Proc. of VLDB, pp 378–89, 1996.

[6] S. Guha, et al. CURE: An Efficient Clustering Algorithm
for Large Databases. In Proc. of SIGMOD, pp 73–84, 1998.

[7] C. Lee and C.-J. Chen. Query Optimization in Multidatabase
Systems Considering Schema Conflicts. IEEE Trans. on
Knowledge and Data Eng., 9(6):941–55, 1997.

[8] W. Litwin, et al. Interoperability of multiple autonomous
databases. ACM Comp. Surveys, 22(3):267–293, 1990.

[9] H. Lu and M.-C. Shan. On global query optimization in
multidatabase systems. In 2nd Int’l workshop on Research
Issues on Data Eng., pp 217, Tempe, Arizona, USA, 1992.

[10] H. Naacke, G. Gardarin, and A. Tomasic. Leveraging medi-
ator cost models with heterogeneous data sources. In Proc.
of 14th Int’l Conf. on Data Eng., pp 351–60, 1998.

[11] J. Neter, et al. Applied Linear Statistical Models, 3rd Ed.
Richard D. Irwin, Inc., 1990.

[12] R. Pfaffenberger et al. Statistical Methods for Business and
Economics. Richard D. Irwin, Inc., 1987.

[13] M. T. Roth, F. Ozcan, and L. M. Haas. Cost models DO
matter: providing cost information for diverse data sources
in a federated system. In Proc. of VLDB, pp 599–610, 1999.

[14] A. P. Sheth, et al. Federated database systems for manag-
ing distributed, heterogeneous, and autonomous databases.
ACM Computing Surveys, 22(3):183–236, Sept. 1990.

[15] T. Urhan, et al. Cost-based query scrambling for initial de-
lays. In Proc. of SIGMOD., pp 130–41, 1998.

[16] Q. Zhu and P.-Å. Larson. A fuzzy query optimization ap-
proach for multidatabase systems. Int’l J. of Uncertainty,
Fuzziness and Knowledge-Based Sys., 5(6):701 – 22, 1997.

[17] Q. Zhu and P.-Å. Larson. Solving local cost estimation prob-
lem for global query optimization in multidatabase systems.
Distributed and Parallel Databases, 6(4): 373 – 420, 1998.

[18] Q. Zhu and P.-Å. Larson. Building regression cost models
for multidatabase systems. In Proc. of 4th IEEE Int’l Conf.
on Paral. and Distr. Inf. Syst., pp 220–31, Dec. 1996.

[19] Q. Zhu and P.-Å. Larson. A query sampling method for es-
timating local cost parameters in a multidatabase system. In
Proc. of 10th IEEE Int’l Conf. on Data Eng., pp 144–53,
Feb. 1994.

424

