
SWST: A Disk Based Index for Sliding Window
Spatio-Temporal Data

Manish Singh †, Qiang Zhu ‡, H.V. Jagadish †

†Electrical Engineering and Computer Science, University of Michigan
Ann Arbor, USA

{singhmk,jag}@umich.edu
‡Computer and Information Science, University of Michigan

Dearborn, USA
qzhu@umich.edu

Abstract— Numerous applications such as wireless communi-
cation and telematics need to keep track of evolution of spatio-
temporal data for a limited past. Limited retention may even be
required by regulations. In general, each data entry can have
its own user specified lifetime. It is desired that expired entries
are automatically removed by the system through some garbage
collection mechanism. This kind of limited retention can be
achieved by using a sliding window semantics similar to that from
stream data processing. However, due to the large volume and
relatively long lifetime of data in the aforementioned applications
(in contrast to the real-time transient streaming data), the sliding
window here needs to be maintained for data on disk rather
than in memory. It is a new challenge to provide fast access
to the information from the recent past and, at the same time,
facilitate efficient deletion of the expired entries. In this paper,
we propose a disk based, two-layered, sliding window indexing
scheme for discretely moving spatio-temporal data. Our index
can support efficient processing of standard timeslice and interval
queries and delete expired entries with almost no overhead. In
existing historical spatio-temporal indexing techniques, deletion
is either infeasible or very inefficient. Our sliding window based
processing model can support both current and past entries, while
many existing historical spatio-temporal indexing techniques
cannot keep these two types of data together in the same index.
Our experimental comparison with the best known historical
index (i.e., the MV3R tree) for discretely moving spatio-temporal
data shows that our index is about five times faster in terms of
insertion time and comparable in terms of search performance.
MV3R follows a partial persistency model, whereas our index
can support very efficient deletion and update.

I. INTRODUCTION

With increasing use of cellular devices, cellular service

providers are facing the problem of improving efficiency of

resource management. To provide reliable and quality services

with minimum resources, they need to have a good understand-

ing of users’ usage statistics. For instance, they may need to

know how the density of users varies with time at a particular

location or region. To accomplish this task, they can maintain a

standard historical spatio-temporal database that records users’

positions and the time intervals for trhe positions. The usage

statistics can be obtained through conventional spatio-temporal

timeslice and interval queries. With such a spatio-temporal

database, the service providers can also explore users’ travel

patterns, which may help them, for example, provide targeted

advertisements to specific users.

However, maintaining a spatio-temporal database with a

full history may lead to privacy violations since a service

provider may perform extensive data mining on users’ huge

amount of available location information. Although users want

more and better quality services, they do not want to sacrifice

personal privacy of free movement. Fortunately, to determine

usage statistics and provide many services to users, the service

providers do not need to maintain the full history of data for

each user, rather they may just need to maintain a limited

history from the recent past, e.g., retaining data for the past

week or month. In fact, keeping data with limited retention is

also beneficial from the maintenance point of view. Since the

utility of location information decreases with time, the service

providers would like to have a database in which the outdated

information are discarded.

Data privacy can be further improved by providing different

lengths of historical information to different service providers.

For example, the spatio-temporal data of the past month for

all the users may be (physically) maintained at a central data

repository (CDR). The various service providers are allowed

access to CDR with different (logical) lenghts of history (e.g.,

past three days, one week, or half month) from the past month.

Such access capabilities can help the system in attaining two

of the ten goals of data privacy [1], namely limited disclosure

(permitting users to access data with different lengths of his-

tory) and limited retention (automatically deleting the expired

sensitive information).

From the aforementioned application example, we can see

that there is an increasing demand to efficiently manage a

spatio-temporal database with limited retention in contempo-

rary application domains, such as wireless communication,

telematics, and security services. A database management

system supporting such data with limited retention should

provide users with fast access to valid data as well as efficient

deletion of expired data.

To capture data with limited retention, we adopt a sliding

window model in this paper, which has a semantics similar

to that from data stream management systems (DSMS) [2].

The limited retention is realized by the lifetime notion for

data entries. Specifically, expired data entries are removed

from the database as the sliding window moves forward along

2012 IEEE 28th International Conference on Data Engineering

1084-4627/12 $26.00 © 2012 IEEE

DOI 10.1109/ICDE.2012.98

342

2012 IEEE 28th International Conference on Data Engineering

1084-4627/12 $26.00 © 2012 IEEE

DOI 10.1109/ICDE.2012.98

342



with time. Different degrees of historical data for different

service providers (users) can be realized by using different

logical sliding windows with smaller sizes over the underlying

(physical) sliding window for a given database. Unlike a

conventional sliding window, the size of a sliding window in

our model is usually very large and, hence, the data in the

window has to reside in persistent storage devices (e.g., disks)

rather than in memory due to its huge volume (e.g., customers’

spatio-temporal information in the past two months for a large

celluar company).

To facilitate fast access to valid data and efficient deletion

of expired data for a spatio-temporal database with limited

retention, we introduce a new index scheme, called SWST

(Sliding Window Spatio-Temporal index), in this paper. SWST

has a two-layered structure. The first layer partitions the spatial

space into uniform cells. Each spatial cell has two B+ trees,

as the second layer of SWST, to index its entries mainly based

on the temporal information. The temporal space consists of

a start timestamp dimension and a valid duration dimension.

We perform a modulo operation on the start timestamps

of data entries to bound them within the size of two sliding

windows. The two B+ trees are used for indexing data entries

in the two sliding windows, respectively. When the second B+

tree is full, all entries in the first B+ tree are expired. All of the

first B+ tree can then be safely removed, the second B+ tree

becomes the first one, and a new second B+ tree can be created

for the incoming entries. In this way, SWST provides a very

fast (almost no overhead) lazy deletion of expired entries. It

also ensures that we never maintain the amount of data greater

than twice of the physical sliding window size.

To achieve improved search performance, we

encode/linearize both temporal and spatial information

of a data entry into a key for its B+ tree so that the spatial

information can also provide some additional pruning power

besides the temporal information in the second layer. Hence

our index scheme does not fully decouple the temporal space

from the spatial space. The encoding/linearization is done in

such a way that all the entries that will be deleted together due

to the move of the sliding window are placed adjacently in

the B+ tree and the entries are further ordered by their spatial

proximity. Since both the start timestamp (after the modulo

operation) and the valid duration are bounded, the size of a

key value is prevented to increase with time. Furthermore, an

in-memory structure, called the isPresent memo, is adopted

to identify those regions (cells) in the temporal space which

do not actually contain any data entries so that searching for

these cells can be skipped. We also classify partial and full

temporal cells so that the evaluation of a query condition for

data entries in full temporal cells can be avoided since these

entries are guaranteed to be qualified. In addition, we also

perform multi-search optimization for accessing a B+ tree in

such a way that a node is never accessed more than once.

The rest of the paper is organized as follows. Section II

discusses related work. Section III describes the data model,

the supported query types, and the index structure. Section

IV presents our algorithms and optimization strategies for

insertion, search and deletion. Section V reports performance

evaluation experiments. Finally, Section VI summarizes con-

clusions and future work.

II. RELATED WORK

Sliding window queries were studied extensively for Data

Stream Management Systems (DSMS) in the literature [2],

[3], [4], [5], [6]. However, as mentioned earlier, data in our

sliding window has to be maintained on disk rather than in

memory due to its large volume, which is different from a

conventional sliding window in a DSMS. There are differences

in terms of the supported query type, stored data and index

model. Hence, most query processing techniques suggested for

a DSMS become irrelevant.

To our knowledge, there are only two pieces of existing

work [7], [8] that index a sliding window on disk. Both

of them use a partition based strategy. The basic idea is to

divide an (big) index into smaller sub-indexes so that the

insertion and deletion of entries could be restricted to specific

smaller sub-indexes. Here the optimization comes from the

fact that the insertion and deletion would be localized to

specific smaller sub-indexes, but a search may need to be

performed on multiple sub-indexes. Our index scheme also

employs sub-indexes, but with an optimization to use only two

of them with a proper size via performing a modulo operation

on the arrival time. As a result, our index scheme is able to

achieve efficient insertion/deletion as well as fast searching.

Indexes in [7], [8] were designed for one dimensional data and

are not suitable for spatio-temporal data and queries that are

supported by our index scheme. Furthermore, they have only

the notion of object lifetime, i.e., the sliding window size, but

no notion of valid time as our index scheme does. In fact,

to the best of our knowledge, there is no existing work that

maintains a sliding widow of spatio-temporal data on disk.

Existing Spatio-Temporal Database Management Systems

(STDBMS) maintain full historical information, only current

information, information about future trajectory, or all three

types of information. There is no existing work that supports

current and limited past spatio-temporal data via a sliding

window, like our work does. In the existing spatio-temporal

index techniques, either it is very difficult to delete the expired

entries due to lack of a clear partitioning of data based on the

arrival time in the index, or the search performance is low.

Historical indexes such as MV3R tree [9] and 3D R-tree [10]

would incur high deletion cost for removing the expired entries

(MV3R currently does not support deletion). HR tree [11] and

HR+ tree [12] maintain a separate R-tree for each timestamp

and thus can support efficient deletion, but they are not suitable

for interval queries and require very large storage space. As

mentioned earlier, our index scheme supports both efficient

deletion and fast searching.

Many index techniques have been developed for moving

objects in the last two decades. [13], [14] give good surveys

that include a brief summary and classification of these index

techniques. Most of the recently proposed index schemes for

moving objects use the velocity information to index the

343343



past, present and/or the future trajectory. B(x)-tree [15] is a

future trajectory index that uses the velocity information to

synchronize updates to different time phases. This index has

been used by Lin et al. [16] to index past, present and future

trajectory. Pelanis et al. [17] have proposed a variation of

TPR tree [18] (a future trajectory index) for indexing moving

objects at all points in time. These methods cannot be used

for discretely moving objects that are considered in our work,

as they have no associated velocity.

PIST [19] and MV3R [9] are the best available historical

indexes for discretely moving point objects. They both have

similar query performance although they are built with quite

different approaches. MV3R cannot support deletion and lacks

clear partitioning of data based on the arrival time. Because

of these restrictions, MV3R cannot be used for a sliding

window. PIST can be modified to support a sliding window

model, but it has limitations and performance issues since

PIST was not designed for a sliding window. The limitations

and performance issues in PIST are due to lack of support

for current entries and also a strategy to split a long duration

entry into multiple sub-entries. Artificial splits can make the

window maintenance complex and difficult. We will discuss

these issues in more detail in Section V-A. These issues are

properly addressed in our index scheme.

Similar to spatio-temporal indexes SETI [20] and PIST [19],

our index scheme partitions the spatial space into grids (cells)

and each spatial cell has a temporal index. These indexing

techniques fully decouple the spatial and temporal information

in their two-layered index structures and thus cannot make use

of any further spatial discrimination for entries within a spatial

cell. However, our index scheme does not fully decouple the

spatial and temporal spaces. The keys used for the B+ trees

in the second layer of our index scheme contain both spatial

and temporal information.

Initially, we had considered to adopt a current location

index, such as RUM tree [21], to support the sliding window.

But we did not pursue this direction further due to performance

considerations. To retain only the current information, RUM

tree has to keep on removing non-current entries using a

garbage collection mechanism, which is an additional over-

head as compared to traditional historical indexes. Moreover,

to retain a limited past history in an index like the RUM tree,

we need to repeatedly monitor the entries for expiration, which

would be more complex. In SWST, there is almost no overhead

for the sliding window maintenance.

III. MODEL AND STRUCTURE

To facilitate the discussion of our index scheme, we use the

notations given in Table I.

A. Data Model and Query Type

A two-dimensional discretely moving point object can be

represented as < oid, xi, yi, s, d >, where oid is the id of

the object that has a spatial location (xi, yi) along x and

y dimensions during time interval [s, s + d). In general,

most spatio-temporal index maintain temporal information in

TABLE I

NOTATIONS

Notation Description
W Sliding window size
L Slide (sliding step size)
Xp Number of partitions along (spatial) x-axis
Y p Number of partitions along (spatial) y-axis
Sp Number of partitions along (temporal) start time axis
Dp Number of partitions along (temporal) duration axis
Δ Interval size along start time axis
δ Interval size along duration axis

Dmax Maximum valid duration
ND Special duration value in implementation for current

entries whose final durations are unknown

the form of start timestamp tstart and end timestamp tend,

which means that the object oid was at location (xi, yi)
during time interval [tstart, tend). We represent the temporal

information as (Starttime s, Duration d), where s = tstart and

d = tend−tstart (> 0). For an entry whose end timestamp tend
is unknown at the moment, we call it as a current entry and

assume d =∞. The valid time of an entry < oid, xi, yi, s, d >
is the interval [s, s+ d).

To capture the limited retention of data, we adopt a time

based sliding window model, which has a semantics similar

to that from data stream management systems [2]. We view

the aforementioned moving objects/entries as a data stream S
ordered by their start timestamps. However, due to the large

volume and relatively long durations, the data entries are kept

on disk rather than in memory. The sliding window has a

“window size” parameter W indicating its covered time length

as well as a “slide” parameter L indicating the granularity with

which the sliding window moves. The lifetime of an entry <
oid, xi, yi, s, d > is the interval [s, �(s+W )/L�∗L]. An entry

is expired if the current time τ is greater than �(s+W )/L�∗L.

Limited retention of data entries is realized via the lifetime.

In other words, expired entries will never be included in a

query result even if they may be still valid, i.e., s + d >
�(s+W )/L� ∗L. Hence expired entries can be safely deleted

from the database.

For the sliding window over stream S with window size W
and slide L, the queriable time period at current time τ is the

interval Tτ = [τ ′, τ ], where τ ′ = max{�τ/L� ∗ L −W, 0}.
We define the output relation of the sliding window at time τ
as follows:

R(τ) = { μ | μ =< oid, xi, yi, s, d >∈ S ∧ s ∈ Tτ } .

In other words, relation R(τ) contains the entries whose start

timestamps are within the queriable time period. Since the

slide L can be large, in our sliding window model, the window

size varies between W and W+(L−1) rather than being fixed

at W . Variable sliding window enables us to capture all the

data from a limited past to the present without any omission.

We handle two types of historical queries, namely, (a) a time

interval query, which selects all the entries from R(τ) that are

within a given spatial area and valid during a queried time

interval within Tτ , and (b) a time slice query, which selects

344344



all the entries from R(τ) that are within a given spatial area

and valid at a queried timestamp within Tτ .

To support efficient searching and deletion for data with

limited retention in our model, we introduce an index scheme

in the following sections. The index is designed for a given

(physical) sliding window with parameters W and L, but it

can also support logical windows, having a smaller window

size W ′ (i.e., W ′ ≤ W ), over the physical one. W ′ can be

specified for each user or specified as part of a query. Note

that the largest query window size is kept equal to the object

retention time because information beyond the object retention

time cannot be queried (since it is expired).

B. Index Structure

Our index has a two layered structure, consisting of a spatial

grid and a temporal index (see Fig. 1), as described below.

����

���	
���� ���	
����

��� ���	����
�����

����

��

��	�
��	
���

���������	
 �����

� �

�
�

�� �
�

�� �����

��
��
���
��	



������� �����������

���������	


��
��
���
��	



Fig. 1. Index Structure

1) Spatial and Temporal Indexes: The spatial space is

divided into Xp × Y p uniform, non-overlapping cells. Data

entries are distributed into these cells based on their spatial

locations. Each spatial cell has a temporal index that consists

of two B+ trees. Entries in the cell are indexed in one of the

two trees according to their start timestamps.

As mentioned earlier, the actual size of our sliding window

varies between W and W + (L − 1). Let Wmax = W +
(L− 1). The first B+ tree contains the entries with their start

timestamps in the interval [0, Wmax − 1], and the second

B+ tree contains the entries with their start timestamps in

the interval [Wmax, 2Wmax − 1]. We perform a modulo

2Wmax operation on the start timestamps of all the entries,

and by this, the start timestamps remain bounded within the

interval [0, 2Wmax − 1]. When entries with start timestamps

≥ 2Wmax arrive, the first B+ tree can be safely dropped, as

all the entries in it would have expired. The entries with start

timestamps in the interval [2Wmax, 3Wmax − 1] can thus

be inserted into the first B+ tree. Maintaining two B+ trees

enables us to remove the expired entries easily.

In SWST, spatial filtering followed by temporal filtering is

better than the other two options, namely temporal filtering

followed by spatial filtering or integrating the two types of

filtering. As we will see later in Section IV-B, temporal

filtering generates a much greater number of overlapping cells

as compared to spatial filtering, and thus it would require more

search. Moreover, if we perform the temporal filtering first, we

cannot use simple dropping technique for removing the expired

entries, which makes the sliding window maintenance very

efficient in SWST (discussed later in Section IV-C). Integrating

spatial and temporal filtering will significantly increase the

overhead of deleting expired entries due to lack of clear

temporal partitioning.

2) B+ Tree Key Computation: Keys that used in B+ trees

are obtained by linearizing the temporal values, i.e., (Starttime

s, Duration d), and spatial locations, i.e., (x, y), of the entries

into one dimensional ordered values. For a current entry (i.e.,

whose final duration is unknown), we use a special value

ND = Dmax + 1 to represent its duration in our index

scheme. The two B+ trees index two temporal spaces where

start timestamp s after the modulo operation ranges in the

intervals [0, Wmax−1] and [Wmax, 2Wmax−1], respectively,

and duration d ranges in the interval [1, Dmax + 1] for both

spaces. We divide each of the temporal spaces into Sp ×Dp

uniform, non-overlapping temporal cells. We consider uniform

partitioning for both spatial and temporal cells because, for a

streaming sort of data, the distribution may go on changing

with time. For a known and fixed data distribution, we could

use better partitioning strategies such as those proposed in

PIST [19]. For a given start timestamp s, duration d and

location (x, y), its key is computed as follows:

KEY (s, d, x, y) = [s-partition(s)]2

⊕[d-partition(d)]2

⊕[zc(x, y)]2
where

s-partition(s) = �((s%(2Wmax)) ∗ Sp)/Wmax�,
d-partition(d) = �((d− 1) ∗Dp)/(Dmax + 1)�,
zc(x, y) = Z-curve value of (x, y).

Here [x]2 denotes the (fixed-length) binary value of x and

⊕ denotes a concatenation. Note that s-partition() and

d-partition() range in the domains [0, Sp−1] and [0, Dp−1],
respectively. The top (Dp − 1)-th d-partition contains the

current entries. In our index, we assume that Sp = �Wmax/L�
and Dp = �Dmax/δ�.

 

Fig. 2. Space Filling Curves

Space filling curves are used to map points from a higher

dimensional space to points in a lower dimensional space.

In [22], the authors have shown that both Peano (Z-curve)

and Hilbert curve are effective in maintaining proximity for

345345



two-dimensional points, i.e., both curves give a close one-

dimensional mapping for points which are close in the two-

dimensional space. As we will see in Section IV-B, our index

requires a space filling curve to have the following property:

for any given rectangle in the two-dimensional space, the lower

leftmost end point should have the minimum mapping value

and the top rightmost end point should have the maximum

mapping value, as compared to all the points within the

rectangle. For Hilbert curve shown in Fig. 2, we can see

that hc(D) > hc(C), which violates the required property.

However, for Z-curve, the values of zc(C) and zc(A) are

the maximum and minimum values, respectively, w.r.t. all the

points within the rectangle. Hence, Z-curve is adopted here.

From the composition of our index key, we can see that the

entries with closer start timestamps and closer durations are

placed near to each other in the B+ trees. Furthermore, our

index key contains both temporal and spatial information. The

reason to include the spatial information here is to provide a

further spatial pruning power via the B+ trees after the spatial

grid filtering at the first layer.

3) isPresent Memo: As we will see in Section IV-B, the

presence of long duration entries greatly increases the search

space of a temporal index. We use an isPresent memo data

structure to reduce the search space. The memo maintains

statistical information about each temporal cell. For each

temporal cell, the memo keeps a minimum bounding rectangle

which covers the spatial locations of all the entries that are

assigned to that temporal cell. We maintain an isPresent memo

for each spatial cell.

The benefits of using this memo will become more clear

in Section IV-B, where we discuss the search algorithms, but

we can see that this kind of grid-based statistical information

can be maintained only if the dimensions are bounded. If we

use the start timestamp tstart and end timestamp tend as in

existing historical spatio-temporal index structures, we would

not be able to divide these dimensions into grids because we

cannot bound both these dimensions at the same time. By

using start timestamp and duration to represent the temporal

information, we can bound the temporal space, which enables

us to maintain gridwise statistical information. This memo is

especially helpful when there is a small fraction of entries with

a long time intervals or data is skewed spatially.

For each temporal cell, we need to maintain the two end

points of the minimum bounding rectangle, which requires 16

bytes of information. Thus the size of each memo would be

2 ∗ 16 ∗ T p ∗Dp bytes, since in each spatial cell we have two

temporal spaces with each being divided into T p∗Dp temporal

cells. The amount of retained statistical information does not

change with the dataset size.

IV. ALGORITHMS

A. Insertion and Updates

To insert an entry < oid, xi, yi, s, d >, first of all, we

compute the spatial cell to which the spatial location (xi, yi)
belongs. In each spatial cell, we have two B+ trees to index the

temporal information. We insert the entry in �(s/Wmax)�%2-

th B+ tree. The entry is inserted with key KEY (s, d, xi, yi),
as described in Section III-B.2.

For some applications, the actual value of duration d is

known at time of insertion; such entries can be inserted directly

into the corresponding B+ tree. Applications that support

current entries may not have the value of d available at the time

of insertion. They initially insert < oid, xi, yi, s,NULL >,

and the actual value of d is determined later, from the start

timestamp of the next entry for that object. For our implemen-

tation, we maintain current entries by initially inserting them

with key KEY (s,ND, xi, yi). When a new entry arrives, the

moving object also sends the previous location information.

We delete the previous entry and then re-insert it with the

actual duration value. The location information of the new

entries is inserted with duration value ND.

The information in isPresent memo is updated as we

perform insertion and deletion operations in the B+ trees.

Clearly, our index does not have any partial persistency

restrictions like the MV3R tree. A partially persistent index

allows updates only on the current or most recent entry of

an object. MV3R uses this partially persistent model because

it helps in separating the current and non-current entries.

They have heuristics which uses this condition to support fast

insertion and search. Since MV3R cannot support arbitrary

deletion, it cannot support the sliding window model. The size

of the MV3R index will go on increasing with time, with no

systematic way to clean up the things. Our scheme is very

flexible and can support update or deletion of any valid entry

in the current sliding window.

B. Queries

An interval query is of the form ([xl, yl], [xh, yh], [tl, th]),
where query’s spatial area is given by rectangle

([xl, yl], [xh, yh]) and time interval by [tl, th]. A timeslice

query is a special case of an interval query with tl = th.

Query evaluation is done in two stages: (a) computing the

spatial overlap, and (b) computing the temporal overlap. To

compute the spatial overlap, we determine the spatial cells

that overlap with query’s spatial area. The overlapping can be

partial or full. Fig. 3 shows a shaded spatial query rectangle

or area that overlaps with multiple spatial cells. For each of

the overlapping cells, we need to search the corresponding

temporal index for finding entries that also satisfy the

temporal predicate. Computing the temporal overlap is bit

�

��  ����!����"

�
�

 �#��!�#��"

��

��

��  $��!%��"

&

 �!�"

'��
()�����	����
&
��

Fig. 3. Query and Spatial Cell Overlap

346346



more complex. Temporal filtering for either type of query is

done in four steps: (a) computing overlapping regions, (b)

determining non-empty overlapping regions, (c) searching

B+ trees, and (d) refining the search result to remove false

positives. In Fig. 3, we have shown an enlarged image of

spatial cell A that overlaps with query’s spatial area. The

query box and the spatial cell share a rectangle, with end

points marked as Sl and Sh. We describe the search in the

temporal index using this spatial cell.

a) Computing Overlapping Regions: The evaluations of

a timeslice and an interval query differ only in this step. We

first discuss the timeslice query evaluation, and then describe

interval query evaluation. This step is performed statically. The

result of this step will be the same for all the overlapping

spatial cells.

Given a timeslice query t (i.e., t = tl = th), we statically

compute all the temporal cells in the current sliding window

that overlap with t%2Wmax. Like a spatial cell, the overlaps of

a temporal cell can be of two types: (a) partial, and (b) full.

All the entries present in a fully overlapping temporal cell

will satisfy the temporal predicate, whereas, for a partially

overlapping cell, one has to do an extra refinement step to

prune out the false positive entries. Determining the partial and

full overlaps does not reduce the search IO, but it can greatly

reduce the CPU computation time during the refinement step.

*����+,�
���

-�
	����+,�
���

.��+,�
���� �����
���������-�
���	�
�/
� ���� 0����

� Δ = 1�0�2�
� ���� 0����

� 3�0���

� '��
()�������
���-
���4�	�

1�0�2�  #!%"

 �!�"

( �
� �������4�/�	 0���#

� ��	�
,��/�	� 0����!�	� 0���#

� '��
(����4��� �����+,�
���
� �� 0� $��!%��"

� �� 0� ����!����"

��

�5

 �"  6"

���������	


��
��
���
��	

 3�

0
��

�

Fig. 4. Overlapping Regions

Fig. 4(a) shows an example of a temporal index and

temporal query predicates. We divide the temporal space into

temporal cells and each temporal cell is identified by its lower,

leftmost s-partition and d-partition coordinates. A temporal

cell with s-partition = m and d-partition = n can have

entries with start timestamp in interval [m · L, (m + 1) · L)
(call it [S1, S2)) and duration in interval [n · δ, (n + 1) · δ).
Therefore, the end timestamp, (s + d), of entries will lie in

interval [m·L+n·δ, (m+1)·L+(n+1)·δ) (call it [E1, E2)).
An entry with start timestamp s and duration d will overlap

with a timeslice query t, if s ≤ t < s + d, and will overlap

with an interval query [tl, th], if s ≤ th and s + d > tl.
In our sliding window model, start timestamp s and query

timestamps (i.e., t, tl, th ) should all lie within the queriable
time period defined in Section III-A. The overlap between the

start timestamp interval and the end timestamp interval of a

temporal cell can be of two types: (1) disjoint (i.e., S2 < E1),

and (b) overlapping (i.e., E1 ≤ S2). We can divide the time

interval [S1, E2) into three intervals, as shown in Fig. 5.

Fig. 5. Relationship between Start and End Timestamp Interval

In Fig. 4(b), we have marked the partially and fully overlap-

ping temporal cells for a timeslice query t = 125. The cell with

s-partition = 1 and d-partition = 2 has a partial overlap

because this cell contains entries whose start timestamp s lies

in interval [40, 80) and end timestamp s + d lies in interval

[80, 140). Clearly, not all the entries in this cell are guaranteed

to satisfy the query overlap condition s ≤ t < s + d, where

t = 125. For s-partition = 1 and d-partition = 5, start

timestamp s lies in interval [40, 80) and end timestamp s+d
lies in interval [140, 80 +ND) (where ND = Dmax + 1 =
121). Clearly, all the entries in this cell are guaranteed to

satisfy the timeslice overlapping condition. These observations

can be expressed more formally through the following two

Theorems.

Theorem 1: For a given timeslice query t ∈ [S1, E2),
a temporal cell C having disjoint start timestamp and end

timestamp intervals has a full overlap with the timeslice query

if t lies in interval [S2, E1]. Otherwise, it has a partial overlap.

Proof: As shown in Fig. 5(a), all entries in cell C have

start timestamps in interval [S1, S2) and end timestamps in

interval [E1, E2). The valid time of every entry in this cell

contains the interval [S2, E1], and thus every entry satisfies

the timeslice query t if t ∈ [S2, E1]. If t ∈ [S1, S2) or

t ∈ (E1, E2), then there may be entries with start times-

tamps in interval (t, S2) or end timestamp in interval (E1, t),
respectively, which have no overlap with the given timeslice

query.

Theorem 2: For a given timeslice query t ∈ [S1, E2), a

temporal cell C having overlapping start timestamp and end

timestamp intervals will always have a partial overlap.

Proof: As shown in Fig. 5(b), if t ∈ [S1, E1], there can

be entries with start timestamps in (E1, S2) which have no

overlap with t. If t ∈ (E1, S2), there may be entries whose

valid time is within [S1, t). Similarly, if t ∈ [S2, E2), there

may be entries with valid time within interval [S1, t).
It is easy to verify that for a given s-partition, once we

have a d-partition that satisfies the full overlap condition for

a timeslice query, all the d-partitions above it in the same

s-partition will also satisfy the full overlap condition. This is

true because of Theorem 1. For a given s-partition, if we in-

crease d-partition value, then the interval [S2, E1] of a lower

347347



d-partition is fully contained within the interval [S2, E1] of

a higher d-partition. Thus, if a timeslice query t lies within

interval [S2, E1] of a lower d-partition, then it will also lie

within such an interval for a higher d-partition. The current

entries whose start timestamp satisfies the overlapping criteria

and are within the queriable time period will always have a

full overlap.
For a given timeslice query t, one can statically compute

the triplets of the form (soi, doip, doif ) for all s-partitions

soi such that entries in cells with s-partition = soi and

d-partition in interval [doip, doif ) will have a partial overlap,

entries with s-partition = soi and d-partition in inter-

val [doif , D
p) will have a full overlap, and entries with

s-partition = soi and d-partition in interval [0, doip) will

have a no overlap. These regions are shown in Fig. 4(b). One

can directly compute the values of doip and doif for a given

soi. The soi’s should be within the queriable time period and

d-partition’s should be within interval [0, Dp). For a timeslice

query we compute these triplets and pass it to the next step as

a sorted list, ordered by s-partition values in the ascending

order.
For interval queries, we need to compute the overlapping

region for the whole interval [tl, th]. For this we compute

overlapping regions for tl and th separately, as described

above, and then merge the two list of regions to generate

overlapping region for the whole time interval. The merging

is done columnwise (i.e., one column for each s-partition in

the temporal space). The merged list of overlapping column

regions is also ordered by the s-partition values. Given

the two lists of overlapping regions for tl and th, sorted

by s-partition values, we merge them using the following

algorithm:

1) If an s-partition is present in both the lists then the

merged overlapping column region is the same as tl’s
overlapping column region. The cells in the overlapping

column region will have the same type (partial, full or

none) of overlap as of tl’s.

2) If an s-partition appears only in th’s overlapping

column region or is in between the overlapping column

regions of th and tl, then all the cells for such an

s-partition will satisfy the full overlapping condition.

3) For all the other s-partitions, there will be no overlap

for the corresponding columns.

The overlapping regions for an interval query, as computed

above, may contain partially overlapping temporal cells that

actually are fully overlapping. Identifying as many full cells

as possible is beneficial because it reduces unnecessary CPU

checking overhead during the refinement step.
In Fig. 5, we had graphically shown the temporal ranges

covered by a temporal cell. In Theorems 1 and 2, we had

discussed the conditions for a temporal cell to have a full

or partial overlap with a timeslice query t. The algorithm

described above marks only those cells having a full overlap,

where at least one of the end points tl and th satisfies the full

overlapping criteria of Theorem 1. Our next theorem shows

that, even if tl and th individually have a partial overlap, we

can identify those temporal cells which have a full overlapping

using the condition given in the following theorem.

Theorem 3: For a given interval query [tl, th] with tl
and/or th in [S1, E2), a temporal cell C has full overlap

with the interval query if query interval [tl, th] overlaps

with interval [S2, E1] (i.e., cell has disjoint start timestamp

and end timestamp intervals) or fully contains the interval

[E1, S2] (i.e., the cell has overlapping start timestamp and end

timestamp intervals). Otherwise, the cell has partial overlap.

Proof: If cell C has disjoint start timestamp and end

timestamp intervals and tl or th lies in interval [S2, E1], then,

according to Theorem 1, tl or th has a full overlap. Thus,

the interval query also has a full overlap. If both tl and th
lie outside interval [S2, E1], then, according to Theorem 1,

they both have a partial overlap and our merging algorithm

described above would mark the cell as partial. If tl lies

in [S1, S2) and th in [E1, E2), then we can see that, even

though none of the end points lie in the interval [S2, E1]
and individually they both have a partial overlap, the interval

[tl, th] actually contains the interval [S2, E1] and thus all

the entries in the cell will actually satisfy the query interval.

From these cases, we can conclude that, if [tl, th] overlaps

with interval [S2, E1], then we have a full overlap.

If cell C has overlapping start timestamp and end timestamp

intervals, tl and th will have a partial overlap (from Theorem

2), irrespective of where they lie in interval [S1, E2). How-

ever, if tl lies in [S1, E1) and th lies in (S2, E2], then all

the entries must satisfy the query interval because the valid

time of every entry in the cell must overlap with the time

interval [E1, S2]. Thus, the cell has a full overlap with the

interval query in this case. For all other possible locations of

tl and th, one can easily verify that the cell will have a partial

overlap.

The merge algorithm described above may mark some of the

temporal cells that have a full overlap as a partial overlap. For

the cells that are marked partial, we can additionally check

the criterion in Theorem 3 to see if they actually have a

full overlap. Using Theorem 3 can maximize the number of

discovered full overlap temporal cells. Note that, due to the

static nature, this step of computing overlapping regions needs

to be done for only one overlapping spatial cell and the result

would be valid for all the overlapping spatial cells.

b) Determining Non-empty Overlapping Regions: In this

step, we compute multiple small key ranges that we later use

to search the underlying B+ trees in the third step. We had

described in Section II, the effect of long duration entries in

PIST. Similarly, the presence of long duration entries creates

a large overlapping region in our index too. To mitigate the

problem, we use statistical information maintained in isPresent
memo to greatly reduce the overlapping region. In this step,

we try to precisely identify the non-empty overlapping column

regions and generate keys for those regions. This step shows

the benefits of not fully decoupling the spatial and temporal

information in our temporal index and the use of Z-curve.

Existing techniques, such as PIST and SETI, have a dis-

advantage due to fully decoupling the spatial and temporal

348348



�������	��7�8������	(������

1�0�2�

3�
0

��
�

 #!%"



1�0�2�

3�
0

��
�

 #!%"

7� 79

 :��!�:���"�0�;:�< 2�!�=�!�$��!�%��"!��:�< $>!�.�!�����!�����"?�
 :��!�:���"�0�;:�< =�!��!�$��!�%��"!�:�< ��>!�$>!�����!�����"?
 :9�!�:9��"�0�;:�< ���!���!�$��!�%��"!��:�< �#>!�$>!�����!�����"?�

 �"  6"

 �!�" �!�"
���������	


��
��
���
��	



7�

Fig. 6. Non-empty Overlapping Regions

information. For example, if we see the overlap of spatial cell

C with query’s spatial area (i.e., the top rightmost corner) in

Fig. 3, the overlap is very small as compared to overlap with

central cell B, which has a full overlap. If we do not use any

spatial discrimination while searching the temporal index, then

the amount of search required in a very small overlapping cell

like C will be the same as that of a fully overlapping cell

like B. The temporal search will generate a large number of

false positive results that will have to be later removed through

the spatial predicate. Our non-fully-decoupled temporal index

can significantly reduce the number of false positive results

by taking into account the exact amount of spatial overlap.

In Fig. 6(a), we identify those temporal cells which have an

empty overlap with the query’s spatial area. An empty overlap

can happen either because no entry is inserted in that temporal

cell or the entries in that temporal cell do not overlap with

the query’s spatial area. Both these types of overlap can be

checked using the information contained in isPresent memo.

We check whether the minimum bounding rectangle of the

temporal cell overlaps with the query’s spatial area or not.

If only a small fraction of entries have a long duration or the

spatial distribution is skewed, then many overlapping temporal

cells can have an empty overlap. In Fig. 6(a), the cells which

are not crossed may have entries that can satisfy the query

predicate. The non-empty overlapping cells in a s-partition
column region can be merged to form a continuous non-empty

overlapping column region, as shown in Fig. 6(b). The column

region includes all temporal cells between the minimum and

maximum non-empty overlapping cells. In other words, we

remove only empty temporal cells at the top and bottom ends,

or the entire column region.

After removing empty overlapping cells, let K be

the number of s-partitions (columns) having non-

empty overlaps, each of which can be represented as

(si, dip, dif , die) where i ∈ [1, K]. Such a representation

means that, for s-partition si, d-partitions in interval

[dip, dif ) have non-empty partial overlaps, d-partitions

in [dif , die] have non-empty full overlaps, and other

d-partitions (if any) have empty overlap. For the purpose

of searching the B+ trees, we ignore dif , and just consider

the range [dip, die] as having overlaps. Ignoring partial

and full overlaps in searching the B+ trees does not

change the number of IOs or the search procedure in

the remaining steps. The partial and full overlaps only

help reduce the CPU cost in the refinement step. For

each (si, dip, die), we generate a key range [kil, kih],
where kil = KEY (si · L, dip · δ, Sl(x), Sl(y)) and

kih = KEY ((si+1) ·L−1, (die+1) ·δ−1, Sh(x), Sh(y)),
where Sl and Sh are the lowest and highest overlapping

spatial coordinates, respectively, as shown in Fig. 3 (Sl(x)
denotes x coordinate of Sl). For computing kil and kih, we

take the lowest and highest possible values of start timestamp,

duration, and spatial coordinates of the overlapping region,

respectively. At the bottom of Fig. 6, we have shown the

key ranges computed for s-partition columns marked R1,

R2 and R3 in Fig. 6(b). The advantage of using this type

of key range is that it takes into account the precise spatial

and temporal overlapping information to compute the search

result.

The property of Z-curve that we discussed in Section III-

B.2 is important because it ensures that the key generated will

include all the valid entries. Z-curve satisfies that property

and is also considered to be good in maintaining proximity.

To the best of our knowledge, most of the commonly used

space filling curves, including the Z-curve, does not ensure

a strict ordering in the sense that, if we specify a rectangle

and use the lowest and highest values of the points within the

rectangle to form a range, the range may also cover points

which are outside the specified rectangle. This property leads

to false positive results, which we need to remove later in the

refinement step. Using a space filling curve reduces the search

space, but cannot eliminate the need of a spatial refinement.

The way we generated the keys in Section III-B.2 ensures

that all the entries of an s-partition will be placed adjacently

in the B+ tree, and moreover the key value increases as we

increase the d-partition value within an s-partition column.

Removing the temporal cells in empty regions, as in case of

s-partition = 0, 1, 2 and 3 in 6(a), is beneficial because

we do not have to search those ranges in the B+ tree. In the

case of s-partition = 3, even though the cell corresponding

to d-partition = 2 is marked as empty, but we still include

it within the non-empty overlapping column region. Including

empty overlapping temporal cells will not affect the search if

they really contain no entries. But if the cells have entries

and they are marked as empty due to an empty spatial

overlap, including such cells may slightly affect the search

performance. Instead of generating a separate key range for

each non-empty overlapping temporal cell (or segment), we

chose to combine the cells (segments) in each s-partition so

that the number of key ranges is reduced.

If we generate the keys in the ascending order w.r.t.

s-partition values, the key ranges will also be sorted and

disjoint. The entries would be present in the B+ tree leaves

from left to right. If we search each of these key ranges

individually, then we will end up traversing the same path

from the root to a leaf again and again, as these ranges could

be quite adjacent. In order to benefit from the fact that these

349349



key ranges are adjacent and disjoint, we perform a multi-search

optimization to speed up the search and reduce node accesses.

We describe the multi-search optimization below. If the key

ranges fall within one B+ tree, then all the key ranges are

returned in one list, or else we create two lists, one for each

of the B+ trees.

c) B+ Tree Search: Given a list of key ranges

(kil, kih) to be searched in a B+ tree, where i ∈ [1,K] and

kih ≤ k(i+1)l, we search the B+ tree in a level wise fashion.

This ensures that we do not access any B+ tree node more than

once. Furthermore, we do not access any node which has no

overlap with any of the searched key ranges. The main ideas

of the searching algorithm are as follows:

a We maintain two lists of B+ tree nodes. One of them

contains B+ tree nodes from the current level that needs

to be visited, while the other list contains the nodes from

the next level that will be visited in the future.

b With each B+ tree node that we visit, we associate a

list of key ranges that we need to search in that node;

i.e., we associate (kil, kih) with a node N, if kil falls

within the range of N. Note that since the key ranges

are disjoint and sorted, we can do these assignments for

the next level nodes while traversing the current level

nodes in one pass of the key ranges. Moreover, only the

highest key range allocated to a node may overlap with

neighboring nodes on the right.

c If the node is a leaf node and the highest key range

overlaps with the adjacent nodes, then we may use

the connectors between the leaf nodes, provided the

next node is not in the list of nodes that will be

traversed. Otherwise, we split the key range and assign

the remaining part to the adjacent node.

This algorithm is also applicable if the ranges are not disjoint,

but it would require more computation or CPU time (the IO

cost would remain the same).

d) Refinement: Due to the grid based index for both

spatial and temporal information, the search over regions

having a partial overlap needs to check whether each entry

in such a region actually satisfies the query condition. The

one dimensional spatial mapping, provided by the space filling

curve for the overlapping bounding box, does not help in

avoiding spatial refinements. As mentioned earlier, the range

given by the curve may contains points which are outside

the overlapping bounding box. A refinement is needed for

both the spatial and temporal predicates of the query. The

refinement step is not required for cells that have a full spatial

and temporal overlap.

Note that SWST can be extended to support data having

variable retention times which are less than the physical

window size, by just modifying this refinement step. With this

modification, one has to check in the refinement step if the

entry has already expired. The way we drop the fully expired

B+ tree in a temporal index would still remain the same.

C. Sliding Window Maintenance

Whenever the current time becomes k ·Wmax, where k ≥ 3,

we can drop the B+ tree which contains entries with start

timestamps in interval [(k − 2) ·Wmax, (k − 1) ·Wmax) for

every spatial cell. This is because all the entries in such a tree

would been have expired. When we drop a B+ tree, we also

reset the corresponding isPresent memo entries. If required,

any particular unexpired entry from any of the B+ trees can

be deleted.

V. EXPERIMENTAL EVALUATION

A. Establishing the Baseline

In Section II, we had briefly mentioned PIST [19] and

MV3R [9] trees, which are currently the best historical spatio-

temporal indexes for discretely moving point objects. In this

section, we discuss the limitations and performance issues that

arised while trying to use these index structures as a sliding

window index.

PIST is a two-layered index that divides the spatial space

into spatial cells and then each spatial cell has a temporal index

based on the B+ tree. The temporal index is a composite index

on (tstart, tend), where tstart and tend are the start and end

timestamps, respectively. PIST requires all historical data to

be available before the index is built so that it can use the

knowledge of the data distribution to determine an optimal

space partitioning and also the value of an optimal temporal

range. If there are entries with a long temporal range, then,

PIST divides the long temporal range into multiple smaller

temporal ranges to maintain good query performance. Splitting

an entry with a long temporal range into multiple sub-entries

with a short temporal range makes deletion more complex

and inefficient. In the cellular phone application described in

Section I, there can be patients admitted in a hospital, who

do not change their locations and thus generate entries with a

long temporal range.

How long temporal range entries affect search in PIST can

be understood as follows: In PIST, the overlapping condition

for interval query [tl, th] is: tl − λ ≤ tstart ≤ th and

tl ≤ tend ≤ th+λ, where λ is the largest temporal interval. A

timeslice query is a special case where tl = th. They search the

composite index for these ranges of tstart and tend. Clearly,

the search range depends on parameter λ. In order to keep

this λ value small, if there are entries with long (tstart, tend)
interval, then they split it into smaller intervals and insert

all the sub-intervals into the index. This solution affects the

insertion performance a bit since we have to insert multiple

entries, and leads to fast search, but it can greatly affect the

deletion performance, especially if one wants to maintain a

sliding window. One original entry will have multiple entries

in the index. If there are very few entries with a long duration

and one does not allow split, then it will increase the temporal

search parameter λ for all spatial cells.

In a sliding window model, data insertions and queries are

interleaved. There are current entries whose tend is unknown.

PIST cannot support such data. One can delete or update

350350



any entry in PIST. To maintain a sliding window (without

support for current entries) in PIST, one would require to

regularly locate and delete a large number of expired entries

from various partitions. This would also require a lot of re-

balancing of the underlying index tree.

MV3R creates R-trees for different time intervals. The

temporal intervals are not pre-defined, rather they are auto-

matically determined as the result of root splits. Due to lack

of a clear partitioning for the start timestamps in MV3R,

one cannot drop its R-trees which contain entries outside the

sliding window. Furthermore, due to its partial persistency

requirement, one cannot delete/update non-current entries in

MV3R. Hence, MV3R cannot be modified to support the

sliding window semantics. In MV3R, an entry with a long

temporal range is also split into multiple sub-entries. Optimiza-

tions in MV3R are based on using nice splitting heuristics, and

thus splits are unavoidable in MV3R.

The existing historical indexes build a complete index first

and then execute a batch of queries on the index. For a sliding

window index, the queries have to be within the current sliding

window. This requires a workload with interleaved insertion

and search operations. As pointed out earlier, PIST requires all

the historical data to be available before the index is built and

it cannot support current entries. Because of these restrictions,

we couldn’t compare SWST with PIST. We evaluated the

insertion and search performance of our index with the MV3R

tree, which can also support current entries. Many applications

do not have a velocity associated with the moving objects,

and thus we do not compare our work against the more recent

velocity based indexing techniques for spatio-temporal data.

Although an efficient sliding window maintenance was the

primary aim of our work, there is no existing work with which

we can compare performance of SWST. Our index supports the

sliding window model with almost no overhead for removing

the expired entries. Because of not splitting entries with even

long duration values, we can simply drop the expired B+ trees.

B. Experimental Settings

We performed our experiments on synthetic data generated

by the GSTD [23] method. We used GSTD to generate a

stream of two dimensional, discretely moving data points.

GSTD has been used for indexing the past locations of moving

objects by many access methods, such as [19], [20], [9], [11],

[12]. GSTD generates two dimensional points with an object

ID and the associated start timestamp. It can generate data

with different distributions. A duration is determined by the

difference of two consecutive start timestamp updates of an

object. We used the parameters given in Table II, where values

in bold denote the default values used.

For all the experiments, the initial positions and movements

are uniform. We scaled GSTD data to the ranges shown in

Table II. Our index performs better when the data is skewed.

For skewed data, the isPresent memo becomes more useful.

Due to the space constraint, we do not include the results

for skewed data. For uniformly distributed data, memo is still

TABLE II

PARAMETERS AND THEIR SETTINGS

Parameter Setting
Page Size 8K
Data X = [0− 10000], Y = [0− 10000]

T = [0− 100000], D = [0− 2000]
Spatial Xp = 20, Y p = 20
Temporal W = 20000, L = Δ = δ = 100
Query Selectivity Spatial Extent = 0.5%, 1%, 4%

Temporal Extent = 0%, 5%, 10%, 15%
Dataset Size 10K, 25K, 50K objects producing

1M, 2.5M, 5M records respectively.
Number of Queries 200

useful when there is a small fraction of entries with a long

duration. We have shown this in one of the experiments.

During our simulation of the sliding window, we randomly

generated 200 queries within the current sliding window.

These queries were then run on the MV3R tree. We compared

the number of node accesses during insertion and search on

both MV3R and our index. The queries were generated when

the stream and index has reached steady state.

C. Insertion Performance

�

�#

��

�#

9�

9#

2�

2#

��
��
��
�	
	�
	�

��
�
���
��
�	
�

@97

����

�

#

��

� �A# #

��
��
���
��

����	��������
���������	�

Fig. 7. Insertion IOs

As shown in Fig. 7, the total number of node accesses during

insertion is comparable for SWST and MV3R. In SWST,

adding every new entry (except when the last entry of the

object is outside the current sliding window) requires two

insertions and one deletion. In MV3R, it requires one update

and one insertion.

Fig. 8, indicates the complexity difference between SWST

and MV3R. As noted in [19], MV3R is quite efficient in

terms of search, but it has a complex structure. PIST and

MV3R have similar search performance, but the difference

is in ease of implementation and complexity. The goal of

MV3R is to partition the data in such a way that all the

current entries are placed together. To accomplish this goal,

MV3R applies a number of heuristics. Moreover, since an R-

tree has overlapping search paths, one may need to traverse

multiple paths during a search. Due to the simple search and

split algorithms of a B+ tree, the insertion CPU time of SWST

is around 5 times faster as compared to MV3R.

351351



����

2���

%���

=���

�����

�����

��
��
��
��
��

��

��
�	
��
	�

@97

����

�

����

� �A# #

��
�

����	��������
���������	�

Fig. 8. CPU Execution Time

D. Search Performance

The MV3R source code [9] that we used in our experiments

loads the whole index in memory before search, while our

SWST is a disk based index. For this reason, in the following

experiments, we compare only the average node accesses, but

not the execution time.

0

50

100

150

200

250

300

350

0.50% 1% 4%

N
od

e 
Ac

ce
ss

es

Spatial Extent

MV3R

SWST

Fig. 9. Effect of Query’s Spatial Extent

1) Effect of Query’s Spatial Extent: This experiment was

done on the 5M data set with 10% query time interval. As

MV3R is based on R-tree, it performs well even for quite

a large spatial extent. Its performance is low when the time

interval is large, as MV3R has to query over multiple R-trees.

In SWST, a large query spatial extent would overlap with a

large number of spatial cells ,the temporal index of each cell

has to be accessed. As shown in Fig. 9, the performance of

SWST is better than MV3R till 4% spatial extent. Note that

4% spatial extent means 20% selectivity in each of the two

dimensions. The performance of SWST becomes significantly

better as we reduce the spatial extent. Encoding the spatial

information in the key enabled us to greatly reduce the number

of node accesses, even for a large query extent. Without the

space filling curve, the spatial cells with very small and large

query overlaps will require a similar number of node accesses.

2) Effect of Query’s Time Interval: This experiment was

done on the 5M data set with 1% spatial extent. We varied

the time interval between 0 (i.e., timeslice query) to 15% of

total temporal extent (i.e., T in Table II). As shown in Fig.

10, MV3R is more affected by the size of a time interval as

compared to SWST. MV3R may need to access multiple R-

trees, while SWST may need to access at most two B+ trees

0
20
40
60
80

100
120
140
160
180
200

0% 5% 10% 15%

N
od

e 
Ac

ce
ss

es

Time Interval

MV3R

SWST

Fig. 10. Effect of Query’s Time Interval

per spatial cell, even for large time interval. The performance

of MV3R is better for timeslice queries because MV3R just

needs to access one R-tree for such a query and, in such a

scenario, it is quite difficult for a grid based approach to have

a similar performance. As the size of a time interval increases

(more than 4%), we can see that SWST starts performing

better than MV3R.

0

50

100

150

200

250

300

350

400

0.50% 1% 4%

N
od

e 
Ac

ce
ss

es

Spatial Extent

SWST without memo

SWST

MV3R

Fig. 11. Effect of Long Valid Time

3) Benefits of isPresent Memo: This experiment was de-

signed to show the benefits of representing the spatio-temporal

data as (Start timestamp s, Duration d) and of maintaining the

isPresent memo. In this experiment, we took the 5M data set

and made 4% of its entries have a long duration, i.e., the

duration between 0− 20000. As discussed in Section III-B.3,

the isPresent memo becomes more useful when there is a small

fraction of entries with a long duration, or data is skewed.

In such a scenario, the difference between overlapping and

candidate regions would be quite significant. Fig. 11 shows the

performance of SWST with and without the memo. We can

clearly see that the memo significantly reduces the number of

node accesses. In MV3R, a long duration entry undergoes a

number of version splits. Thus its performance is not affected

by the presence of long duration entries.

E. Effect of Parameters
In our experiments, we observed a similar effect of grid

parameters as mentioned in the previous grid based indexes

the SETI [20] and PIST [19]. A spatial index performs well

when number of spatial cells is in the range 200-1200. If the

number of spatial cells is small, then the index loses the spatial

discrimination within a cell. In our experiments, the range 300-

600 gave the best results. The results presented above are for

352352



400 uniform spatial cells. Since the keys in our temporal index

contain both spatial and temporal information, we observed

a significant difference in the number of node accesses for

spatial cells having different degrees of overlapping with the

query’s spatial area. Increasing the number of spatial cells

increases the overhead of maintaining statistical information.

Unlike existing grid based indexes, our temporal in-

dex is also grid based. SWST’s performance was affected

more by the partition size along the start timestamp axis

(i.e., s-partition) as compared to the duration axis (i.e.,

d-partition). If the s-partition size was too large, then it

would generate a large number of false positives. If the size

was too small, then data entries which satisfy the same query

condition would get quite separately placed in the underlying

B+ trees, which would make the search inefficient. We know

that, for an s-partition column, the entries in a B+ tree

are placed adjacently from left to right in the increasing

order of d-partition values. If the s-partition size is very

small, then two entries with similar start timestamps will get

assigned to different s-partitions. This will widely separate

the entries which are similar and expected to satisfy similar

queries. During the search, one would have to access more

number of nodes. In our experiments, we kept the window

size significantly large, i.e., 20% of the total temporal length.

We had 2000 temporal cells for each B+ tree. In SWST, the

total space for maintaining statistical information was 25 MB.

VI. CONCLUSION AND RESEARCH DIRECTIONS

In this paper, we have proposed a disk based sliding window

index for spatio-temporal data. To our knowledge, this is the

first work in the spatio-temporal domain. A sliding window

model is traditionally used in a data stream environment.

DSMSs use the sliding window model because of the memory

size constraint. In this paper, we showed that a disk based

sliding window can be very useful in partially achieving

two of the important goals of data privacy, namely limited

retention and limited disclosure. A sliding window also helps

in removing the old entries that are too old to be of any

value. Unlike the previously proposed grid based historical

indexing techniques (e.g., SETI and PIST) for spatio-temporal

data, SWST does not fully decouple the spatial and temporal

information, which leads to a greater search efficiency. Our

implementation showed that SWST is better or comparable to

MV3R for both insertion and search. SWST under performs

MV3R for timeslice queries with a large spatial extent (which

is expected as a grid based index cannot be compared with

the R-tree in such a scenario), but for all other cases, SWST

outperforms MV3R. SWST has an added advantage that it

does not have the partial persistency constraints as in MV3R,

and can support logical sliding windows. We have described

an efficient way to handle entries with a long duration.

As part of future work, we plan to investigate the sliding

window model for other types of queries and data. For

instance, one interesting extension of this work would be

to support KNN queries for sliding window spatio-temporal

data. KNN queries would return the nearest neighbors from

the recent past. In addition, time series data is indexed by

transforming it to some other domain, such as frequency,

wavelet, etc., before indexing. Time series data is generally

huge, and its index lacks temporal information, which make

it very difficult to remove old information. A sliding window

model will be useful in comparing recent portions of time

series data and can also help in removing the past sensitive

information.

ACKNOWLEDGEMENT

This work is supported in part by NSF under grant IIS-

1017296. We also thank the anonymous reviewers for their

time and insightful comments.

REFERENCES

[1] R. Agrawal, J. Kiernan, R. Srikant, and Y. Xu, “Hippocratic databases,”
in Proc. VLDB, 2002, pp. 143–154.

[2] A. Arasu, S. Babu, and J. Widom, “The CQL continuous query language:
Semantic foundations and query execution,” The VLDB Journal, vol. 15,
no. 2, pp. 121–142, 2006.

[3] L. Golab and M. Ozsu, “Issues in data stream management,” Sigmod
Record, vol. 32, no. 2, pp. 5–14, 2003.

[4] J. Kang, J. Naughton, and S. Viglas, “Evaluating window joins over
unbounded streams,” in Proc. ICDE, 2003, pp. 341–352.

[5] S. Viglas and J. Naughton, “Rate-based query optimization for streaming
information sources,” in Proc. SIGMOD, 2002, pp. 37–48.

[6] A. Ojewole, Q. Zhu, and W. Hou, “Window join approximation over data
streams with importance semantics,” in Proc. CIKM, 2006, pp. 112–121.

[7] L. Golab, P. Prahladka, and M. Ozsu, “Indexing time-evolving data with
variable lifetimes,” SSDBM, pp. 265–274, 2006.

[8] N. Shivakumar and H. Garcia-Molina, “Wave-indices: indexing evolving
databases,” in Proc. SIGMOD, 1997, pp. 381–392.

[9] Y. Tao and D. Papadias, “The mv3r-tree: A spatio-temporal access
method for timestamp and interval queries,” in Proc. VLDB, 2001, pp.
431–440.

[10] Y. Theodoridis, M. Vazirgiannis, and T. Sellis, “Spatio-temporal index-
ing for large multimedia applications,” in Proc. ICMCS, 1996, pp. 441–
448.

[11] M. Nascimento and J. Silva, “Towards historical R-trees,” in Applied
Computing Symposium, 1998, pp. 235–240.

[12] Y. Tao and D. Papadias, “Efficient historical R-trees,” in Proc. SSDBM,
2002, pp. 223–232.

[13] M. Mokbel, T. Ghanem, and W. Aref, “Spatio-temporal access methods,”
Data Engineering, vol. 26, no. 2, pp. 40–49, 2003.

[14] L. Nguyen-Dinh, W. Aref, and M. Mokbel, “Spatio-Temporal Access
Methods: Part 2 (2003-2010),” Data Engineering, p. 46, 2010.

[15] C. Jensen, D. Lin, and B. Ooi, “Query and update efficient B+-tree based
indexing of moving objects,” in Proc. VLDB, 2004, pp. 768–779.

[16] D. Lin, C. Jensen, B. Ooi, and S. Šaltenis, “Efficient indexing of the
historical, present, and future positions of moving objects,” in Proc.
MDM, 2005, pp. 59–66.

[17] M. Pelanis, S. Šaltenis, and C. Jensen, “Indexing the past, present, and
anticipated future positions of moving objects,” TODS, vol. 31, no. 1,
pp. 255–298, 2006.

[18] S. Šaltenis, C. Jensen, S. Leutenegger, and M. Lopez, “Indexing the
positions of continuously moving objects,” in Proc. SIGMOD, 2000,
pp. 331–342.

[19] V. Botea, D. Mallett, M. Nascimento, and J. Sander, “PIST: An efficient
and practical indexing technique for historical spatio-temporal point
data,” GeoInformatica, vol. 12, no. 2, pp. 143–168, 2008.

[20] V. Prasad, C. Adam, C. Everspaugh, and J. Patel, “Indexing large
trajectory data sets with seti,” in Proc. CIDR, 2003, pp. 164–175.

[21] X. Xiong and W. Aref, “R-trees with update memos,” in Proc. ICDE,
2006, pp. 22–22.

[22] B. Moon, H. Jagadish, C. Faloutsos, and J. Saltz, “Analysis of the
clustering properties of the hilbert space-filling curve,” KDE, vol. 13,
no. 1, pp. 124–141, 2001.

[23] Y. Theodoridis, J. Silva, and M. Nascimento, “On the generation of
spatiotemporal datasets,” in Advances in Spatial Databases, 1999, pp.
147–164.

353353


