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Abstract

There are numerous applications nowadays such as
bioinformatics, cybersecurity, and social media that demand to
efficiently process various types of queries on multidimensional
(vector) data with values coming from a non-ordered discrete
(categorical) domain for each dimension. The BoND-tree
index scheme was recently developed to efficiently process
so-called box queries on a large dataset in disk from such
a vector data space. The index construction (insertion) and
query algorithms were introduced in the original work. To
maintain such an efficient index structure for a large dynamic
dataset, one has to develop efficient and effective methods
to support other operations including deletions, updates, and
bulk loading. Although studies on deletions and bulk loading
for the BoND-tree have been reported in early work, how to
efficiently and effectively update the BoND-tree remains an
open problem. In this paper, we first present a general update
procedure which covers all scenarios including special cases
for insertions and deletions. We then examine two approaches
to updating the BoND-tree. The relevant algorithms and
experimental evaluations are presented. Our study shows that
using the bottom-up update method can provide improved
efficiency, comparing to the traditional top-down update
method, especially when the number of dimensions for a
vector that need to be updated is small. On the other hand,
our study also shows that the two update methods have a
comparable effectiveness, which indicates that the bottom-up
update method is generally more advantageous.

Key Words: Non-ordered discrete data; bioinformatics;
mutlidimensional index; index maintenance; update method.

1 Introduction

There is an increasing demand to efficiently process various
types of queries on non-ordered discrete vector data in
contemporary applications such as genome sequence analysis,
internet intruder detection, social network analysis, and business
intelligence [25, 29, 31, 34, 40, 44, 45]. The vectors with
non-ordered discrete values from the domain of each dimension
constitute a vector space, called the Non-ordered Discrete Data
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Space (NDDS). For example, many genome sequence analysis
techniques (e.g., DNA sequencing error correction [16] and
back-translated protein query on DNA sequences [20]) rely on
processing fixed-length subsequences, so-called k-mers, of one
or more target genome sequences. gacct, aatga, and tagga are
examples of k-mers of length 5, which can be considered vectors
(e.g., < g,a,c,c, t > or simply “gacct”) in a 5-dimensional
NDDS with a domain consisting of non-ordered discrete values
(i.e., nucleotide bases: a, g, t and c) for each dimension. Other
applications [22, 23, 45] may deal with non-ordered discrete
data from domains such as color, gender, season, IP address,
social media symbols, user ids, and text descriptions.

One type of query used in many applications for an NDDS
are called box queries. A box query retrieves vectors from a
dataset in an NDDS that have values from a specified subset of
the domain for each dimension. The BoND-tree was recently
introduced as a new disk-based indexing structure specifically
designed to support efficient processing of box queries for large
datasets in an NDDS [7]. The algorithms for the insertion
(build) and query operations of the BoND-tree were presented
in the original work. However, to maintain an index structure
for a dynamic dataset, efficient and effective algorithms for the
deletion, update, and bulk loading operations are also needed.

Efficient and effective deletion strategies to remove vectors
from the BoND-tree for a dynamically shrinking dataset in an
NDDS were studied in [8], while an efficient and effective bulk
loading method to build the BoND-tree for a very large input
dataset in an NDDS was presented in [12]. To maintain the
BoND-tree for a dynamically changing dataset in an NDDS
(e.g., to capture changing variants in the genome sequence for
a sick person developing a disease), we also need efficient
and effective update methods for the index structure. A
straightforward method for performing an update operation is
to execute a deletion of the outdated vector followed by an
insertion of the updated form of the vector. However, more
efficient and effective approaches for performing updates in the
BoND-tree are yet to be explored. In particular, alternative
strategies for updates may be beneficial when taking into
account considerations such as whether a particular update is
independent from a subsequent update or whether an outdated
vector targeted for an update is similar to its new representative
form. This paper focuses on studying efficient and effective
strategies to support updates for the BoND-tree.
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Studies on updates for index schemes in a multidimensional
Continuous Data Space (CDS) such as the R-tree [17], the R*-
tree [1] and their variants have been reported in the literature
[3, 24, 38, 39, 48]. Updates with emphasis on moving objects
for several R-tree based index trees [4, 26, 36, 41] have also
been suggested. The problem of frequent updates for the
hB-tree based trees [13, 27, 28] has been examined in [47].
Many CDS index structures including the X-tree [2] adopt the
straightforward update approach through a deletion followed by
an insertion. Note that the CDS indexing schemes rely on the
natural ordering of underlying data and as such cannot directly
be applied to an NDDS that is what we are interested in here.

The update issue has also been studied for some index trees
that may be applicable to an NDDS. For example, index trees for
a metric space [6] (such as the vantage-point tree [18, 42, 46]
and the MVP tree [5]) and string indexing techniques based
on the Trie structures [11] (such as the suffix tree [43]) have
their update techniques reported in the literature [14, 15].
However, these are mainly memory-based structures, while we
are interested in performing updates on a dynamic indexing
scheme for a large dataset in disk. The M-tree [10] is a disk-
based dynamic indexing structure developed for a metric space,
which could be applied to an NDDS although its performance
is not optimized for an NDDS due to its generality [30, 31].
Another disk-based dynamic indexing structure developed for a
metric space is the MB+tree [19] that supports dynamic updates
for similarity searches. However, an index scheme supporting
similarity queries, such as range queries or k-NN queries, may
not be effective for an index scheme that supports box queries.
For example, this is evident in the contrasting splitting strategies
for the insertion operations of the ND-tree [30], which is an
index structure supporting similarity queries in NDDS, to those
of the BoND-tree [7]. The BoND-tree was also found to prefer
a different deletion strategy [8] from the traditional deletion
strategies adopted for the ND-tree[37].

Effective and efficient update strategies are needed to support
the maintenance of the BoND-tree. An update strategy yielding
the BoND-tree that can support efficient box query processing
after updates is said to be effective. An update strategy yielding
minimal I/O overhead during the update procedure is said to be
efficient.

In this paper, we will present a general procedure for the
update operation of the BoND-tree. We will then examine
two update strategies for the BoND-tree to support efficient
box queries and present the experimental results to evaluate the
efficiency and effectiveness of the proposed update methods. In
particular, we present a new bottom-up update strategy for the
BoND-tree that is efficient and effective for both general random
updates and increasingly efficient for updates where the new
updated vector is similar on many dimensions to the outdated
vector. This is useful for applications where an outdated vector
targeted for an update shares many dimensions in common
with the updated representation of that vector. For example,
a vector representing a DNA gene profile in a bioinformatics
database may require such an update when a small percentage

of dimensions have changed in the vector due to mutation or
cancer. The preliminary results of this work were presented in
[9].

The rest of the paper is organized as follows. Section 2
presents preliminary concepts that are useful in our discussions.
Section 3 discusses our proposed update methods for the BoND-
tree. Section 4 reports the experimental evaluation results.
Section 5 concludes the paper.

2 Preliminaries

2.1 Terminology and Concepts

In this section, we present some geometric concepts for an
NDDS [7, 21, 30] that are essential to our discussion on update
strategies for the BoND-tree.

In general, a d-dimensional Non-ordered Discrete Data Space
(NDDS) Ωd is defined as the Cartesian product of d alphabets
(domains): Ωd = A1×A2× ...×Ad , where an alphabet Ai(1 ≤
i≤ d) consists of a finite number of non-ordered discrete values
(letters). A discrete rectangle R in Ωd is defined as R=ud

i=1Si =
S1× S2× ...× Sd , where Si ⊆ Ai(1 ≤ i ≤ d) is called the i-th
component set of R. The area of rectangle R is defined as |S1| ∗
|S2| ∗ ... ∗ |Sd |. We use a span to refer to the edge length of
a particular dimension for a rectangle, which is normalized by
the alphabet size of the corresponding dimension. The discrete
minimum bounding rectangle (DMBR) of a set SV of vectors is
defined as the discrete rectangle whose i-th component set (1≤
i≤ d) consists of all the letters appearing on the i-th dimension
for the vectors in SV .

A box query q on a dataset in an NDDS is a query that
specifies a set of values/letters for each dimension. Let qci ⊆ Ai
be the set of values allowed by box query q along the i-th
dimension, where Ai is the alphabet for the i-th dimension (1≤
i ≤ d) of Ωd . The box query q with box/window w = ud

i=1qci
will return every vector α in the dataset that falls within this
box/window.

A random-span box query has the span of its i-component set
on each dimension i (1≤ i≤ d) to be randomly chosen between
1 to C ≤ |Ai|. For example, with an alphabet being {a,g,c, t}
across all dimensions where vectors have length d = 3, a random
box query might have a window/box w= {c, t,g}×{g}×{t,g}.
The measured spans for the three dimensions are 3, 1, and 2,
respectively. This query will retrieve vectors having any value
from {c, t,g} on the 1st dimension, g on the 2nd dimension, and
t or g on the 3rd dimension. 6 is the maximum possible number
of unique vectors retrieved by such a query.

A uniform-span box query has the same span of its i-
component set on each dimension i (1 ≤ i ≤ d). For example,
with an alphabet being {a,g,c, t} across all dimensions where
vectors have length d = 3, a uniform box query of span = 2
might have a window w = {c,g}× {t,c}× {a,g}. The edge
lengths are uniform with a measured span of 2 for d = 1,2,
and 3. 8 is the maximum possible number of unique vectors
retrieved by such a query.
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We refer to an update with a certain percentage of fixed
dimensions when we set static the given percentage of all the
dimensions for an updating vector. We control this parameter
to influence how similar an outdated vector and an updated
vector can be. For example, if we set 60% of dimensions
to be fixed when performing an update on a vector α (e.g.,
tcacg) of 5 dimensions, then 3 dimensions (e.g., d = 1,4, and 5)
are randomly selected to remain unchanged when generating a
sample updated vector β (e.g., tagcg).

2.2 The BoND-Tree

The BoND-tree is a disk-based balanced index tree that grows
upwards as vectors are inserted. The BoND-tree is made up of
two types of nodes: non-leaf nodes and leaf nodes. Each non-
root node N in the BoND-tree is represented by a corresponding
entry in its parent node, which consists of a pointer to N and
a DMBR covering all the vectors in the subtree rooted at N.
Each entry in a leaf node consists of the indexed vector and
a pointer pointing to an associated object in the underlying
database, which may provide further information about the
indexed vector. All the leaf nodes appear at the same level of
the index tree.

Each node has a maximum number M of entries that can be
contained in it. M is typically determined by the disk block
size. If another entry is added into a node with M entries, this
node is said to be overflow. Each node also has a minimum
number m of entries that have to be contained in it. m is typically
determined by a minimum space utilization criterion. If one
entry is removed from a node with m entries, this node is said to
be underflow. M (m) for a non-leaf node may be different from
that for a leaf node.

Figure 1 illustrates an example of the BoND-tree with sample
nodes and entries for a genome sequence dataset with alphabet
{a,c,g, t}. Note that a general BoND-tree may have more than
three levels of nodes. Vectors contained in a leaf node (e.g.,

{a,c,t}x{a,g,t}x... {a,c,g,t}x{a,g}x... ...

{a,t}x{a,t}x...

... cg...

{c}x{g,t}x...

A

B

D

ct... ...

...

...
root node

non-leaf nodes

leaf nodes

... {a}x{a,g}x... {c,g,t}x{a,g}x... ......

C

... ...... aa...

E

ag... ...

Figure 1: An example of the BoND-tree

node D) determine the DMBR of the corresponding entry in its
parent node (e.g., node B) whose entries in turn determine the
DMBR of the corresponding entry in its further up parent node
(e.g., root node A in this case). For example, we can see that
the root node A has an entry with component sets {a,c, t} and
{a,g, t} of its DMBR on the first two dimensions, respectively.
The first (resp. the second) component set is made up of the
letters appearing on the first (resp. the second) dimension of

all the entries in its child node B at the next lower level. As
shown in the figure, node B has visible entries whose DMBRs’
first component sets are {a, t} and {c}, respectively. Node B
has visible entries whose DMBRs’ second component sets are
{a, t} and {g, t}, respectively. The first two component sets of
the DMBR of the corresponding entry in node A indicate that
no other letters are contained in the first two component sets
of other entries in node B. The vectors in node D determine the
DMBR {c}×{g, t}× ... of the corresponding entry in the parent
node B, assuming only c has appeared on the first dimension and
only g or t has appeared in the second dimension for all vectors
in node D in this example.

When processing a box query using the BoND-tree, at each
non-leaf node (starting from the root), we only need to follow
its child node(s) whose DMBR(s) has an overlap with the query
box/window. Those nodes whose DMBRs do not overlap with
the query box/window are pruned during the query processing.
Using Figure 1 as an example, let a query box/window w =
{a,c}×{c, t}× .... Such a query with w could potentially return,
if present, vectors in the result set being ”ac...”, ”at...”, ”cc...”,
and ”ct...”. Starting from the root node level, since w may
overlap with the DMBR of the node B’s entry in node A and
the DMBR of node D’s entry in node B, the processing of this
query may follow the path node A→ node B→ node D. On the
other hand, since w clearly does not overlap with the DMBR of
node C’s entry in node A, the subtree rooted at node C is pruned.

More details of the BoND-tree can be found in [7].

3 Update Methods for the BoND-Tree

An update operation is motivated by the need to modify
an existing (outdated) vector in a given database/dataset in an
NDDS. There are multitudinous reasons that may prompt an
update operation in real-world applications. For example, a
vector is found to have been inserted with an erroneous value(s)
on some dimension(s); a vector is believed to have undergone
a transformation on some dimensions since it was inserted
or last updated; the alphabet for a particular dimension has
been changed so that the vectors with obsolete values on that
dimension must be updated.

3.1 General Update Procedure

In general, an update operation can be defined as follows:
given an outdated vector α and an updated vector β , the
update operation U pdate(α,β ,S) on a database/dataset S is to
ensure that S has β but not α after the update operation, i.e.,
U pdate(α,β ,S) = (S−{α})∪ {β}. Usually, α and β share
many common values and differ only in a few dimensions.

An update procedure needs to account for the following four
scenarios in regards to the existence of outdated vector α and
updated vector β in the given dataset S.

Scenario 1: Outdated α does not exist in S, and updated
β does not exist in S either. In this case, the desired β

needs to be added into S. The outdated α is intended to be
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removed, but it does not exist. Hence, nothing needs to be
done for α . The update operation is actually degenerated
to an insertion operation U pdate(α,β ,S) = S∪{β} in this
case.

Scenario 2: Outdated α does not exist in S, and updated β

exists in S. In this case, nothing needs to be done for α or
β , i.e., U pdate(α,β ,S) = S.

Scenario 3: Outdated α exists in S, and updated β exists
in S. In this case, the outdated α needs to be removed
from S. Nothing needs to be done for β . The update
operation is actually degenerated to a deletion operation
U pdate(α,β ,S) = S−{α} in this case.

Scenario 4: Outdated α exists in S, and updated β does
not exist in S. This is the most expected case for an
update. In this case, the outdated α needs to be removed
from S, and the desired β needs to be added into S, i.e.,
U pdate(α,β ,S) = (S−{α})∪{β}.

Since the existence of α and β in S is typically unknown in
advance, in general, an update procedure must address the above
four scenarios to ensure that the database accurately reflects
the intent of the update. Scenario 4 is the typical and most
interesting update scenario that is considered in evaluating the
efficiency and effectiveness of different update strategies in this
paper.

For the BoND-tree T built for vectors from a given database
S, the update procedure takes as input an outdated vector α that
needs to be updated and an updated vector β that represents the
desired one after the update. First, the procedure issues a query
for vector β on the BoND-tree T to determine if β already exists
in T (i.e., S) to avoid any attempt to add a duplicate vector. If
vector β exists in T (Scenario 2 or 3), then all that is left is to
remove vector α from T if it exists. Specifically, the update
procedure tries to locate the leaf node Nα containing vector α

in the BoND-tree T . It follows a path Pα from root node RN to
leaf node Nα . If it is not found, a ‘not present’ flag is returned
(Scenario 2). If such a leaf node Nα is found, the procedure
removes vector α from Nα (Scenario 3).

In the event that vector β is not found in T (Scenario 1 or
4), the procedure can involve one of the update methods (to
be discussed below) that applies its specific update strategy to
decide how the update is performed. Essentially, a suitable leaf
node Nβ to accommodate vector β must be located. Different
strategies may choose a different Nβ , which may affect the
efficiency and effectiveness of the update. Note that Nβ may
or may not be the same as Nα if α exists in T (Scenario 4).

Additional update overhead (I/Os) may also occur if either the
removal of vector α from leaf node Nα triggers an underflow
handling process or the addition of vector β to Nβ causes an
overflow splitting process.

For the underflow handling process, we adopt the BoND-tree
Inspired Node Reinsertion (BNDINR) strategy suggested in [8].
This process is done by invoking function UnderflowHandling()
in the following discussion. The key idea is to recursively
remove each underflow node along the path from the underflow

leaf node to the root node in a bottom-up fashion until reaching a
parent node (or the root) on the path that is no longer underflow
after the removal of its underflow child node. These underflow
nodes are put into a reinsertion buffer. The entries in the
underflow nodes represent either vectors or sub-trees, depending
on whether the underflow node is a leaf node or non-leaf node.
The entries in each underflow node in the reinsertion buffer will
be directly merged into a sibling node. A good sibling node is
chosen according to the following three heuristics in the given
priority order:

Least overlap enlargement. Choose a sibling node such that its
overlap enlargement with other sibling nodes is minimized
after accommodating the entries in the underflow node.

Steady minimum dimensions. Choose a sibling node such that
the number of its DMBR’s unchanged smallest dimensions
is maximized after accommodating the entries in the
underflow node.

Least area enlargement. Choose a sibling node such that the
area enlargement is minimized after accommodating the
entries of the underflow node.

It is possible that a chosen sibling node is overflow after
accommodating the entries from the underflow node. In this
case, its parent node becomes no longer underflow if it is also in
the reinsertion buffer after the chosen sibling node is split into
two nodes to handle the overflow. The node reinsertion process
to handle the underflow is finished.

The overflow situation is handled by splitting the overflow
node into two according to a set of special heuristics
recommended in [7]. This process is done by invoking function
OverflowHandling() in the following discussion. The key idea
is to recursively split each overflow node along the path from the
overflow leaf node to the root node in a bottom-up fashion until
reaching a parent node (or the root) that is no longer overflow
after splitting its overflow child node into two new nodes. A
good splitting is determined according to the following three
heuristics in the given priority order:

Minimum overlap. Choose a split that minimizes the overlap
between the DMBRs of the newly created nodes.

Minimum span. Choose a split that splits a dimension that has
the smallest span.

Minimum balance. Choose a split that unbalances the
distribution of letters between the DMBRs of the newly
created nodes the most, while satisfying the minimum
space utilization criterion.

During the underflow and overflow handling processes, the
relevant DMBRs are adjusted when needed. Even if no
underflow or overflow has occurred, the update procedure may
still need to adjust the DMBRs in the parent nodes along the path
Pα from Nα to root RN and/or the parent nodes along a path Pβ

from Nβ to root RN when necessary. This is done by invoking
function ComputeDMBR(), which takes as input a node and its
path to the root node and recursively moves up the BoND-tree
until no more DMBR changes are detected.
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In the following discussion, we present two update strategies
to determine a suitable node Nβ for vector β , which result in
two update algorithms/methods.

3.2 Top-Down Update (TDU) Method

A straightforward strategy for updating vectors in the BoND-
tree is the Top-Down Update (TDU) method. This is
accomplished by executing a deletion operation followed by
an insertion operation. First, the outdated vector α is targeted
for deletion. Any underflow scenarios are handled by function
UnderflowHandling(), and the DMBRs in the BoND-tree are
adjusted by function ComputeDMBR() when needed for the case
having no underflow. If α exists in the BoND-tree (i.e., Scenario
3 or 4), α has to be removed from the tree. Otherwise (i.e.,
Scenario 1 or 2), nothing needs to be done for α in the tree.
Whether or not α exists in the tree, the next step is the same.
A query for vector β is performed on the index tree. If β

does not exist in the BoND-tree (i.e., Scenario 1 or 4), β has
to be inserted into the BoND-tree via the root RN. Otherwise
(i.e., Scenario 2 or 3), the update is already finished. Any
overflow cases are handled by function OverflowHandling(),
and the DMBRs in the BoND-tree are adjusted by function
ComputeDMBR() when needed for the case having no overflow.
The details of this method are described in Algorithm TDU.

Algorithm 1: Top-down Update (TDU)
Input: (1) the BoND-tree with root RN; (2) the outdated vector α; (3) the

updated vector β

Output: the root of the modified BoND-tree with α being removed and β

being inserted
1 locate the leaf node Nα containing vector α by following a path Pα from

root RN;
2 if vector α exists then
3 remove vector α from leaf node Nα ;
4 if Nα is underflow then
5 UnderflowHandling(Nα , Pα );
6 else
7 ComputeDMBR(Nα , Pα );
8 end if
9 end if

10 query vector β ;
11 if vector β does not exist then
12 insert vector β via root RN;
13 if Nβ is overflow then
14 OverflowHandling(Nβ , Pβ );
15 else
16 ComputeDMBR(Nβ , Pβ );
17 end if
18 end if
19 return RN;

In Algorithm TDU, steps 1 through 9 perform the deletion
of α from the given BoND-tree. Steps 10 through 18 perform
the insertion of β into the given BoND-tree. Step 12 realizes the
actual insertion into the BoND-tree using the insertion heuristics
and procedure of [7]. A path Pβ from root RN to a suitable leaf
node Nβ is taken to insert vector β into the BoND-tree.

Figure 2 shows an example of a typical top-down update
process. Assume that we want to perform an update to change
an outdated vector “cg...” to an updated vector “cc...” in a

BoND-tree T built for vectors in a given database/dataset. Note
that only the first two dimensions are explicitly displayed in this
example. The TDU method first searches for vector “cg...” in T
by following a path from the root to leaf node C. Vector “cg...”
is then deleted from node C in T . This process is illustrated
in Figure 2(a). The removal of vector “cg...” causes node C to
be underflow. Node C is then removed from node B. Assume
node B is not underflow after removing node C. The vectors in
node C are then merged/inserted into a sibling node D. Assume
the augmented node D is not overflow – otherwise, node D has
to be split into two nodes to replace the original nodes C and
D in parent node B. The underflow handling process for node
C is illustrated in Figure 2(b). The TDU method then starts an
insertion process for updated vector “cc...” via the root. Assume
the heuristics for insertion [7] selects the path from the root to
leaf node F. The updated vector “cc...” is then placed in node F,
as shown in Figure 2(c). If node F is not overflow, the update
process ends. Otherwise, node F has to be split, which may
cause its parent node E to be overflow and split. The overflow
and split may be propagated to the root, which may make T
grow one level taller.

Figure 3 gives an example to illustrate what may occur in an
underflow propagation scenario. Let us make the 3rd dimension
of vectors/DMBRs also visible in this example. The outdated
vector “cg...” in Figure 2(a) is now “cga...” in Figure 3(a).
Like the example in Figure 2, deleting “cga...” from node C
causes the node to become underflow. The entry for node C that
resides in node B must be then removed, and the vectors in node
C must be merged into a sibling node D chosen according to
the heuristics in Section 3.1. Let node D′ be the augmented
node D after the merging as shown in Figure 3(b), which is
not underflow. Assume that node B becomes underflow after
removing the entry of node C, i.e., the underflow of node C is
propagated to node B. As a result, the entry of node B must
be removed from its parent node A. Assume node A is not
underflow after the removal. The entries in node B for all its
child nodes, i.e., nodes D′, H, I, ..., must be merged into a sibling
node G chosen according to the heuristics. Figure 3(c) shows
that new node G′ is obtained from merging the entries in node B
into sibling node G, assuming node G′ is not overflow. If revised
node A′ is not underflow after removing the entry of node B, i.e.,
no further underflow propagation, the underflow handling ends.

3.3 Bottom-Up Update (BUU) Method

An alternative strategy we examine for updating vectors in
the BoND-tree is the Bottom-Up Update (BUU) method. The
BUU employs a strategy that caches the node DMBRs along the
path Pα from the root RN down to the leaf node Nα containing
the outdated vector α in the typical update situation when α

exists in the BoND-tree. Utilizing the cached DMBRs along
Pα , the algorithm will compare the vector β against the cached
DMBRs from the leaf up to the root until a cached DMBR (if
any) is found to contain vector β . At the level this occurs, or
the root level if no containing DMBR is found, a local insertion
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Figure 2: Example of top-down update
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Figure 3: Example of handling underflow propagation during update

is performed via the node at this level. The normal insertion
heuristics and procedure of the BoND-tree in [7] are applied to
transform path Pα into a path Pβ leading down to a leaf node
Nβ that accommodates vector β . Any overflow scenarios are
handled by function OverflowHandling(), and the DMBRs for
the new path Pβ from leaf node Nβ up to the root RN are adjusted
by function ComputeDMBR() when needed for the case having
no overflow.

For the BUU, the deletion and insertion operations are
integrated into one update operation. We find a node with a
suitable cached DMBR along the path Pα from which a potential
new path Pβ down the tree is formed and a leaf node Nβ for the
vector β is located. A suitable DMBR is the first one from the
bottom up which contains vector β . The I/O cost of adding
vector β into the BoND-tree is bound in the worst case by
the height of the tree with root RN when no suitable cached
containing DMBR exists.

The best case occurs when vector β is contained in the leaf
node Nα ’s DMBR. In this case, vector β can directly replace
vector α in Nα . Effectively, leaf node Nα is leaf node Nβ , and
path Pα is path Pβ . Advantageously no underflow or overflow
situations occur that demand additional I/O cost when vector β

directly replaces vector α in Nα . Also, the bottom-up update
strategy usually avoids the I/O cost incurred by the top-down
update strategy when traversing the entire path from root RN to
the leaf level to find a suitable home for vector β . The details of
this method are described in Algorithm BUU.

In Algorithm BUU, steps 1 through 6 determine the update
scenario based on whether an insertion of vector β would be
needed. Steps 8 through 20 handle scenarios where outdated
vector α does not exist in the BoND-tree (i.e., Scenario 1 or

2). A standard insertion process via the root for vector β is
performed if β does not exist in the BoND-tree (i.e., Scenario
1). Otherwise, the update is already finished (i.e., Scenario 2).
Steps 22 through 29 handle the scenario in which we know
vector α exists in the BoND-tree, which needs to be removed,
and vector β is also present (i.e., Scenario 3). If the algorithm
reaches step 30, we are in the typical update scenario in which
we have to remove outdated vector α and add desired vector
β (i.e., Scenario 4). Steps 30 through 33 handle the case in
which the BoND-tree consists of only one root node which is
also a leaf node at the same time. Since α is directly replaced
by β , no underflow or overflow processing is needed. Steps 35
through 40 handle the best case in which vector β becomes a
direct replacement for vector α and guarantees no underflow or
overflow. Steps 41 through 50 handle the underflow situation.
In this case, the update process defaults to a standard insertion
process of vector β via the root RN since the underflow handling
may have altered the tree structure and the path of cached nodes
may be no longer valid. Steps 51 through 54 climb up the tree
until the level where a suitable cached node is found to insert
vector β . In the worst case, this node would be in fact the root
RN. Step 55 through 61 perform a local insertion of vector β

via the node PNi at this particular level so that a path Pβ to leaf
node Nβ is found.

Figure 4 shows two examples of the bottom-up update
process. Figure 4(a) illustrates the best scenario in which the
outdated vector “cg...” is directly replaced by the updated vector
“cc...” in leaf node C since the DMBR for node C contains both
vectors. No underflow or overflow would occur in such a case.
The cost of locating the home leaf node for the updated vector
is also the minimum. Figure 4(b) illustrates a typical scenario,
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Algorithm 2: Bottom-Up Update (BUU)
Input: (1) the BoND-tree with root RN; (2) the outdated vector α; (3) the

update vector β

Output: the root of the modified BoND-tree with α being removed and β

being present

1 query vector β ;
2 if vector β exists then
3 set VectorβAlreadyExist = true;
4 else
5 set VectorβAlreadyExist = false;
6 end if
7 locate leaf node Nα containing vector α by following path Pα from root

RN;
8 if vector α does not exist then
9 if VectorβAlreadyExist then

10 return RN;
11 else
12 insert vector β via root RN;
13 if Nβ is overflow then
14 OverflowHandling(Nβ , Pβ );
15 else
16 ComputeDMBR(Nβ , Pβ );
17 end if
18 return RN;
19 end if
20 end if
21 remove vector α from leaf node Nα ;
22 if VectorβAlreadyExist then
23 if Nα is underflow then
24 UnderflowHandling(Nα , Pα );
25 else
26 ComputeDMBR(Nα , Pα );
27 end if
28 return RN;
29 end if
30 if leaf node Nα is the root node RN then // 0 height tree

31 insert vector β into leaf node Nα ;
32 return RN;
33 end if
34 set path Pβ = path Pα ; // finding path for vector β

35 if vector β is contained in leaf node Nα ’s DMBR then // β can
directly replace α

36 set leaf node Nβ = leaf node Nα ;
37 insert vector β into leaf node Nβ ;
38 ComputeDMBR(Nβ , Pβ );
39 return RN;
40 end if
41 if leaf node Nα underflow then // tree structure changes
42 UnderflowHandling(Nα , Pα );
43 insert vector β via root RN ; // default to insert

44 if Nβ is overflow then
45 OverflowHandling(Nβ , Pβ );
46 else
47 ComputeDMBR(Nβ , Pβ );
48 end if
49 return RN;
50 end if
51 set node PNi = parent node of leaf node Nα ;
52 while PNi is not root && vector β is not contained in PNi’s DMBR do
53 set node PNi = parent node of PNi;
54 end while
55 insert vector β via node PNi ; // new path Pβ taken to leaf Nβ

56 if Nβ is overflow then
57 OverflowHandling(Nβ , Pβ );
58 else
59 ComputeDMBR(Nβ , Pβ );
60 end if
61 return RN;

in which the BUU method recursively checks the DMBR of the
parent node of a current node to see if the updated vector is
contained in the DMBR. Once such a DMBR is found (i.e., the
DMBR of node B in node A in this example), the updated vector
is then inserted into the BoND-tree via the local subtree rooted
at the found parent node (i.e., node B in this example) rather
than via the root node for the entire tree. The updated vector
“cc...” is eventually inserted into node D in this example since
its DBMR covers the vector.

Figure 5 gives an example to illustrate what may occur in an
overflow propagation scenario. Let us make the 3rd dimension
of vectors/DMBRs also visible in this example. The outdated
vector “cg...” in Figure 4(b) is now “cgg...” in Figure 5(a).
Like the case in Figure 4 (b), “cgg...” is deleted from node C
(assuming no underflow occurs), and node B is identified to be
the root of a local subtree whose DMBR covers the updated
vector “ccc...”. The updated vector is then inserted into leaf
node D of the tree via node B. Assume node D is overflow after
the insertion. It is split into two new nodes D′ and D′′, which
makes node B become node B′. If node B′ is overflow, it is split
into two new nodes B′′ and B′′′, which makes node A to become
node A′. If node A′ is not overflow, the overflow handling ends.

4 Experiments

Experiments were conducted to evaluate the efficiency and
effectiveness of the two presented update methods for the
BoND-tree. The efficiency is measured in terms of the disk I/Os
for performing the updates. The effectiveness is measured by
the box query I/Os (average) on the resulting BoND-tree after
the updates. The update methods were implemented in C++ on
a Dell PC with a 3.6 GHz Intel Core i7-4790 CPU, 12 GB RAM,
2 TB Hard Drive, and Linux 3.16.0 OS.

Two sets of 1,000 randomly-generated box queries were
performed on the resulting index tree. One set consists of
random-span box queries with a random span (edge length)
ranging from 1 to half of the alphabet size for each dimension
of the query box. The other set consists of uniform-span box
queries with a uniform span of 2 for each dimension of the
query box. The disk block size (i.e., the tree node size) was
set at 4 KB. In the experiments, we also introduced a “fixed
dimension percentage” parameter concerning the updates such
that the desired updated vector was guaranteed to have certain
values in common with the outdated vector on at least 0%, 25%,
50%, or 75% of its dimensions.

Both synthetic datasets and real genome datasets were
used in the experiments. A synthetic data generator
was used to generate random data with the uniform
distribution. The real genome dataset used is derived from the
bacteria.105.1.genomic.fna. A BoND-tree was built to index
each dataset. Some representative results from our experiments
are reported as follows.
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Figure 4: Examples of bottom-up update
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Figure 5: Example of handling overflow propagation during update

4.1 Update Efficiency

In the first set of experiments, we applied each of the two
update methods to update 50%, 70%, and 90% of the vectors
from each BoND-tree. Tables 1 ∼ 4 show the I/O cost incurred
from the update process when updating the dataset of synthetic
data with 16 dimensions and an alphabet of size 10.

Table 1 shows that, when an updated vector is free to change
along all dimensions and become completely independent from
an outdated vector, the bottom-up update method (BUU) is
comparable to top-down update (TDU) method. However,
the bottom-up update method is consistently marginally better
because it is bounded in the worst case by the performance of
the top-down update method.

Table 1: Number of I/Os for updates on BoND-trees for synthetic
datasets with dimensionality = 16, alphabet size = 10, 0%
fixed dimensions

DB Size Update % TDU BUU
(vectors) of DB (Update I/Os) (Update I/Os)

50% 19151639 18888607
2 M 70% 26860623 26491901

90% 34573355 34099559
50% 57034309 56728483

6 M 70% 79856600 79428802
90% 102684411 102134677
50% 95012649 94507540

10 M 70% 133016214 132308510
90% 171019290 170109021

Tables 1 ∼ 4 show that increasing the similarity (0% to

Table 2: Number of I/Os for updates on BoND-trees for synthetic
datasets with dimensionality = 16, alphabet size = 10, 25%
fixed dimensions

DB Size Update % TDU BUU
(vectors) of DB (Update I/Os) (Update I/Os)

50% 19152093 18642310
2 M 70% 26863947 26150218

90% 34575678 33659498
50% 57033823 55939969

6 M 70% 79856697 78324221
90% 102684192 100713707
50% 95012889 93233586

10 M 70% 133016356 130523685
90% 171019154 167816000

75% of fixed dimensions) between an outdated vector and the
updated vector clearly yields increasingly better performance
for the bottom-up update method over the top-down update
method. A similar efficiency benefit with the bottom-up update
method was observed on real genome data (see Table 5).

These tables also show that the top-down update method
has negligible differences in I/O cost for performing updates
regardless of whether an updated vector is at all related to the
outdated vector it is replacing. This is consistent with one’s
intuition because the top-down update method issues a removal
for the outdated vector, and then always issues an insertion via
the root node for the updated vector in all cases. In contrast,
the bottom-up update method does try to capitalize on any
relationship between the updated vector and the outdated vector.
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Table 3: Number of I/Os for updates on BoND-trees for synthetic
datasets with dimensionality = 16, alphabet size = 10, 50%
fixed dimensions

DB Size Update % TDU BUU
(vectors) of DB (Update I/Os) (Update I/Os)

50% 19151237 18083357
2 M 70% 26855383 25356375

90% 34579733 32649765
50% 57033695 54406359

6 M 70% 79855557 76175575
90% 102682787 97965034
50% 95012813 90806427

10 M 70% 133016223 127120088
90% 171019053 163437333

Table 4: Number of I/Os for updates on BoND-trees for synthetic
datasets with dimensionality = 16, alphabet size = 10, 75%
fixed dimensions

DB Size Update % TDU BUU
(vectors) of DB (Update I/Os) (Update I/Os)

50% 19125252 16412311
2 M 70% 26818328 23022498

90% 34524669 29642270
50% 57027989 49738937

6 M 70% 79845601 69644132
90% 102667407 89556492
50% 95012452 83190257

10 M 70% 133015786 116444361
90% 171019251 149730814

Less I/O is incurred as an updated vector traverses less levels
in the BoND-tree to find a suitable node location to perform a
local insertion. The tendency across a range of fixed dimension
percentages shows that the the I/O cost of the bottom-up update
method goes down as the percentage of fixed dimensions goes
up.

4.2 Update Effectiveness

To evaluate the effectiveness of the proposed update methods
for the BoND-tree, we examine the number of I/Os (average)
for performing a set of randomly-generated box queries on the
resulting BoND-trees after updates for each experiment. Tables
6 and 7 show the observed performance for 1,000 uniform-
span box queries run on the resulting BoND-trees after updates
for the synthetic datasets. The experimental results show that
the query performance obtained by BUU is comparable to
that obtained by TDU, irregardless of the percentage of fixed
dimensions. Table 8 shows the observed performance for 1,000
random-span box queries run on the resulting BoND-trees after
updates for the synthetic datasets. From the results in the
table, we can see that the query performance obtained by BUU
is comparable to that obtained by TDU for random-span box
queries as well. Comparable query performance between TDU
and BUU on real genome sequence data was also observed (see
Table 9). It is important to obtain the resulting BoND-trees with

Table 5: Number of I/Os for updates on BoND-trees for real genome
datasets with dimensionality = 20, alphabet size = 4, 75%
fixed dimensions

DB Size Update % TDU BUU
(vectors) of DB (Update I/Os) (Update I/Os)

50% 19016031 16851815
2 M 70% 26629245 23604711

90% 34246081 30362353
50% 57051316 51512964

6 M 70% 79895890 72180793
90% 102738854 92848747
50% 95099141 86886452

10 M 70% 133167594 121698210
90% 171252292 156576717

Table 6: Number of I/Os for box queries with uniform-span = 2
on BoND-trees after updates for synthetic datasets with
dimensionality = 16, alphabet size = 10, 25% fixed
dimensions

DB Size Update % TDU BUU
(vectors) of DB (Query I/Os) (Query I/Os)

50% 34.878 34.876
2 M 70% 35.466 35.468

90% 35.628 35.637
50% 41.031 41.031

6 M 70% 41.088 41.088
90% 41.246 41.246
50% 42.997 42.997

10 M 70% 43.000 43.000
90% 42.999 42.999

comparable query performance after the updates performed by
the two methods because it demonstrates that bottom-up update
method does not suffer significantly in terms of effectiveness
by performing local insertions into a subtree of the BoND-tree.
It is not unusual to see different strategies that offer benefits
in efficiency weighed against a trade-off in effectiveness and
vice versa. However, our empirical study shows that the BoND-
tree does not have a significant negative trade-off in terms of
effectiveness when using the bottom-up update method over the
top-down update method.

Table 7: Number of I/Os for box queries with uniform-span = 2
on BoND-trees after updates for synthetic datasets with
dimensionality = 16, alphabet size = 10, 75% fixed
dimensions

DB Size Update % TDU BUU
(vectors) of DB (Query I/Os) (Query I/Os)

50% 34.336 34.286
2 M 70% 35.067 35.088

90% 35.445 35.515
50% 40.916 40.912

6 M 70% 41.026 41.026
90% 41.124 41.122
50% 42.989 42.989

10 M 70% 42.999 42.999
90% 42.998 42.998
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Table 8: Number of I/Os for box queries with random-span on BoND-
trees after updates for synthetic datasets with dimensionality
= 16, alphabet size = 10, 75% fixed dimensions

DB Size Update % TDU BUU
(vectors) of DB (Query I/Os) (Query I/Os)

50% 152.626 152.471
2 M 70% 156.590 156.762

90% 158.553 158.944
50% 240.444 240.411

6 M 70% 235.808 235.794
90% 247.632 247.628
50% 264.862 264.862

10 M 70% 274.353 274.353
90% 275.445 275.445

Table 9: Number of I/Os for box queries with random-span on
BoND-trees after updates for real genome datasets with
dimensionality = 20, alphabet size = 4, 75% fixed dimensions

DB Size Update % TDU BUU
(vectors) of DB (Query I/Os) (Query I/Os)

50% 24.515 24.519
2 M 70% 24.994 24.992

90% 24.745 24.742
50% 33.791 33.795

6 M 70% 34.530 34.514
90% 35.474 35.454
50% 40.713 40.728

10 M 70% 43.438 43.466
90% 41.819 41.848

4.3 Space Utilization

When evaluating an index tree, people usually also examine
the space utilization which indicates how efficient the space is
utilized for the index tree. We examined the space utilization
of the BoND-trees after the updates. The representative space
utilization statistics are given in Tables 10 ∼ 12 for different
parameter configurations. From the data in the tables, we can
see that the space utilizations of the BoND-trees after updates
performed by the two methods are comparable, regardless of
the database size, the percentage of fixed dimensions, and
the synthetic/real dataset. This is quite promising since it
demonstrates that the bottom-up update method can produce
quality BoND-trees not only in terms of query performance but
also the space utilization.

4.4 Statistics on Direct Replacement

The best case for the bottom-up update method occurs when
an updated vector can directly replace an outdated vector in the
leaf node that the outdated vector resides in. In this case, no
extra I/O cost is incurred from traversing different branches of
the BoND-tree to locate an appropriate home for the updated
vector. Overflow and underflow handling situations can also
be avoided because the updated vector directly replaces the
outdated vector.

We show sample statistics about the best case for the bottom-

Table 10: Space utilization for BoND-trees after updates for synthetic
datasets with dimensionality = 16, alphabet size = 10, 25%
fixed dimensions

DB Size Update % TDU BUU
(vectors) of DB (Space Util.) (Space Util.)

50% 0.583970 0.583970
2 M 70% 0.584254 0.584254

90% 0.585108 0.585080
50% 0.650328 0.650328

6 M 70% 0.642878 0.642889
90% 0.638624 0.638624
50% 0.590993 0.590993

10 M 70% 0.590417 0.590417
90% 0.590272 0.590272

Table 11: Space utilization for BoND-trees after updates for synthetic
datasets with dimensionality = 16, alphabet size = 10, 75%
fixed dimensions

DB Size Update % TDU BUU
(vectors) of DB (Space Util.) (Space Util.)

50% 0.584311 0.584201
2 M 70% 0.584396 0.583958

90% 0.585223 0.584993
50% 0.655938 0.655842

6 M 70% 0.648190 0.648130
90% 0.643987 0.643862
50% 0.591704 0.591675

10 M 70% 0.590900 0.590859
90% 0.590539 0.590486

up update method with a varying percentage of fixed dimensions
for updates in Table 13 for synthetic datasets and in Table 14
for real genome datasets. From the tables, we can see that the
number of times the best case (direct replacement) has occurred
versus the number of times the worst case (update via root) has
occurred.

Our results indicate that the likelihood of an updated vector
directly replacing an outdated vector tends to increase as the
number of dimensions upon which they share the same values
increases. If the updated vector is contained by the existing
DMBR of the leaf node from which the outdated vector is

Table 12: Space utilization for BoND-trees after updates for real
genome datasets with dimensionality = 20, alphabet size =
4, 75% fixed dimensions

DB Size Update % TDU BUU
(vectors) of DB (Space Util.) (Space Util.)

50% 0.618304 0.617815
2 M 70% 0.614028 0.613519

90% 0.617357 0.616540
50% 0.615432 0.615114

6 M 70% 0.610998 0.610684
90% 0.615000 0.614578
50% 0.614037 0.613729

10 M 70% 0.606661 0.606328
90% 0.600961 0.600524
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Table 13: Number of times direct replacement occurs for synthetic
datasets with dimensionality = 16, alphabet size = 10, DB
size = 10M vectors, update percentage 90%, BUU method

Percentage of Direct Update via
Fixed Dimensions Replacement Root

0% 97 8099296
25% 11040 6077723
50% 266895 4049565
75% 2067574 2025833

Table 14: Number times direct replacement occurs for real genome
datasets with dimensionality = 20, alphabet size = 4, DB
size = 10M vectors, update percentage 90%, BUU method

Percentage of Direct Update via
Fixed Dimensions Replacement Root

0% 77 7970830
25% 3601 6699825
50% 83585 4944486
75% 1089256 2679402

removed, the direct replacement can take place and the best case
is realized.

5 Conclusions

Box queries on non-ordered discrete vector
(multidimensional) data are demanded in contemporary
applications. To efficiently process box queries, the BoND-tree
was recently developed. Although efficient techniques for
query, insertion, deletion, and bulk loading for the BoND-tree
were studied in earlier work, how to efficiently and effectively
perform update operations needs to be explored.

In this paper, we have presented a general update procedure
and studied two update strategies for the BoND-tree, i.e., the
traditional top-down update method and the promising bottom-
up update method. The bottom-up update method is bounded
by the worst-case of the top-down update method, in the
sense that it resorts to an insertion of the updated vector via
the root if no suitable local insertion node closer to the leaf
level is found. Furthermore, the bottom-up update method
promises better efficiency for applications where an updated
vector may be related on some dimensions to the corresponding
outdated vector. This is because the I/O cost is reduced when
a local insertion closer to the leaf level is realized. This
strategy does not impact the effectiveness of subsequent box
queries in a significant negative manner when compared to the
top-down update method. Given that the bottom-up update
method can provide significant performance boost in terms of
efficiency without a significant trade-off in effectiveness as well
as space utilization, it becomes our general recommendation for
processing updates on the BoND-tree in an NDDS.

Our future work includes studying techniques for buffering
update operations for applications where a bulk set of

updates must be done in which one update is not necessarily
independent from the next, integrating bulk loading and
updating techniques, and exploring applications utilizing the
tree maintenance techniques. We also plan to explore the
feasiblity of using advanced Bloom filter structures [33, 34] to
efficiently support queries on non-ordered discrete vector data
and the maintainability of such structures [32] as well as the
evoluationary update strategies [35] for indexing structures.
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