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Abstract   
        

 In many applications, data takes the form of a continuous stream rather than a 
persistent data set. Data stream processing is generally an on-line, one-pass process and is 
required to be time and space efficient too. In this paper, we develop a framework for 
estimating join size over the data streams based on the discrete cosine transform (DCT). The 
DCT generally can provide concise and accurate approximations to data distributions and its 
coefficients can be updated easily in the presence of insertions and deletions. These features 
make the DCT suitable for dynamic data stream environments. We have performed analyses 
and conducted experiments to investigate the applicability of the cosine transform to data 
streams. The experimental results show that given the same amount of storage space, our 
method yields more accurate estimates most of the time than the sketch-based methods, 
which have become the main methods for approximate query processing over data streams. 
The experimental results have also confirmed that the cosine series can be updated quickly to 
cope with the rapid flow of data streams. 
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1. Introduction 
 

Many applications, such as telephone fraud detection, financial tickers, network monitoring, 
tele-communications data management, etc., generate data in the form of a continuous stream 
rather than a persistent data set. Generally, elements of data streams arrive continuously and 
there is no control over the order in which they arrive. Moreover, a data stream is usually 
unbounded and there is only one chance to look at it as the data pass by. 

  To observe, monitor, or summarize the continuous flow of data, queries are posed 
periodically. These queries are typically referred to as continuous queries because they are issued 
once and then run continuously [5], unlike the traditional one-time queries that are executed only 
once. Examples of continuous queries over data streams include a web-based financial search 
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engine that evaluates queries over real-time streaming financial data, an integrated security 
platform that performs complex stream processing, such as the URL-filtering and join queries 
over multiple network traffic flows [4]. Continuous query processing generally requires queries 
to be executed in real-time with limited storage, and thus it must be an on-line, one-pass, and 
time and space efficient process.  

The join operator is probably the most important operator in query processing as it can relate 
information from different sources (e.g., tables). Some examples of join operations on data 
streams are finding similar news items from different media sources and finding correlation 
between phone calls and stock trading [35].  

 Selectivity estimation or query size estimation plays an important role in query 
optimization, OLAP, decision support, etc. It has also found its place in data stream processing, 
such as in the trend analysis, fraud detection, quality and performance monitoring, etc. In this 
paper, we discuss continuous selectivity estimation over data streams for queries with equi-join 
operations. 

Approximate aggregation query processing has been an important research topic in 
traditional databases for more than a decade. Various techniques, such as sampling [1, 11, 28], 
histogram [13, 17, 18, 20], wavelet [6, 7, 27], sketch [2, 3, 32], and discrete cosine transform 
[21] etc., have been proposed and some of them have been implemented in commercial database 
systems. In a continuous query processing environment, approximate query results are reported 
continuously; it poses stern challenges to conventional methods because all these performance 
measures, such as accuracy, speed, space, and updatability, now become equally important to the 
methods. 
       Sampling [14, 15, 22] is a simple and dynamic approach. It can be easily adapted to the 
continuous data stream environment, but its accuracy for join queries becomes an issue of 
concern [1, 15] unless the sample size is very large. Histogram provides a concise and efficient 
way to represent distributions of low-dimensional data. However, as the number of dimensions 
increases, the space required increases dramatically. The situation is exacerbated by the 
potentially large domains of attributes in data stream applications. Partition of buckets in the 
presence of updates can also be very time consuming [19]. The wavelet transform is able to 
compress a histogram into a small number of coefficients [23] and offers a space efficient 
(compressed) representation of the data distributions. However, in a dynamic streaming 
environment, it could require space as large as the size of the data stream itself to calculate the 
wavelet coefficients [12] and thus not directly applicable to data stream processing. In addition, 
the wavelet also has a complicated update scheme [24]. Sketch [2, 3, 32] has been proposed for 
aggregate query estimation recently. Its interesting randomizing algorithm and updatability make 
it attractive to data stream processing. Sketch has become the basis of many recent works in 
approximate aggregation query processing over data streams [3, 9, 13, 32]. Although it performs 
better than the random sampling [3] and histogram [9], large estimation errors are still reported 
in [9, 13]. 
       In this research, we concentrate on join query size estimation over data streams. While there 
has been some research on query size estimation over data streams, most of it concentrates on 
point and range query estimation [6, 11, 13, 25, 27, 28]. Alon et al. [2, 3] uses sketches to 
estimate the sizes of single equi-join queries, including self-join queries. To the best of our 
knowledge, only Dobra et al. [9] addresses the same type of query as ours – multi-equi-join 
query over continuous data stream. Their research is also based on the sketch approach [3]. 
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      Our approach is based on the discrete cosine transform. The discrete cosine transform has 
been used to approximate signals and images of various forms successfully. However, it has not 
received its due attentions in the field of estimation in databases. In this paper, we develop a 
framework for join query size estimation using the cosine series. The cosine series also has a 
straightforward update scheme in the presence of insertions and deletions. We will compare the 
space requirement, estimation speed, accuracy, and updatability with the sketch approaches. Our 
experimental results show that the cosine transform yields better estimates, from several times to 
hundreds of times better, than the sketches most of the time using the same amount of storage 
space. 
     The rest of the paper is organized as follows. Section 2 is a brief survey of techniques used in 
approximation query processing. Section 3 introduces the background of the discrete cosine 
transform for estimation of aggregation queries. Section 4 details our method on estimating 
aggregation query with equi-join operators. In section 5, we compare estimation accuracy, speed, 
space, and updatability of our approach with the sketch methods for single and multiple join 
queries. Section 6 concludes. 
 
2. Related Work 
 

    In this section, we briefly review techniques used in approximate aggregation query 
processing and discuss their potentials in join size estimation over data streams. Here, a join 
mainly refers to an equi-join. 

There is a long history of using sampling in selectivity estimation on traditional data [14, 
15, 22, 28]. In general, with only small samples, accurate estimates can be obtained for point and 
range queries. Recently, sampling has been used to create synopses for join queries (with foreign 
key constraints) over data streams [1]. While sampling may adapt itself well to the data streams, 
the estimation accuracy for join queries is far from satisfactory unless the sample size is very 
large [1, 15]. 
       Histograms provide a simple way to represent the data distributions and they have had much 
success in low dimensional selection queries [20, 21, 24, 25]. There have also been some efforts 
in estimating join sizes using histograms [17, 18]. However, only special types of join predicates, 
such as k-clique queries [17] and chain/tree queries [18], are considered. It is known that the 
storage space of histograms can increase dramatically when the number of attributes involved (or 
the dimensions) increases [4]. This situation is further exacerbated by the usually large domains 
of attribute values in data stream applications. Dynamic updates of the bucket boundaries can 
also pose a problem for some types of histograms when used with data streams. 
         Wavelet Transform has been used to compress histograms into small numbers of 
coefficients [6, 7, 24, 27]. It has been used for range, point, and range-sum queries [6, 27]. 
Unfortunately, as the number of dimensions increases, the accuracy degrades drastically unless 
the number of coefficients used increases significantly. The update of the wavelet coefficients 
also faces a severe challenge as new data keep flowing in in a data stream environment. Martias 
et al. [24] has addressed the issue, but their method is still very complicated and inefficient. 
Recently, Gilbert et al. [12] has shown that wavelet may not be directly applicable to data 
streams because it could require a space as large as the size of the data stream itself to generate 
the highest coefficients.  
        While the above approaches have all shown some deficiencies for data stream processing, 
Alon et al.’s randomizing technique [2], called sketch, shows some promise. They use a set of 
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independent randomized linear-projection variables, called atomic sketches, to estimate self-join 
sizes. To construct an atomic sketch, join attribute values are first mapped to {-1, 1} with equal 
probabilities. Then, an atomic sketch X is derived as the inner product of the frequency vector of 
the join attribute values with the random vector of {-1, 1} for the join attribute values, that is, 

,where Dom(A) is the domain of the join attribute A, f)(
)(∑∈

=
ADomi iA ifX ξ A(i) is the number of the 

value i of attribute A appearing in the relation, and ξi (∈{-1, 1}) is the mapped value of i. It has 
been shown that the expected value of X2 is the size of the self-join. To improve the accuracy, 
Alon et al. [2] uses groups of such independent atomic sketches to estimate the join size. By 
averaging and selecting the group median, the final estimation is generated.  Here, we shall call 
Alon et al.’s sketch method [2, 3] the basic sketch as it has become the basis of several other 
methods. 
        Gilbert et al. [12] has used the sketch method to estimate point and range query size, while 
others [3, 9, 32] estimate join size over data streams. Alon et al. [3] first uses sketch to estimate 
the size of a single equi-join query. To improve the accuracy, Dobra et al. [9] first partitions the 
underlying join attribute domains and then estimates the join size of each individual sub-domain 
using the sketch [9]. This approach however requires a priori knowledge of the data distributions 
(to find a good partition) and relies on the independence assumption of join attributes, which 
may not be feasible for data stream environment. Ganguly’s skimmed sketch [32] skims (extracts) 
the dense frequencies that are greater than a certain threshold into another distribution. The join 
size is estimated as the sum of the sub-join sizes of these sub-distributions using the sketch. 
Better estimation results than the basic sketch [3] are reported. However, extra space, in the order 
of the attribute domain size, is needed to store the dense frequencies. 

Discrete cosine transform (DCT) provides an elegant way to approximate data distributions 
[21, 29,]. Similar to the wavelet transform, DCT requires only a small amount of space to store 
the (approximated) data distributions. Another advantage of the method is that its coefficients 
can be updated easily and dynamically. While (discrete) cosine transform has been successfully 
applied to range queries [21, 2], to the best of our knowledge, it has not been used for join size 
estimation.  

 
3. Cosine Series Approximation 
      In this section, we discuss some properties of discrete cosine transform to lay down the 
groundwork for estimation of aggregation join queries. 
 
3.1 Attribute Values and Normalization 
     In general, an attribute can be either numerical or categorical. By mapping each categorical 
value to a distinct number, we can assume hereafter all attributes are numerical. Let X be the 
attribute of concern. To apply the discrete cosine transform, a normalization of attribute values is 
needed first. The attribute values are normalized to a predetermined domain [0, 1] as follows. Let 
maxX and minX be the maximal and minimal values of attribute X of the data stream, 
respectively. Then, each value x of X is normalized as follows: 

                                            
XX

Xx
x z

minmax
min
−

−
=            (3.1) 

where denotes the normalized value of x. For example, an attribute domain of {0, 1, 2, 3, 4} is 
normalized to {0, 1/4, 2/4, 3/4, 1}. The minimal and maximal values of an attribute can usually 
be determined based on knowledge of the data. For example, the minimal and maximal values of 

zx
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the attribute “Age” can be reasonably assumed to be 0 and 150, respectively. From now on, we 
shall assume all attributes are so normalized or they all have domains [0, 1], unless otherwise 
stated. 
 
3.2 Discrete Cosine Transform 
     To illustrate the use of the discrete cosine transform, let us first consider a one-dimensional 
case. Let N be the total number of tuples seen so far in the data stream and Dom(X) the domain 
of attribute X (i.e., [0,1]). The frequency function of the X values is defined as 

                                      )(,)( XDomx
N

count
xf x ∈=  

where   is the number of elements seen so far in the data stream with the value x. The 
frequency function satisfies the relations: 

xcount

∑
∈

=
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xf  

         Let n = |Dom(x)|. By the theory of discrete cosine transform, f(x) can be represented as 

                                                ∑
−

=

=
1

0
)()(

n

k
kk xxf φα

where 1)( =xkφ  when k = 0; otherwise, .cos2)( xkxk πφ =  ,0, >kkα  are computed by the following 
formula, 
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 where  is the X value of the i,1, Niti ≤≤ th element in the data stream, and xj is the jth X value in 
Dom(X). 
 The DCT is known to have an excellent engergy compaction property, where most of the 
signal information, here the frequency function,  tends to be concentrated in a few low-frequency 
components of the transform [34]. Therefore, the frequency function, in common practice, is 
approximated by the first m coefficient terms, where m is a number that is much smaller than the 
domain size n. That is, 
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Example. Consider a one-attribute data stream with 6 tuples {0.33, 0.32, 0.12, 0.66, 0.90, 0.80}. 
The cosine transformation of this distribution is derived as follows. 
          Given the cosine series 0),( ≥kxkφ :  {1, ,...},cos2,...,2cos2,cos2 xkxx πππ  we derive the 

respective coefficients as : ,063.0)(
6
1,1
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110 ∑
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)( jk tφ is ,cos2 jtkπ   and t,1≥k j,  is the j,61 ≤≤ j th element in the stream.             End of example # 
         To apply the transform to the d-dimensional case, the distribution is approximated by its md 
coefficients , as : ,,...,1 dkka 1,...,0 1 −≤≤ mkk d
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where tij is the jth attribute of the ith tuple ti, .1 Ni ≤≤   
         As observed from Eq. (3.3), each coefficient  of the transform is just the average of 
the sum of the products of the basis functions (i.e., 

dkka ,...,1

)(xkφ ) on the tuples. Therefore, for insertion 
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or deletion of a tuple, we just compute the “contribution” of that tuple to the transform separately 
and then combine it with the old coefficients.  That is, for the arrival of a new tuple x = (x1, x2, 
…, xd) to the data stream, which has already had N tuples, is updated as  

dkka ,...,1

                                ∏
=+

+
+
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1

1
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φ                               (3.4) 

Similarly, to delete a tuple x = (x1, x2,…, xd) from the data stream, the coefficient is updated as 
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       Coefficients can be updated easily and dynamically. Note that the set of coefficients derived 
by the above incremental update scheme (using Eq. (3.4)) is exactly the same as if we had 
derived in batch fashion using the Eq. (3.3). 
        The updates of the coefficients can also be performed in a batch fashion. That is, one can 
store the frequencies of the newly arrived attribute values in a buffer and then update the 
coefficients all at once. Note that the time taken to update the coefficients for a batch of newly 
arrived elements is same as that for each individual tuple. This batch update method can 
significantly reduce the overheads for updates. 
       A technique, called the triangular sampling [21], can be used to filter out high frequencies 
from the md coefficients without much information loss. It retains only those coefficients whose 
indexes satisfy the condition 1....1 −≤++ mkk d . The number of coefficients finally stored is 

. Note that the indexes (kdm
d
dm

≤⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −+ 1 1, …, kd) of the coefficients need not be stored because they 

are uniquely determined for a given m and can be generated automatically. In a d-dimensional 
case, the ratio of the coefficients stored is 

!
1/

1
d

m
d
dm d ≈⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ −+ . That is, we only store around 50%,  

17%, and 4% of the md coefficients for d=2, 3, and 4, respectively. We incorporate this technique 
in our implementation. 
 
4. Estimating Size of Join Queries 
     In this section, we discuss how to estimate the size of a join query using the cosine series. A 
typical query under consideration may look like “Select Count(*) from R1, R2, …., Rn  where 
join-conditions”, where the join-conditions have the form of  “Ri.A = Rj.B and Rk.C=Rl.D and 
….”.  
 
 4.1 Definitions and Assumptions 
       Let intervals [lA, rA] and [lB, rB] be the domains of Ri.A and Rj.B, respectively, before 
normalization, and minAB = min(lA, lB)，maxAB = max(rA, rB). By defining the frequency of a 
value falling outside of its domain to be 0, we can assume both attributes, i.e., Ri.A and Rj.B, 
have the same domain [minAB, maxAB] (with frequencies equal to 0 for those values falling 
outside of their original domains). Normalization is then performed on the domain [minAB, 
maxAB], converting it to the interval (0, 1). Hereafter, we assume all pairs of join attribute have 
the same domains and are normalized to (0, 1). 
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4.2 Join Size Estimation 
        Consider a query with an equi-join like “Select COUNT(*) from R1, R2 where R1.A = 
R2.B”. Discussions on queries with multiple equi-joins follow naturally. Let n be the domain size 
for both attributes A and B,  and  be the DCT coefficients of  R}{ ka }{ kb 1.A and R2.B, respectively. 
The join size, denoted as J, is computed as:                

                                                          (4.1)           ∑
−
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0
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n

k
BA iviv

countcountJ

where and are the numbers of tuples whose values are v
ivAcount

ivBcount i in R1.A and R2.B, 

respectively. On the other hand, by Parseval's identity [33], 
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Consequently, the join size is obtained as 
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By using only the first m coefficients, J is estimated as:   
                                              ∑
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  As shown by Eq. (4.4), the join size estimate can be derived by adding up the products of 
corresponding coefficients. The formula for queries with multiple joins is the similar by adding 
up the products of the corresponding coefficients on the same dimensions. 

 
4.3 Error Analysis 

   In this section, we give a brief discussion on the number of coefficients needed to guarantee 
the relative error to be smaller than a threshold e. 

   We assume both relations have the same size N, for simplicity. Let n be the size of join 
attribute domains. As shown in Eq. (4.4), the join size estimate Est of the two relations is 
calculated as 
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  As shown in Eq (4.3), we only need the first n terms to compute the actual join size J. That is, 
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We know that , and from Eq. (3.2), 10 =a .1,cos21
1
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Since ,1cos1 ≤≤− ivkπ  we derive .22 ≤≤− ka  similarly, 10 =b  and 22 ≤≤− kb . Using the 
bounds 2,2 ≤≤− kk ba , we obtain  
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 The relative error is defined as  
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J
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by assuming J > 0. To guarantee the relative error to be smaller than or equal to a given number 
e, from Eq. (4.8), we derive m

N
eJnn ≤− 22

. Consequently, the space requirement to guarantee an 

error e is:   

                                                   ⎥⎦
⎥

⎢⎣
⎢−= 22N

eJnnm                               (4.9) 

     As a simple comparison, the basic sketch [3] has a best case space bound  and 
worst case bound [32]. By boosting the basic sketch’s worst case bound to the 
skimmed sketch [32] has a space bound of Θ(N

)/( 2 JNΩ

)/( 24 JNO ),/( 2 JNO
2/J). However, this bound is valid only when the 

join size is greater than a sanity bound of N3/2 or NlogN [3]. When the join size is small, the 
required space could be much greater than the bounds given above. Moreover, the skimmed 
sketch uses extra space to store extracted frequencies; this extra space is in the order of n (i.e., 
O(n)). In general, it is very difficult or impossible to derive tighter bounds for our approach as 
well as for other approaches because of the diversities of the frequency functions, which are 
further complicated by the join operations. However, there are some interesting properties that 
may shed some light on the comparisons. That is, the best and worst cases of our approach 
happen to be, respectively, the worst and best cases of the sketches’. We discuss these situations 
in the following. 

 
4.3.1 Best Case Error 
        The cosine transform approximates smooth distributions better. Therefore, the best case, in 
terms of estimation accuracy, happens when the join attribute values are uniformly distributed 
regardless of the attribute domain size n is. The cosine coefficients a0=1 and b0=1. As for ak and 
bk,  they can be derived as: ,1 mk ≤≤
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Similarly, bk = 0. Thus, the join size estimate Est is 
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That is, using only the first term of the transforms, i.e., a0=b0=1, is already enough to represent 
the uniform distributions and gives no-error join size estimation. 
       On the other hand, the sketch methods have their worst case here. They require at least 

)()
/

()( 2

22

nO
nN

NO
J

NO ==  space, which makes them not better than the brute-force method. 

 
4.3.2. Worst Case Error  
      The worst case (of DCT) happens when all the tuples in a data stream have the same and sole 
join attribute value. Let  and  be the sole join attribute values in the two data streams, 
respectively.  For simplicity, we shall consider only the case where j

1j
v

2j
v

1=j2=j. That is, ,Ncount
jv =  

and  for  Since J=N0=
ivcount .ji ≠ 2 in this case, by Eq. (4.9), the number of coefficients needed 

to guarantee the relative error is smaller than or equal to e is : 
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                                         ).
2

(enfloornm −=                      (4.12) 

      On the other hand, the sketch methods can obtain the exact join size (J=N2) because there is 
only one value in the attributes. The sketch methods have their lower bound O(1) space here. 
       From the discussion above, we derive that Ω(1) and ))2/(( enfloornO − are our lower and upper 
space bounds, respectively. 
       As observed each method has its strengths and weaknesses. No single method is best for all 
distributions. Therefore, in the next section we will perform extensive experiments to see how 
they react to different types of data and which method is likely to cope with more types of data, 
especially real-life (like) data.  
 
5. Experimental Results 
        In this section, we report the experimental results of estimating join queries over data 
streams. Alon et al. [3] proposed the seminal sketch method, which we have called the basic 
sketch method in this paper. It has become the foundation of many other works [3, 9, 12, 32].  
Dobra et al. [9] partition the attribute domains and apply the sketch to sub-domains of the 
attributes; it requires a priori knowledge of the data distributions and an independence 
assumption of the join attributes. Since this approach is essentially the basic sketch approach 
applied to individual sub-domains (with additional assumptions) we will not include it in the 
comparisons as the results of the basic sketch approach are directly applicable to sub-domains of 
Dobra’s.  Ganguly et al. [32] skims the dense frequencies from the original data distributions. It 
then uses the sketch to estimate the join size of the non-dense frequency portions. Improved 
accuracy has been reported but extra storage space for the extracted dense frequencies is 
required, which could be as large as the attribute domain size. 
        In this paper, we shall compare our method with Alon’s basic sketch and Ganguly’s 
skimmed sketch as none of these requires a priori knowledge of data distributions or an 
independence assumption of join attributes. We have implemented the sketches and the cosine 
transform in C++. The experiments were run on a PC with a 1,400 MHZ Pentium IV CPU and 
1GB memory. Experiments are performed on synthetic data as well as on real-life data. 
 
5.1 Query Description 
      The following is an example of an equi-join query, specifically, a three-join query, in the 
experiments:    
             Select COUNT (*) from R1, R2, R3 , R4
             Where R1.A = R2.A   and R2.B = R3.B and R3.C = R4.C 
        Tuples are read one after another to simulate the arrival of items in the data stream. Cosine 
coefficients and atomic sketches are updated whenever a tuple arrives. To compute the average 
errors of each case, each query is executed 200 times, of which each is executed with a different 
set of relation instances 
        We compare the accuracies of the methods by using the same amount of space. The space is 
used to store atomic sketches or the coefficients of our cosine series. For simplicity, instead of 
using bytes, we use the number of coefficients or atomic sketches to specify the size of storage 
space.    We have adopted the commonly used average relative error as the performance measure. 
The relative error is defined as |Act(ual) – Est(imate)| / Act(ual). Each result is the average of 
200 queries. We have also recorded the estimation time and update speed. 
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5.2 Experiments on Synthetic Data 
5.2.1 Synthetic Data 

We generate two types of synthetic data for the experiments. The first type consists of 
datasets of different characteristics. They are used to explore the strengths and weaknesses of the 
methods. The second type consists of real-life like datasets, generated by the data generator used 
in [9, 27]. They are used to assess the potentials of these methods in the real world applications. 

    In the first type of synthetic data, we use the Zipfian distributions [30] to generate 
frequencies of attribute values. The Zipfianly distributed frequencies, with a parameter z (or 
zipf), are generated by the formula:  ∑

=

=
n

j
zzz ji

if
1

1/1)( ,  where fz(i) is ith frequency value, ni ≤≤1 . 

The z values of 0.5 and 1 roughly represent a slightly skewed and a skewed distribution, 
respectively. We will study how skew can affect the performance of the methods. 
      Besides the skew, correlations between the join attributes can also influence the performance 
of the methods. We generate data with different correlations to study their strengths and 
weaknesses. Independent attributes are generated by using different random mappings (from 
frequencies to attribute values), while correlated attributes are generated using the same mapping 
(for positively correlated attributes) or “inverted” mapping (for negatively correlated attributes). 
Here, positively correlated attributes, say, A and B, refer to roughly the situation where if the 
frequency of a value x in A is greater than the frequency of another value y in A, then the 
frequency of x in B is also greater than y in B. Negatively correlated attributes refer to the 
opposite situation. The smoothness of frequency functions can affect the performance too. We 
will investigate its effects by comparing their performance on smooth distributions with random 
distributions. Smooth distributions are generated by orderly mapping frequencies to attribute 
values. 
         For the second type of synthetic experiments, we generate real-life like data to assess their 
potentials for real-life applications. It is argued that real-life data are often correlated and 
sparsely clustered [9, 27]. Vitter [27] implemented a synthetic data generator to generate 
relations with such properties, and Dobra [9] extended it to generating correlated joint attributes 
between relations. Here, we will also use their methods to generate test datasets for our 
experiments.      
          Two types of synthetic experiments are performed. The first type aims to find out the 
strengths and weaknesses of the methods by observing their performance on different types of 
data. The second type is to assess their potentials for real-world applications by using real-life 
like data.  
 
5.2.2 Results of Synthetic Data 
5.2.2.1 Synthetic Data Type I 
         Two relations, R1 and R2, are generated, each with 107 (N) tuples. Each relation has an 
attribute with a domain size of 105 (n). These figures are the same as the experimental setting in 
related papers [9, 27, 32]. The frequencies of the attribute values in the two relations follow the 
Zipfian distributions with zipf values 0.5 and 1.0, respectively. Correlations and smoothness are 
instilled in attribute values using different mappings, as mentioned earlier. It should be 
mentioned that the skimmed sketch uses additional O(n) space to store extracted dense 
frequencies. The additional space, which is not reported in the figures presented here, from 
thousands to 105, is much larger than the largest number of DCT’s coefficients or atomic 
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sketches used in the experiments. Readers are advised to note the hidden space consumed by the 
skimmed sketch when interpreting the results. 

Figures 1 to 4 show how the methods perform with respect to different types of data, from 
positively correlated to negatively correlated data. As observed from Figure 1, sketches perform 
better than the cosine method. Actually, the positively correlated case is a generalization of the 
self-join case for which the sketch was shown to be most suitable [3]. Recall also from the 
discussion of Section 4 that sketch’s best case happens when all the join attribute values are the 
same, which is the extreme case of the positive correlations. However, as the positive 
correlations weaken, their performance degrades and our approach performs better as shown in 
Figures 2, 3 and 4. For example, with 500 coefficients (or atomic sketches), which is only 0.5% 
of the attribute domain size (n=105), the relative errors of the skimmed and basic sketches are 2.7 
and 8.3 times greater than the cosine method in the weak positively correlated case (Figure 2), 
24.4 and 49.8 times in the independent case (Figure 3) and 3.0 and 8.9 times in the negatively 
correlated case (Figure 4).  

The data set used in Figure 2 is obtained by permuting only 10% of the frequencies of R2 in 
Figure 1. The permutation introduces some randomness and weakens the positive correlations. 
Notice how large difference randomness has made in these two figures. Note that in Figure 1 no 
single tuple in the data set violates the positive correlation. The way to permute the frequencies 
also may affect the estimation performance. 
         Let us now examine the impact of the smoothness of distribution functions on the 
performance by comparing Figures 1 and 5. The data used in these two figures are basically 
identical, except that the frequency functions of R1 and R2 in Figure 1 are rough (due to the 
random mapping between frequencies and attribute values) while they are smooth in Figure 5 
(due to the orderly mapping between frequencies and attribute values). The two relations are 
positively correlated just like in Figure 1. As observed, smoothness plays in DCT’s favour. The 
cosine method has improved its performance a lot here, as compared to Figure 1, on this strongly 
correlated dataset due to the smoothness. For example, with 500 coefficients, the cosine method 
yields an average error of 56.24% in Figure 4, down from 96.58% in Figure 1.  As expected, 
smoothness has no effect on the sketches since sketches do not approximate distributions. 

Let us now examine the effects of skew by comparing Figures 3 and 6. When the 
distributions become skewer, that is, the zipf value of R2 changes from 1.0 (in Figure 3) to 1.5 (in 
Figure 6) with R1 remaining the same, all methods suffer from performance degradation. For 
example, with 500 coefficients, the relative errors of the cosine, skimmed sketch, and basic 
sketch increase from 9.98%, 92.40%, and 333.09% (in Figure 3) to 24.21%, 158.76%, and 
837.85% (in Figure 6), respectively.  The skew does not seem to play particularly in favour of 
any method. But still the errors of skimmed and basic sketches are 7.5 and 39.5 times greater 
than ours, respectively. 

As a short summary of this qualitative study, we observe that the sketch methods are 
suitable for strong positively correlated data, while our approach is more suitable for from weak 
positively correlated, random, to negatively correlated data. In addition, our approach can also 
benefit from the smoothness of distributions functions, which often exhibits in the real-life data, 
such as the distributions of ages and salaries of employees in a company.  

 37



Z. Jiang, C. Luo, W. Hou, F. Yan, Q. Zhu, C. Wang 
Join Size Estimation Over Data Streams Using Cosine Series 
 

Single-Join, zipf1=0.5, zipf2=1.0, Strong Positive Correlation

0

20

40

60

80

100

120

100 200 300 400 500 600 700 800 900 1000
Storage Space (No. of Coefficients /  Atomic Sketches)

R
el

at
iv

e 
Er

ro
r (

%
)

Cosine
Skimmed Sketch
Basic Sketch

   

Single-Join,zipf1=0.5, zipf2=1.0, Weak Positive Correlation

0

200

400

600

800

1000

1200

100 200 300 400 500 600 700 800 900 1000
Storage Space (No. of Coefficients/ Atomic Sketches)

Re
la

tiv
e 

Er
ro

r (
%

)

Cosine
Skimmed Sketch
Basic Sketch

 
  Figure 1. Strong Positively Correlated                  Figure 2. Weak Positively Correlated  
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Single-Join, zipf1=0.5, zipf2=1.0, Negative Correlation
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 Figure 3.  Independent Join Attributes              Figure 4.  Negatively Correlated Attributes 
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 Figure 5.   Strong Positively Correlated               Figure 6.   Independent Join Attributes    
     Attributes with Smooth Distributions                          with Skewer distributions 
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5.2.2.2 Synthetic Data Type II 
         The purpose of this experiment is to assess the potentials of these methods in real-life 
applications. We implemented the data generator proposed by Vitter, et al. [27] and extended by 
Dobra, et al. [9] to generate real-life like data. The data are clustered and positively correlated. 
The datasets are generated by distributing tuples across and within the randomly picked 
rectangular regions (clusters) in the multi-dimensional attribute space of a relation. We chose the 
same parameter setting as in [9]: skew across regions (zinter) =1.0 and skew within each region 
(zintra) =0.0-0.5; number of regions=10 and 50 (the later is in addition to Dobra’s [9]); size of 
each domain=1024; size of each relation=107, volume of each region =1,000 – 2,000 and 
perturbation parameter p=0.5 - 1.0.  
         Figure 7 and 8 show the results of single-join queries over clustered and correlated datasets 
with different numbers of clusters. Again, the cosine method outperforms the sketch methods. 
For example, with 500 coefficients in Figure 7, our method generates an average error of 0.60% 
while the errors of skimmed sketch and basic sketch method are 7.98% and 8.24%, respectively, 
which are 13.2 and 13.6 times greater than ours. Figure 8 shows a similar result as the number of 
clusters increases to 50. The superiority of our method in these experiments is mainly due to the 
not extremely strong positive correlations (as compared to that in Figure 1) exhibited in the data 
although the clusters are still very positively correlated. Randomness sets in when the centers of 
the clusters are selected randomly within their respective shrunk regions in the correlated 
relations. Clustered data could also make the distribution curves a little smoother than a 
completely random distribution. 
       Similar results are observed in the two-join query cases, as shown in Figures 9 and 10. 
Please note that the attributes space is 10242 =106 in the two-join cases and thus more 
coefficients are needed to capture the distribution information. Suffering from the large attribute 
space, all methods degrades compared to the single-join case. For example, in the two-join 
queries, with 1,000 coefficients, which is only 0.1% of the attribute space, the errors of the 
cosine method are 26.27% and 12.65% for 10 and 50 clusters, respectively, while the errors are 
only 0.28% and 0.96% in the single-join cases.  Our method again performs much better than the 
sketch methods in both cases. Their errors are as large as 142.46% (skimmed sketch) and 
147.56% (basic sketch) for the 10-cluster dataset, which are 5.4 and 5.6 times greater than ours. 
For the 50-cluster dataset, our result is 12.65%, while theirs are 139.89 % and 180.37% for the 
skimmed and basic sketches, respectively; theirs are 11.1 and 14.3 times larger than ours. The 
ratios do not differ much from those of 10-cluster set. 
         The experimental results of three-join queries are shown in Figures 11 and 12. Since too 
few resulting tuples could generate large estimation relative errors, the attribute domain sizes are 
reduced to 400, instead of 1,024 as in the previous experiments. Figure 11 shows the results of 
the three-dimensional 10-cluster dataset. With 1,000 coefficients, the cosine yields an average 
error of 86.26% and the error decreases to 9.03% when 20,000 coefficients are used. As for the 
skimmed and basic sketches, the errors are too large to be useful for coefficients less than 
10,000. Even with 20,000 coefficients, their relative errors are still 2.2 and 3.0 times larger than 
ours. Similar results are also observed in Figure 12 for the 50-cluster dataset.  
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Single-Join, Clustered Data, No. of Clusters: 50
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  Figure 7.  Single-Join Query, Cluster Data,       Figure 8.  Single-Join Query, Cluster Data, 
                     No. of Clusters: 10                                                  No. of Clusters: 50 
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Two-Join, Clustered Data, No. of Clusters: 50
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 Figure 9.  Two-Join Query, Cluster Data,          Figure 10. Two-Join Query, Cluster Data,  
                      No. of Clusters: 10                                                       No. of Clusters: 50               
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Three-Join, Clustered Data (No. of Clusters: 50)
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Figure 11.  Three-Join Query, Cluster Data,       Figure 12. Three-Join Query, Cluster Data, 
  No. of Clusters: 10                                                      No. of Clusters: 50 
 
5.3 Experiments on Real Data 
5.3.1 Real Datasets 
 Three real-life datasets - the Current Population Survey (also used in [9]), the Income and 
Program Participation Survey from the Bureau of Census, and the Internet Traffic Archive, are 
used for the experiments. The Current Population Survey (also denoted as real dataset I), 
containing 133,696, 143,598, and 135,872 tuples for the January, February, and March 2004, 
respectively, are used for the experiments. The two attributes selected for the experiments are 
Age and Education, whose ranges are [1, 99] and [1, 46], respectively. 
 For the Income and Program Participation Survey (also denoted as real dataset II), we use 
the attributes SSUSEQ (Sequence Number of Sample Unit), WHFNWGT (Weight for household 
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reference person), and THEARN (Total household earned income) for the years 2001 and 2004. 
Their ranges are [1, 50,000], [1, 9,999] and [1, 1,500], respectively. The 2001 data has 361,046 
tuples and 2004 data 441,849 tuples. 
 The Internet Traffic Archive (also denoted as real dataset III) contains the traces of internet 
network traffic. We use the DEC-PKT traces that record four hours’ worth of the wide-area 
traffic between the Digital Equipment Corporation and the rest of the world for our study.  
Records of the TCP and UDP packets in the first three hours are used in our experiments. The 
sizes of the TCP files are 94MB, 113MB and 128MB, and size of the UDP files are 21.4MB, 
21.4MB and 26.9MB respectively. Two attributes, the source and destination hosts are used as 
the join attributes. Their ranges are [0, 2394] in TCP files and [0, 7327] in UDP files.  
 
5.3.2 Results on Real Data 

The experimental results of single-joins on the real dataset I are shown in Figure 13. The 
join attribute is “Age”. All methods give good estimation, as shown in Figure 13. For example, 
with only 20 coefficients or atomic sketches, the relative errors of the cosine, skimmed, and basic 
sketches, are already as low as 4.71%, 8.08%, and 16.05%, respectively.  Two reasons contribute 
to this high accuracy are the small attribute domain (0-99) and large number of resulting tuples 
(0.26 billion).  In general, the smaller the domain size, the better the approximation. 
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 Figure 13. Single-Join Query, Real Data I       Figure. 14.  Two-Join Query, Real Data I 

 
 For two-join queries, the resulting size is 1.02 ×  108. As shown in Figure 14, the relative 

error of ours is less than 15% with only 1,500 coefficients while the relative errors of the 
skimmed and basic sketches are as large as 38.1% and 44.81%. We attribute the superiority of 
the cosine method to (1) the not extremely strong positive correlations like that in Figure 1, 
where there is absolutely no tuple violating the positive correlation, and (2) some smoothness in 
the distribution curves (as compared to the totally rugged curves). In fact, the positive 
correlations between the two “Age” attributes and the two “Education” attributes are rather 
strong, but the cosine method still outperforms the sketches methods.   
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  Figure 15.  Single-Join Query, Real Data II     Figure 16.  Two-Join Query, Real Data     

 
      Figures 15 and 16 show the results on the real dataset II (the Income and Program 
Participation Survey data). The single-join query (Figure 15) is performed on the SSUSEQ 
attribute, which has a rather large domain [1, 50,000]. Our method achieves high accuracy with 
just a few coefficients while the two sketch methods could not provide satisfactory estimation 
until using 10 times more coefficients. With 100 coefficients, the relative errors of the cosine, 
skimmed sketch, and basic sketch are 0.12%, 16.23%, and 22.12%, respectively. The skimmed 
and basic sketches generate 136 and 185 times larger error than our method. When the number of 
coefficients increases to 1,000, the relative errors of the cosine, skimmed sketch, and basic 
sketch decrease to 0.07%, 0.29%, and 4.06%, respectively. Cosine provides much better 
estimation all the time. Figure 16 shows the results of two-join queries on attributes WHFNWGT 
and THEARN. Again, the cosine method outperforms the skimmed and basic sketch methods. 
With 1,000 coefficients, the relative error of cosine is 6.6% while the relative error of the 
skimmed and basic sketch is 10.5% and 12.3%. 
        The experimental results on real dataset III (Internet Traffic Archive) are shown in Figures 
17 to 20.  The single-join is performed on the source (Figure 17) and destination (Figure 18) host 
attributes of the TCP datasets.   In Figure 17, with 100 coefficients, the cosine has an error of 
10.79% while the skimmed and basic sketches’ errors are 57.6% and 60.1%, respectively.  With 
900 coefficients, the relative error of the cosine is 6.10% while 15.3% and 22.6% for the 
skimmed and basic sketches, respectively.   
            The results of two-join experiments are shown in Figures 19 (for the TCP files) and 20 
(for the UDP files).  The performance of the skimmed and basic sketches is again much worse 
than our method. In Figure 19, with 1,500 coefficients, our method generates an error of 0.57% 
while the skimmed and basic sketch still has errors as large as 66.04% and 93.72%, respectively.  
A similar result is observed in Figure 20 for the two join experiment on the UDP files.  
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              Figure 17.  Single-Join Query (1),              Figure 18.  Single-Join Query (2),  
                    Real Data III                                                          Real Data III 
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                Figure 19.  Two-Join Query (1),                     Figure 20.  Two-Join Query (2),  
                         Real Data III                                                      Real Data III 
 
5.4 Computation Speed  
       When a tuple arrives, we immediately update the coefficients, following Eq. (3.4). On the 
average, it takes 0.32 µs to update one coefficient. So, even for the case with 10,000 coefficients, 
it takes only 3.2 ms to do the job. To estimate join sizes, we follow Eq. (4.6). On the average, it 
takes about 0.4 ms to derive an estimate from 10,000 coefficients. As for the sketch methods, to 
update 10,000 atomic sketches, it takes about 1.0 ms, which is faster than ours; this is due to 
simpler computations involved in updating atomic sketches.  But to derive an estimate from 
10,000 atomic sketches, it would take 1.6 ms, as compared to our 0.4 ms, because they need to 
find the median of a large number of group means. 
        It is worth mentioning that all the methods can update their coefficients in a batch fashion. 
That is, updates to the distributions can be stored aside and then applied to the coefficients or 
atomic sketches all in once. As a result, there should not be any problem for all these methods to 
cope with the fast on-line one-pass data streams. 
 
6. Conclusions and Future Work 
           In this paper, we discuss approximate aggregation query processing over data streams 
with limited storage space. Specifically, we concentrate on the estimation of aggregation queries 
with equi-joins. We use cosine series to approximate the data distributions of the data streams 
and then use them to estimate the size of equi-join queries. Experimental results have shown that 
our approach produces much more accurate estimates than sketches for most cases. We have also 
demonstrated that our approach can be updated dynamically and quickly. The proposed method 
is well suited for on-line approximate aggregation equi-join queries over continuous data 
streams. Our method can also be applied to non-equal-joins, range, and point queries.  
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