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Abstract Progressive queries (PQ) are a new type of
queries emerging from numerous contemporary database
applications such as e-commerce, social network, business
intelligence, and decision support. Such a PQ is formu-
lated on the fly in several steps via a set of inter-related
step-queries (SQ). In our previous work, we presented a
framework to process a restricted type of PQs. However,
how to process generic PQs remains an open problem. In
this paper, we develop a novel technique to efficiently pro-
cess generic PQs based on materialized views. The SQs of
an in-process PQ can utilize the results of previous SQs not
only from the same PQ but also from other in-process and
completed PQs. The key idea is to create a multiple query
dependency graph (MQDG), which captures the data source
dependency relationships among SQs from multiple PQs. A
mathematic model is developed to estimate the benefit of
keeping the result of an SQ as a materialized view (criti-
cal SQ/node) based on the MQDG. The kept materialized
views are used to improve the performance of the future
SQs. Strategies for constructing the MQDG and identify-
ing the critical SQs for materialization by using the MQDG
are presented. To manage the storage of the materialized
views, we introduce two approaches – one employs a greedy
method and the other adopts a dynamic programming (DP)
based method. Strategies are also suggested to reduce the
input problem size for the DP procedure. Experimental
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results demonstrate that our technique is quite promising in
efficiently processing PQs.
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1 Introduction

Nowadays, the rapid growth of numerous human-interactive
applications (e.g., GIS, literature search, Google) and data-
intensive applications (e.g., astronomy, biology) has been
changing our life. In many such applications, we observe
that users demand to routinely perform their queries step
by step. In each step, the result(s) of the previous step(s)
is(are) used. Users can progressively complete or modify
their demands by examining the result(s) returned by the
previous step(s). Such a query, consisting of a set of inter-
related and incrementally formulated step-queries (SQ), is
called a progressive query (PQ), which was first studied in
Zhu et al. (2008).

Planning a sightseeing trip by a traveler is a simple exam-
ple of the PQ. Assume that the traveler is planning for
a trip to see the scenes of some historic sites in China.
He/she first issues a search (step-query) on a large travel-
ing database to list all the historic sites along with their
relevant information in China. After the result is returned,
the traveler realizes that the result set is too large, and
he/she does not want to go through each returned entry
to determine if he/she is interested in visiting the cor-
responding site. Thus, in the second step, he/she adds a
further condition on the time period (e.g., 1644 - 1912
for the Qing Dynasty) when the historic sites were estab-
lished. However, the result set is still too large. Therefore,
in the third step, the he/she further narrows down the result
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by restricting the historic sites to be in/nearby several cho-
sen cities (e.g., Xi’an, Nanjing) in China. This example
represents a restricted but commonly used type (mono-
tonic linear) of PQs where a new SQ only uses the result
of its immediate preceding SQ. A generic PQ, however,
allows its SQs to use the result(s) of any previously exe-
cuted SQs and/or external table(s) as their inputs, and adopt
any qualification condition at will (not being restricted to
a pre-determined set of conditions). As an illustration, let
us continue the previous example and extend it to a generic
PQ. Assume that the traveler does not find enough interest-
ing sites from the chosen cities, he/she may add or change
the desired cities and reuse the result from the second SQ.
After several SQs are issued, a satisfied list of historic sites
is finally determined. The traveler may then want to search
for some other information related to the selected cities
and some stories/articles about the selected sites, which
cannot be found in the results of previous SQs — imply-
ing the necessity for a join operation with additional data
sources/tables. Other examples of PQs include a drug dis-
covery process in pharmaceutics, a protein identification in
bioinformatics, a study on the distribution and U/Pb zircon
ages of A-type plutons in geoscience, an analysis on corpo-
rate data for decision making, and a search for songs from a
world-wide multimedia database (Zhu et al. 2008).

These examples demonstrate a key characteristic of a PQ;
namely, a PQ cannot be formulated in advance because the
user cannot predict what the next SQ is before the execu-
tions of its previous SQs are completed. A user typically
needs to analyze the results returned by the previous SQs
and make a decision for the next SQ accordingly. How
to optimize such queries presents new challenges for a
database management system (DBMS).

For conventional queries, we can create indexes on the
relevant tables in the database in advance to optimize the
query processing. But due to the unpredictability character-
istic of PQs, it is difficult to create indexes on results for
SQs of PQs beforehand. To tackle this challenge, Zhu et
al. introduced an effective index technique, called the col-
lective index method (Zhu et al. 2008). The main idea is
to construct a special index structure so that a collection of
member indexes on an input table of an SQ can be effi-
ciently transformed into indexes on the result table. The
result index can be used to speed up the subsequent SQs.
This is the first technique to address the efficient query
processing issues for PQs.

It is well known that materialized view techniques have
been widely used to optimize the conventional queries. The
main idea is to select popular queries from the workload and
materialize their results as views. The materialized views
are utilized to answer future queries, instead of directly
using external tables from the underlying database. In the
case of PQs, since the results for SQs are highly desired

to be kept in the system for answering future SQs, the
materialized view techniques are quite relevant. In Zhu et al.
(2010), we introduced a materialized-view based approach
to efficiently processing a special type of PQs, called the
monotonic linear PQs. The main idea is to construct a
so-called superior-relationship graph based on the special
containment properties of monotonic linear PQs and use
it to dynamically select materialized views to speed up
future PQs. But this technique was not designed for han-
dling generic PQs, which may not possess the required
containment properties. Hence, a new technique is required
to efficiently process generic PQs.

In this paper, we present a novel materialized-view based
technique to efficiently process generic PQs. The main idea
is as follows: a multiple query dependency graph(MQDG),
which captures the data source dependency relationships
among external tables, SQs of in-process PQs and critical
SQs of completed PQs, is created; a mathematical model is
developed to estimate the potential benefit of SQs of com-
pleted PQs based on the MQDG; the SQs with significant
estimated benefits are selected as critical ones and their
results are kept as materialized views in a so-called the criti-
cal node view space (CNS); different strategies for effective
utilization of the CNS under a space limit are incorporated.
Using the MQDG, users can specify new SQs by using
not only the results for SQs from the same PQ but also
the results for SQs from other in-process PQs since they
are all available in the system without additional cost. Fur-
thermore, the results for some popular (critical) SQs can
also be utilized by users to optimize their future SQs. Since
a user has more options in specifying his/her SQs, with
the assistance (e.g., cost estimation) from the system, it is
expected that an improved performance of his/her PQ can be
achieved. Our experiments demonstrate that this approach
is quite promising.

The work that is most related to progressive queries in
the literature is discussed as follows. Tiakas et al. proposed
an algorithm for processing a top-k dominating query to
progressively report k items with the highest domination
scores (Tiakas et al. 2011). Raghavan et al. presented a pro-
gressive evaluation framework ProgXe to progressively gen-
erate query results early and often for mulit-criteria decision
support queries (Raghavan and Rundensteiner 2010). Jang
et al. designed a methodology of progressive filtering (PF)
for multimedia information retrieval, whose applications
were called the melody recognition (Jang and Lee 2008).
Kache et al. proposed a progressive optimization tech-
nique for federated queries, which were regular relational
queries accessing data on one or more remote relational
or non-relational data sources, possibly combining them
with tables stored in the federated DBMS server (Kache
et al. 2006). Papadias et al. designed a progressive algo-
rithm for the skyline queries, which was called the BBS
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(branch-and-bound skyline). The BBS can quickly return
the first skyline points without having to read the entire data
file (Papadias et al. 2003). Tan et al. proposed a technique
to handle nested queries with aggregates by providing users
with (approximate) answers progressively. While the above
techniques can be considered as “progressive”, queries pro-
cessed by those techniques are, however, formulated at once
(non-progressive).

Other work related to the progressive queries includes
the query processing for continuous queries (Agarwal et al.
2006; Babu 2005; Lee et al. 2010; Lim et al. 2006; Mokbel
2006), the adaptive query optimization (Antoshenkov 1993;
Babu and Bizarro 2005; Kabra and DeWitt 1998; Liu and
Pu 1997; Lu et al. 1995; Markl et al. 2004), and the
Extraction-Transformation-Loading (ETL) processing (Jorg
and DeBloch 2008; Simitsis et al. 2005; Vassiliadis et al.
2001; Vassiliadis et al. 2005). Continuous queries require
a query to repeatedly execute over a continuous stream of
data; the main idea of the adaptive query optimization is
to adapt the environments of a query for optimizing the
query processing during the query execution time. The dif-
ference with the progressive queries is that a query in either
streaming data or adaptive query optimization is also only
formulated once. The ETL processing chains multiple activ-
ities/operators together in a workflow. One operator uses
the results of previous operators. However, all the activ-
ities/operators in an ETL workflow are programmed in
advance, which is different from progressive queries.

Many materialized view techniques have been reported
in the literature. Different types of databases are consi-
dered: the relational database (Zhou et al. 2007; Luo 2007;
Goldstein and Larson 2001; Mistry et al. 2001; Gupta et al.
1995; Blakeley et al. 1986; Agrawal et al. 2000; Re and
Suciu 2007; Folkert et al. 2005), the data warehousing (Phan
and Li 2008; Park et al. 2001; Baralis et al. 1998; Yang
et al. 1997), the distributed database (Jiang et al. 2008), and
the XML database (Liu and Chen 2008; Tang et al. 2008;
Jiang et al. 2008; Balmin et al. 1997; Xu and Ozsoyoglu
2005; Arion et al. 2007). The materialized view techniques
are mainly focused on the following three issues: the mate-
rialized view selection, the materialized view matching, and
the materialized view maintenance. For the materialized
view selection problem, which is the most related issue to
our problem, has been well studied. Phan et al. presented
a dynamic Materialized Query Tables (MQT) management
scheme that materialized views and created indexes in an
on-demand fashion as a workload executed and managed
them with an LRU cache (Phan and Li 2008). Zhou, Luo,
et al. presented flexible materialization strategies which
selectively materialized only a subset of rows of a table
to reduce storage space and view maintenance costs (Zhou
et al. 2007; Luo 2007). Baralis et al. developed a technique
to select proper materialized views in the multidimensional

database by considering only the relevant elements of the
multidimensional lattice (Baralis et al. 1998). Yang,
Agrawal, Jiang, et al. proposed different approaches to
select proper views so as to achieve the best combination
of good query performance and low view maintenance (Re
and Suciu 2007; Yang et al. 1997; Agrawal et al. 2000;
Jiang et al. 2008). However, no technique was designed to
select materialized views for processing PQs. The material-
ized view matching issue is also considered as the problem
of answering queries using views. Tang et al. developed
different techniques for rewriting XPATH queries using
materialized views (Tang et al. 2008; Balmin et al. 1997; Xu
and Ozsoyoglu 2005; Arion et al. 2007). Liu et al. presented
techniques for answering keyword queries using a minimal
number of materialized views (Liu and Chen 2008). Park
et al. proposed a method for rewriting a given OLAP query
using various kinds of materialized aggregate views (Park
et al. 2001). Goldstein et al. designed a fast and scalable
algorithm for determining whether part or all of a query
can be computed from materialized views and described
how it can be incorporated in transformation-based optimiz-
ers (Goldstein and Larson 2001). Since the view matching
process for SQs of PQs is the same as that for conven-
tional queries, to answer an SQ using views, a commonly
used view matching technique can be applied. Therefore,
the view matching issue is not our focus in this work. For
a database with updates, the materialized view maintenance
issue needs to be considered. Blakeley, Folkert, Gupta, et
al. presented different materialized view updating meth-
ods considering the changes to the external tables in the
database (Blakeley et al. 1986; Folkert et al. 2005; Gupta
et al. 1995). Mistry et al. introduced a method for reduc-
ing the view maintenance cost by determining an optimal
set of additional views to materialize (Mistry et al. 2001).
For simplicity, we assume read-only databases in this work,
which removes the materialized view maintenance issue
from consideration. However, the materialized view tech-
nique developed in this work could be extended to handle
databases with updates in several ways. One way is to iden-
tity and remove the affected materialized views (i.e., critical
SQs) from the view space (i.e., CNS) based on our MQDG
when database changes are detected. Alternatively, we could
adapt a conventional materialized view maintenance tech-
nique to the task of maintaining materialized views in the
view space for PQs. The detailed study on the relevant mate-
rialized view maintenance techniques for PQs is our future
work. On the other hand, we consider another maintenance
issue in this work, that is, how to maintain the view space
under a given space limit. Although much work has been
done on using the materialized views in the past, only our
previous work in Zhu et al. (2010) was focused on applying
materialized views to process progressive queries. However,
as mentioned earlier, that work was restricted to handle
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a special type of PQs. Applying materialized views to
efficiently process generic PQs is the new issue addressed
in this paper.

The remainder of this paper is organized as follows.
Background knowledge is introduced and the multiple query
dependency graph is defined in Section 2. The main pro-
cessing procedure, the mathematical model, and relevant
algorithms of our technique are presented in Section 3.
Experimental results are reported and analyzed in Section 4.
Section 5 summarizes the conclusions and the future work.

2 Preliminaries

In this section, some background knowledge of this work
is provided. An overview of three types of PQs is given
and the dependency graph is defined in Section 2.1. Related
concepts for the MQDG are introduced in Section 2.2. A so-
called view storage (VS) for saving the materialized views
is presented in Section 2.3.

2.1 Progressive query types and multiple query dependency
graph

PQs are classified into three types in Zhu et al. (2008). The
first type is called the single-linear PQ. Each SQ (except
the initial one) in such a PQ can only use the result table
returned by its (immediate) preceding SQ as its input. The
initial SQ uses an external table from the database as its
input. The second type is called the multiple-input linear
PQ. Each SQ in a PQ of this type uses not only the result
returned by its (immediate) preceding SQ but also some
external tables as its inputs. The third type is called the non-
linear PQ. In such a PQ, an SQ utilizes the results for more
than one previous SQ as its inputs. The domain of an SQ
sq1, denoted by Domain(SQ), is defined as the set of input
tables of sq1.

In our previous work (Zhu et al. 2010), we considered
PQs of a special case of the second type (multiple-input lin-
ear PQ), called the monotonic linear PQs, where multiple
inputs are only allowed for the initial SQ. In this paper, we
design a technique to handle generic PQs, namely, all types
of PQs mentioned above are allowed.

As mentioned earlier, the main characteristic of a PQ
is that the user cannot predict what the next SQ is before
the previous SQs are executed. Therefore, the result tables
for executed SQs of in-process PQs have to be made avail-
able (not discarded) in the system since they may be used
by future SQs. In general, multiple PQs are simultaneously
processed in a DBMS. We consider the executed SQs of in-
process PQs as temporary SQs and keep their result tables
in the system. Conceptually, an SQ only utilizes the result
tables for previous SQs of the same PQ. In this paper, we

also allow users to utilize the result tables for SQs of other
in-process PQs rather than the same PQ if a better perfor-
mance can be achieved. Usually, the result tables for SQs
of completed (historical) PQs are no longer kept in the sys-
tem. However, some historical SQs may be very popular
since their results are frequently utilized. Thus, the results
for such SQs are still kept in the system even after their cor-
responding PQs are completed. Such SQs are named critical
SQs.

In this work, we employ a so-called multiple query
dependency graph (MQDG) to capture the data source
dependency relationships among the SQs of the in-process
PQs as well as the critical SQs in the system. Let SPQ

be the set of the in-process PQs. The multiple query
dependency graph for SPQ is defined as a directed graph
MQDG(SPQ) = (V , E, P, S, FP , FS), where V is a set
of nodes, E is a set of edges, P is a set of labels repre-
senting the id’s for PQs in SPQ, S is a set of numbers
representing the result table sizes for SQs of PQs in SPQ,
FP is a function that maps a node in V to a label in P , and
FS is another function that maps a node in V to a number
in S.

Let SSQ be the set of SQs of in-process PQs and criti-
cal SQs of completed PQs. Each node in V represents either
an external table used by an SQ in SSQ or directly an SQ
in SSQ. The former is called a table node, while the latter
is called a temporary node (for a temporary SQ) or a criti-
cal node (for a critical SQ). If a node v2 representing an SQ
uses as input the external table or the result table associated
with node v1, we say v2 depends on v1, which is repre-
sented by a directed edge e =< v1, v2 > from v1 to v2 in
E. In this case, we also say that there exists a dependency
relationship from v1 to v2. The set P in MQDG(SPQ)

consists of unique identifiers for all the PQs in SPQ. Func-
tion FP in MQDG(SPQ) maps (labels) each temporary
node representing an SQ of a PQ in SPQ to the id in P for
the corresponding PQ to which the SQ belongs. Function
FS in MQDG(SPQ) maps each node in V representing an
SQ(critical SQs or temporary SQs) or an external table to its
result size or table size in S. An MQDG dynamically grows
as more SQs of current PQs or new PQs are issued. Figure 1
shows an example of the MQDG.

Several properties of an MQDG can be observed. First of
all, there exists no directed circle in the graph. A directed
edge from a node v1 to a node v2 in the graph represents
that v2 is dependent on v1, which implies that v2 is gener-
ated later than v1. On the other hand, all the outgoing paths
from v2 are to connect the nodes which are generated later
than v2. Therefore, it is impossible to form a recursive cycle
in the graph. Secondly, isolated sub-graphs may exist in an
MQDG. The result for an SQ of a PQ q may never be used
by any subsequent SQs of q. Since we allow an SQ to use
the result(s) of SQ(s) from different PQs, on the other hand,
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Fig. 1 An example of the
multiple query dependency
graph (MQDG)

the SQs from different PQs may be connected together in
the graph.

Other properties of an MQDG include that each table
node has no incoming edge and there is a single sink (final)
node for each PQ that returns the final result for the PQ.
Note that a dependency graph (DG) for a given PQ was
defined in Zhu et al. (2008). There are several differences
between a DG and an MQDG. First of all, a DG is for a sin-
gle PQ, while an MQDG is for multiple PQs. Secondly, a
DG is used to illustrate the definition of a (complete) PG,
while an MQDG is used to optimize multiple in-process
PQs that are incomplete and growing. Finally, a DG does
not include nodes for external tables, while an MQDG
does.

2.2 Basic concepts in MQDG

Let us now introduce some basic concepts for the MQDG,
which will be used in the following discussion.

Direct parent node: if there exists an edge from a node
m to a node n in an MQDG, then m is called a direct parent
node of n in the MQDG.

Direct child node: if there exists an edge from a node m

to a node n in an MQDG, then n is called a direct child node
of m in the MQDG.

Indirect child node: if there exists a (directed) path p

from a node m to a node n and p consists of more than one
edge in an MQDG, then n is called an indirect child node of
m in the MQDG.

Note that a node n in an MQDG can be both a direct child
node and an indirect child node of node m. For the example
in Fig. 4, there exists a direct path from sq1 to sq6 which
contains only one edge, and there also exists an indirect path
from sq1 to sq6 which consists two edges {< sq1, sq2 >

, < sq2, sq6 >}. Consequently, sq6 is both a direct child
node and an indirect child node of sq1.

Internal node: if there exists a (directed) path from node
m to node n and the PQ id’s of both n and m are the same,
then n is called an internal node of m.

External node: if there exists a (directed) path from node
m to node n, and the PQ id of m is different from that of n,
then n is called an external node of m.

2.3 View storage

As mentioned earlier, the result tables associated with tem-
porary nodes and critical nodes are kept in the system as
materialized views. Thus, a space, which is called the view
storage (VS), is allocated to save those materialized views.
The VS is divided into two subspaces: the temporary node
view space (TNS) and the critical node view space (CNS).
The TNS is to store the set of result tables for all the tem-
porary nodes (temporary node views), while the CNS is to
keep the set of result tables for all the critical nodes (critical
node views). Note that the related information of a (mate-
rialized) view, e.g., PQ id, the size of the view, and query
expression, is also saved in the VS. Figure 2 shows the
structure of the view storage.
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Fig. 2 The structure of the view
storage

It is observed that the space limit for the TNS determines
how many in-process PQs can be executed simultaneously
in the system. This space limit is implied/reflected in the
maximum number of in-process PQs allowed in the system,
which is usually specified in a control file of the system.
Since the result tables of all the temporary nodes (SQs) of
an in-process PQ have to be stored in the TNS, there is
no (temporary node) view selection problem for this sub-
space. The TNS may consist of both main memory and disk
spaces, with the main memory having a higher priority to
be used first. On the other hand, the space limit for the CNS
determines how many beneficial critical SQ results can be
retained. Since the number of SQs of completed PQs can
grow unlimited, it is impossible to keep all their results as
critical node views in the CNS. Hence, we face a (critical
node) view selection problem for the CNS. Furthermore,
when the CNS overflows, we also need to consider how
to maintain the view space by replacing some less benefi-
cial existing ones with more beneficial new ones. The view
selection and view space maintenance for the CNS are the
main issues to be solved by our technique.

3 A materialized-view based technique for efficiently
processing PQs

In this section, we present the various components of our
materialized view based technique for processing generic
PQs. The main processing procedure is introduced in
Section 3.1. The estimation model to identify the critical
nodes from completed PQs by using the MQDG is discussed
in Section 3.2. The policy to remove non-critical nodes from

the MQDG is presented in Section 3.3, and the strategies to
insert critical nodes into the CNS with a given space limit is
discussed in Section 3.4.

3.1 Main processing procedure

As mentioned earlier, the result tables for the SQs of in-
process PQs as well as the result tables for critical SQs are
kept as materialized views to help users specify future SQs.
Users may use the cost estimates provided by the system to
decide whether to utilize the materialized views or not for
their future SQs.

Since the result tables for all SQs of in-process PQs are
automatically stored in the TNS and available to users, no
further issue needs to be considered. However, it is clear
that it is impossible to keep the result tables for SQs of all
completed PQs. Hence a key issue that needs to be studied
is how to properly choose the critical SQs from completed
PQs and retain their results for future use. A technique to
address this and other relevant issues for generic PQs are
presented in this section. The main processing procedure is
introduced in this subsection, and the details of its invoked
functions are to be discussed in the following subsections.

Specifically, our technique address the following four
issues: (1) how to construct an MQDG; (2) how to use the
MQDG to find the critical nodes from completed PQs; (3)
how to remove the non-critical nodes of a completed PQ
from the MQDG; and (4) how to address the maintenance
issue for the CNS under a certain space limit.

The high-level flowchart of the main procedure is shown
in Fig. 3. It starts with a new SQ nsq being issued to the sys-
tem. nsq can take advantage of all available critical nodes
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Fig. 3 The flowchart of the main procedure

from the CNS to optimize its query processing. The result
table of nsq is saved in TNS. If nsq is an initial SQ of a
new PQ pq, the id of pq is saved in the MQDG. nsq and
the domain tables of nsq are added into the MQDG. Next,
the system checks if PQ pq is completed. If so, an algo-
rithm is applied to look for critical nodes from pq by using

the MQDG (the algorithm is shown as Process 1 in Fig. 3).
After that, all non-critical nodes of pq are removed. Finally,
the newly searched critical nodes are inserted into the CNS.
Since the CNS may overflow, we designed two different
strategies (greedy strategy and dynamic programming strat-
egy) to address the CNS overflowing problem which are
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shown as Process 2 in Fig. 3. The detailed description of the
main procedure is given by the following algorithm.

There are two phases in Algorithm 1. The first phase
(lines 1 – 18) executes the newly arrived SQ and revises
MQDG and VS to include this SQ. The second phase
(lines 19 – 25) finds the critical nodes of a completed PQ,
removes non-critical nodes of the PQ, updates the MQDG,
and inserts the discovered critical nodes into the VS. The
second phase is done by invoking several external functions.

In the first phase, lines 1 and 2 execute the given SQ and
save its result table and relevant information in the VS. If
the given SQ is an initial (first) SQ of a new PG, the algo-
rithm adds the PQ’s id into the MQDG (lines 3 – 5). It then
adds relevant nodes and edges into the MQDG to include
the given SQ (lines 6 – 18).

In the second phase, the algorithm first invokes function
FindCriticalNode() to estimate the benefit of each SQ of a
completed PQ to identify and return a set of critical nodes
(lines 19 – 20). After all critical nodes are identified from
a PQ, the non-critical nodes are removed from the MQDG
by invoking function RemoveAndTransfer() (lines 21 – 23)
and the result tables of all critical nodes are inserted into
the CNS by invoking function CriticalNodesInsertion() (line
24).

The invoked functions in this algorithm are to be dis-
cussed in the following subsections.

3.2 Estimation model for critical nodes

The main purpose of constructing an MQDG is to estimate
the potential benefits for SQs of a completed PQ to identify
critical nodes. As mentioned earlier, how to find the critical
nodes from a completed PQ is a crucial issue in this work. In
this subsection, we discuss this issue and introduce a model
for estimating the potential benefits of SQs by using the
MQDG.

The main idea to estimate the potential benefit for an
SQ sq1 is to consider that how the result table of sq1 has
been efficiently and effectively used to answer other nodes
(SQs) in the MQDG. We developed an estimation model to
quantitatively capture the benefit of an SQ (i.e., a temporary
node) by using an MQDG. Before introducing the model,
two affecting factors are defined first.

(1) Impact: if a node n in an MQDG can be directly or
indirectly computed from the result table of an SQ sq

( i.e., n is a direct or indirect child node of sq), we
say sq has an impact on n. We have derived a formula
to quantitatively estimate the impact of sq on n. We
consider the impact of sq is the accumulated impact
of sq on all its direct and indirect child nodes in the
MQDG. The larger the value for the impact of sq is,
the more nodes in the MQDG can be directly or indi-

Algorithm 1 Selection of materialized views via dependency analysis
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rectly derived from the result table of sq. Therefore,
the value for the impact of sq represents whether the
result table of sq is frequently used by other SQs in the
MQDG.

(2) Effectiveness: it represents the storage effectiveness.
We consider that the value v for effectiveness of
sq implies that how many tuples on average can be
directly computed from a single unit of data in the
result table of sq (we assume that the smallest unit
in the table is a tuple). Keeping the result table of an
SQ sq with a larger v can improve the utilization of
the limited CNS. If the size of the result table of sq

is fixed, the larger v represents more tuples can be
directly derived. Hence, the value for the effective-
ness of sq represents that how the result table of sq is
effectively used by other SQs in the MQDG.

In the estimation model, the impact and effective-
ness of an SQ are combined. The reason for that is as
follows: either the impact or the effectiveness of an SQ
sq can only partially reflect the potential benefit of sq.
Let us consider two different scenarios.

(a) Assume that the impact of an SQ sq is very large,
but the result table size of sq is also very large,
which leads to a very small effectiveness for sq.
In this case, if we only use the impact of sq

to represent the potential benefit of sq, the ben-
efit is very large. However, although the result
table of sq is frequently used by other nodes
(SQs) in the MQDG, the space overhead is very
high. In other words, sq is not effectively used by
other nodes in the MQDG although it is heavily
used.

(b) Assume that the impact of an SQ sq is very small,
but the size of sq is also very small, which leads
to a very large effectiveness for sq. In this case, if
we only use the effectiveness of sq to represent the
potential benefit of sq, the benefit is very large.
But actually sq is not frequently used to compute
other nodes. Therefore, sq is not a good candidate
for a critical node.

Now let us introduce the details of our benefit esti-
mation model. Assume that we want to estimate the
potential benefit for keeping the result of an SQ sq. Let
Imp(sq) be the impact of sq, Impmax be the current
maximum impact of all compared SQs in the MQDG,
Eff (sq) be the effectiveness of sq, and Effmax be the
current maximum effectiveness of all compared SQs
in the MQDG. The model is shown as follows:

Benef it (sq) =
(

Imp(sq)

Impmax

)α

∗
(

Eff (sq)

Effmax

)β

(1)

where α and β are parameters representing the impor-
tance of the impact and the effectiveness of sq in the
model, respectively. α and β range from 0 to ∞. For
example, typically α = β = 1 (which will be used in
our remaining discussion).

The model computes a value representing how
an SQ sq has been efficiently and effectively used
by other nodes (SQs) in an MQDG. We consider
this value as the potential benefit for keeping the
result of sq. The components Imp(sq)/Impmax and
Eff (sq)/Effmax represents the normalized impact
and effectiveness of sq, respectively.

With the above model, we can quantitatively com-
pute the potential benefit for any temporary SQ sq

in the MQDG and decide whether select sq as a
critical node. Next, we discuss how to quantitatively
calculate the impact and effectiveness of an SQ in
detail.

Let us first discuss the details about how to com-
pute the impact of an SQ sq1 by using the MQDG.
The main idea is to compute how much impact sq1

has already brought to every its direct/indirect child
node sq2 by using the MQDG. The following affecting
factors are considered.

(i) The distance: it is the number of edges in a path
from the node sq1 to node sq2. The larger the
distance is, the smaller the impact that sq1 could
make to sq2. As an illustration, we consider the
following two scenarios: 1) sq2 is a direct child
node of sq1. In this case, sq2 could directly make
use of the result of sq1. 2) sq2 is an indirect child
node of sq1 and there is an path from sq1 to sq2.
In this case, sq2 could not directly take advantage
of the result of sq1. It is clear that sq1 could make
more contribution to executing sq2 in the first sce-
nario than in the second scenario. In other words,
sq1 has more impact on sq2 if the distance from
sq1 to sq2 along the path that is under considera-
tion is shorter. Note that, if there are multiple paths
from sq1 to sq2, the impact gained by sq2 through
them are accumulated.

(ii) The node type (internal or external): it also makes
a significant difference whether sq2 is an inter-
nal node or an external node of sq1. Obviously,
the SQs of a PQ have a much higher chance to
use the results of previous SQs from the same PQ.
However, after the PQ is completed, most internal
nodes may never be used by other queries. Thus,
a PQ may have many internal nodes, but they may
not bring any benefit for future queries. On the
other hand, future SQs can be considered as exter-
nal nodes of sq1 if they make use of the result
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of sq1. Therefore, external nodes are more rele-
vant than internal nodes to represent future SQs. In
other words, it is reasonable to assign sq1 a higher
impact value if sq2 is an external node.

(iii) The number of inputs: it represents the number of
incoming edges of sq2, assuming sq2 is a direct
child node of sq1. The reason why this factor
matters is that an SQ may only make a partial con-
tribution to the evaluation of its direct child nodes.
The larger the number of inputs that sq2 has, the
less the impact that sq1 could make to sq2. Con-
sider the following two different scenarios. The
first scenario is that sq2 has only one incoming
edge, which is from sq1. In this case, sq2 is eval-
uated totally based on the result table of sq1. The
second scenario is that sq2 has n (n > 1) incoming
edges, one of which is from sq1. In this case, sev-
eral tables (result tables for SQs or external tables)
make contribution on evaluating sq2. It is obvi-
ous that sq1 has more impact on sq2 in the first
scenario.

Therefore, if an SQ sq has only one input, its input table
makes a total contribution in evaluating sq. However, if sq

has more than one input, it is required to decide how much
contribution each input of sq can make. Assume that an SQ
sqi has three inputs: sq1, sq2 and sq3. Result (sq1) has three
attributes: A, B and C. Result (sq2) has three attributes: A,
D and E. Result (sq3) has two attribute: A and F . Attribute
A is the key attribute. To execute sqi , three tables are joined
and the Cartesian product T (A, B, C, D, E, F ) is com-
puted. We observed that each tuple in T is coming partially
from Result (sq1) (A, B, C), partially from Result (sq2)

(D, E), and partially from Result (sq3) (F ). Regardless the
filter conditions in the query expression of sqi , we consider
that each input of sqi (sq1, sq2 or sq3) makes one third
contribution to evaluate sqi .

If sq2 is an indirect child node of sq1, the case becomes
more complicated since many intermediate SQs on the path
from sq1 to sq2 also have more than one incoming edge.
Thus, sq1 makes even less contribution to sq2 and the
incoming edges of all the intermediate nodes also need to be
considered.

To compute the impact of a temporary node (SQ) sq in an
MQDG, we use the accumulated impact that sq has brought
to all its direct and indirect child nodes along all possible
paths. Let ChdS(sq) be the set of direct and indirect child
nodes of sq, P thS(sq, c) be the set of paths from sq to its
child node c, NdeS(p) be the set of child nodes (including
c) of sq on the path p from sq to c, |p| denotes the length of
path p, NE(x) is the number of incoming edges that node x

has, Ex(sq, c) is a function having value 1 if c is an external
node of sq and having value 0 if c is an internal node of

sq, and In(sq, c) = 1 − Ex(sq, c). Assume that, if sq ′ is
a direct child node of sq, sq ′ has only one incoming edge
(from sq), and sq ′ and sq belong to the same PQ, then sq

brings 1 unit of impact to sq ′. The following model/formula
is derived to compute the impact of sq:

Imp(sq) =
∑

c ∈ ChdS(sq)

∑
p ∈ P thS(sq,c)

× (Wd)|p|−1 ∗ [WE ∗ Ex(sq, c) + WI ∗ In(sq, c)]∏
x ∈ NdeS(p) NE(x)

, (2)

where Wd ∈ (0, 1), WE > 0 and WI > 0 are real number
constant coefficients.

The formula essentially calculates the total impact that
sq has brought to all its direct and indirect child nodes along
all possible paths. Wd represents the impact reducing rate
as the distance increases. For example, for a typical value
Wd = 0.5 (it will be used in our remaining discussion), the
relevant impact contribution (Wd)|p|−1 becomes 1.0, 0.5,
0.25, 0.125 ... for distance 1, 2, 3, 4, ..., respectively. We
can see that the larger the distance is, the smaller the impact
is. WE and EI are the constant coefficients to differenti-
ate the impact from an external node or an internal node.
For example, we can set WE = 2 and WI = 1 (they will
be used in our remaining discussion), which implies that an
external node is twice as important as an internal node. The
factor 1/

∏
x ∈ NdeS(p) NE(x) represents how the impact

for node c from sq is affected by the number of incom-
ing edges for all the child nodes of sq along path p from
sq to c.

Let us consider the example in Fig. 4. Assume that we
want to calculate the impact that sq1 has brought to sq6.
First, all possible paths from sq1 to sq6 are listed:

(1) p1 = {< sq1, sq6 >};
(2) p2 = {< sq1, sq2 >, < sq2, sq6 >};
(3) p3 = {< sq1, sq2 >, < sq2, sq3 >, < sq3, sq5 >,

< sq5, sq6 >}.
Clearly, Ex(sq1, sq6) = 0, In(sq1, sq6) = 1.

For path p1, |p1| = 1, NE(sq6) = 3. Thus, the impact
that sq1 has brought to sq6 through p1 is:

Imp(sq6) on p1 = (0.5)0 ∗ 1

3
= 1

3
.

For path p2, |p2| = 2, NE(sq2) = 1, NE(sq6) = 3. Thus,
the impact that sq1 has brought to sq6 through p2 is:

Imp(sq6) on p2 = (0.5)1 ∗ 1

1 ∗ 3
= 1

6
.
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Fig. 4 The MQDG for the
example

For path p3, |p3| = 4, NE(sq2) = 1, NE(sq3) = 1,
NE(sq5) = 2 and NE(sq6) = 3. Thus, the impact that sq1

has brought to sq6 via p3 is:

Imp(sq6) on p3 = (0.5)3 ∗ 1

1 ∗ 1 ∗ 2 ∗ 3
= 1

48
.

Therefore, the total impact that sq1 has brought to sq6

is to add the above three impact values together, i.e.,
Imp(sq6) ≈ 0.52.

Let us provide an algorithm to estimate the impact of a
temporary node in an MQDG using the above formula. The
main idea of the algorithm is to traverse all the paths from
the given node in a depth-first fashion to accumulate the
impact values that the node has brought to each of its direct
and indirect child nodes.

In Algorithm 2, in denotes the impact that t has brought
to its current individual direct child node n along one path.
For each direct child node n of t , in is calculated differently
based on the node type of n (internal or external node of t)
(lines 4 – 8). A function RecursiveAcc() is called to recur-
sively calculate the impact that t has brought to the indirect
child nodes of t along the current path (line 10). Finally, the

total impact that t has brought to all its direct and indirect
child nodes is returned (line 12).

Algorithm 3 is a recursive function to traverse all the
(direct and indirect) child nodes of an input node n in the
depth-first fashion. The impact in that t has brought to n

along a traversed path is known as an input. The impact
im that t has brought to each direct child node m of n is
computed based on in (lines 4, 6, 8) and the total impact
it of t is accumulated (line 10). If the node type (internal
or external) of m is the same as that of n (line 3), the rele-
vant coefficient (WI or WE) used in the impact calculation
for im does not change (line 4). If the node type changes
from internal to external (line 5), the relevant coefficient
used in the impact calculation for im needs to change from
WI to WE (line 6). If the node type changes from exter-
nal to internal (line 7), the relevant coefficient used in the
impact calculation for im needs to change from WE to WI

(line 8).
Using function CalculateImpact(), the value for the

impact of an SQ can be easily computed. Next let us con-
sider how to compute the value for the effectiveness of an
SQ by using the MQDG. The main idea is to calculate
how many tuples on average can be computed from a unit
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Algorithm 2 CalculateImpact(mqdg, t)

(assume that a unit in the result table is a tuple) of the result
table for sq.

For each direct child node n of sq, the average number
av of tuples of n, which can be derived from keeping a
tuple (unit) from the result of sq, is computed. This number
av is considered as the effectiveness of sq for n. To cal-
culate such effectiveness, let us consider the following two
cases. Assume that the result sizes of sq and n are s1 and
s2, respectively. The number of input tables for n is num.
In the first case, num equals to 1. It implies that the result
tuples for n are totally derived from the result of sq. Thus,
the effectiveness of sq for n is computed by s2/s1. In the
second case, num is greater than 1, say num equals to 2.
Assume that the size of another input table of n is s3. The
effectiveness of sq for n is calculated by s2/(s1+s3) since
only part of the result for n is derived from the result for sq.
After the effectiveness of sq for all its direct child nodes are
computed, the accumulated value is considered as the total
effectiveness of sq. Note that the effectiveness of a node

sq is about the storage utilization for producing the results
of the (direct) child nodes of sq. Since the results of the
indirect child nodes of sq are produced from their direct par-
ent nodes, the storage of sq has little effect on its indirect
child nodes. Hence, the indirect child nodes of sq are not
considered in calculating the effectiveness of sq.

Let DchdS(sq) be the set of direct child nodes of sq,
DpadS(c) be the set of direct parent nodes of a direct child
node c of sq. The following formula is derived to calculate
the effectiveness of sq.

Eff (sq) =
∑

c ∈ DchdS(sq)

Size(Result (c))∑
t ∈ DpadS(c)

Size(Result (t))
. (3)

The formula essentially computes the value for the
total effectiveness of sq. Size(Result (c)) denotes
the result size of each direct child node c of sq.
Size(Result (t)) denotes the result size of each direct
parent node t of c. From the formula, we can see that, if
c has only one input (direct parent node), the effective-
ness of sq for c is Size(Result (c))/Size(Result (sq)).
Otherwise, the effectiveness of sq for c is

Size(Result(c))/

( ∑
t ∈ DpadS(c)

Size(Result(t))

)
.

Let us consider the example in Fig. 4. Assume that we
want to calculate the effectiveness of sq1. sq1 has three
direct child nodes: sq2, sq6, and sq7. Size(Result (sq1)) is
100, Size(Result (sq2)) is 50, Size(Result (sq6)) is 100,
and Size(Result (sq7)) is 50.

The effectiveness of sq1 for its first direct child node sq2

is:

Eff (sq1) for sq2 = Size(Result(sq2))

Size(Result(sq1))
= 50

100
= 1

2
.

Algorithm 3 RecursiveAcc(mqdg, t, n, it , in)
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The effectiveness of sq1 for its second direct node sq6 is:

Eff (sq1) for sq6

= Size(Result(sq6))

Size(Result(sq1)) + Size(Result(sq2))

= 100

100 + 50
= 2

3
.

Note that sq1 and sq2 are input tables of sq6.
The effectiveness of sq1 for its third direct node sq7 is:

Eff (sq1) for sq7 = Size(Result(sq7))

Size(Result(sq1))
= 50

100
= 1

2
.

Therefore, the accumulated effectiveness of sq1 is to
add the above three effectiveness values together, i.e.,
Eff (sq1) ≈ 1.67. In other words, every tuple of
Result (sq1) has produced a little more than 1.5 tuples for
other SQs in the MQDG.

The following algorithm computes the effectiveness of
a temporary node in the MQDG by using the above
formula.

Algorithm 4 CalculateEffectiveness(mqdg, t)

In Algorithm 4, et denotes the total effectiveness that t
has brought for all its direct child nodes. en represents the
effectiveness that t has brought for its current individual
direct child node n. en is computed differently for a differ-
ent child based on the number of inputs of n (lines 5 – 9)
and et is accumulated (line 10).

Now, we go back to discuss our benefit estimation
model (1). Let us show an example for estimating the ben-
efit of an SQ in a completed PQ by using the model.
Assume that a completed PQ pq1 is composed of four
SQs: sq1, sq2, sq3, and sq4. The impact values for sq1,
sq2, sq3, and sq4 are: 0.5, 0.9, 0.6, and 0.8, respec-
tively. The effectiveness values for sq1, sq2, sq3, and sq4
are: 2, 2.5, 1.5, and 1, respectively. The impact and the

effectiveness in the model are of the same importance, i.e.,
α = β =1. The current maximum impact is 1.0 and the
current maximum effectiveness is 3. The benefit of sq1 is
desired. In this example, Imp(sq1) = 0.5. Eff (sq1) = 2.
Hence,

Benefit(sq1) =
(

Imp(sq1)

Impmax

)α

∗
(

Eff (sq1)

Effmax

)β

=
(

0.5

1.0

)1

∗
(

2

3

)1

≈ 0.33 .

Now we apply the model to compute the benefits for all SQs
of a completed PQ in the MQDG to identify critical nodes.
This process is described as Process 1 in Fig. 3. The detailed
algorithm is shown as follow.

Algorithm 5 first calculates the impact and effectiveness
values for each SQ f sq of the completed PQ fpq (lines
2 – 7). Next, the current maximum impact and the current
maximum effectiveness, which are used for normalization
in the model, are updated (lines 8 – 9). After that, the benefit
estimation model is applied to calculate the benefit value for
each SQ f sq of fpq (lines 10 – 13). If a benefit value is
larger than a predefined threshold, the corresponding SQ is
considered as a critical node (lines 14 – 15).

3.3 Non-critical node removal

After critical SQs (nodes) are identified from a completed
PQ, all non-critical nodes have to be removed from the
MQDG. However, after a node n is removed, how to
deal with the edges associated with n becomes an issue.
Edges in an MQDG represent the dependency relation-
ships on which our benefit calculation relies. We have to
maintain the dependency relationships among the remain-
ing nodes in the MQDG after the removal, including those
went through the removed node n. Hence non-critical
nodes should be removed carefully and the relevant depen-
dency relationships should be transferred to the remaining
nodes.

The following algorithm removes the non-critical nodes
and transfers the dependency relationships properly.

In Algorithm 6, the given node n is safely removed and
all dependency relationships are transferred in four steps. In
the first step, the query expressions for all the direct child
nodes of n are changed (lines 3 – 4). We know that the result
table r for n is used by each of its direct child node. Since n

is to be removed, r will no longer exist. Hence, we replace
r in the query expression of each direct child node of n by
the query expression of n. As a result, r is removed from
the domain of each direct child SQ (node). For example,
consider sq1: σc1=v1 (R1); sq2: σc2=v2 (Result(sq1)); where
σ is the selection operation in the relational algebra. When
sq1 is removed, the query expression of sq2 is rewritten:
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Algorithm 5 FindCriticalNode(mqdg, fpq, cmi, cme)

Algorithm 6 RemoveAndTransfer(mqdg, n)

σc2=v2 (σc1=v1 (R1)). In the second step, new directed edges
are generated from each direct parent node t of n to each
of its direct child node (lines 5 – 7). Essentially, the tables
represented by the direct parent nodes of n are added to the
domain of each of its direct child nodes. In the third step,
all the edges associated with n are safely removed (line 9).
In the last step, n and its relevant information are finally
removed (line 10).

Let us use an example to illustrate how to remove a
node and transfer all its dependency relationships in an
MQDG using Algorithm 6. Assume that we are given an
MQDG as shown in Fig. 4. The set of SQs in the figure
includes:

1. sq1: πc1,c2,c3(σc1=v1(R1 �� R2 �� R3)),
2. sq2: σc2=v2(R(sq1)),
3. sq3: σc3=v3(R(sq2)),
4. sq5: σc5=v5(R(sq3) �� R(sq4)),

5. sq6: σc6=v6(R(sq1) �� R(sq2) �� R(sq5)),
6. sq7: σc2=v7(R(sq1)),

7. sq8: σc7=v8(R(sq6) �� R(sq7)),

where R(sqi) denotes the result table of sqi .
Let us try to remove sq6 from the graph. In the first step,

the query expressions of the nodes that use the result table of
sq6 are rewritten. In this example, sq8 is changed and rewrit-
ten: sq8: σc7=v8((σc6=v6(R(sq1) �� R(sq2) �� R(sq5))) ��
R(sq7)).

Next, directed edges are generated from each direct par-
ent node of sq6 to each direct child node of sq6. In this
example, the edges are generated from sq1 to sq8, sq2 to sq8

and sq5 to sq8. After that all edges associated with sq6 are
removed and finally, sq6 is removed. The resulting MQDG
is shown in Fig. 5.

3.4 Critical node view space maintenance

The last issue we want to discuss in this section is how to
insert identified critical nodes into the critical node view
space (CNS). As we mentioned in Section 2.3, the CNS
stores all the materialized views for the critical nodes. The
size of the CNS is constrained. Therefore, when the CNS
overflows, we have to make a decision to remove some
views to free space for accommodating new critical nodes
(views).

A straight-forward way is to apply a greedy strategy. The
main idea is as follows: we first sort all the new critical
nodes, which are ready to be inserted into the CNS, accord-
ing to their benefit values. Next, we add as many critical
nodes with the largest benefits as possible until the next crit-
ical node cannot be accommodated in the CNS. After that,
the benefit of the node c whose benefit is the largest among
the remained new critical nodes and the benefit of the node
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Fig. 5 An example of MQDG
after sq6 is removed

v whose benefit is the smallest in the CNS are compared.
If the benefit of c is greater than that of v, v is replaced by
c if possible. This process continues until no node in the
CNS can be replaced. Let us consider the example in Fig. 6.
The candidate critical nodes after sorting are c1, c2, c3, and
c4. c1 and c2 are firstly added into the CNS. The remain-
ing space cannot accommodate c3. Thus, the benefit of c3

is compared with that of v4 in the CNS. As a result, c3 is

more beneficial and v4 is replaced. Next, c4 is considered.
Since the benefit of c4 is too small to replace any existing
node in the CNS, the insertion procedure stops, and c4 is
discarded.

Note that the benefit of a new critical node nc and the
benefit of an existing critical node ec in the CNS are esti-
mated at different time and based on different MQDGs.
The nodes and edges in an MQDG are updated quite

Fig. 6 An example of the greedy strategy
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often. Therefore, to adopt the greedy strategy, we have to
re-estimate the benefit of each ec based on the current
MQDG.

In addition, we have to address a replacement failure
problem. Let us consider the following scenario. When the
CNS has no space to save the next new critical node nc,
the benefit of nc and that of the existing critical node ec1

whose benefit is the smallest in the CNS are compared.
Assume that the benefit of nc is larger. Using the above
greedy strategy, ec1 should be replaced by nc. But the
replacement process may fail. The reason for that is as fol-
lows: after removing ec1, the available space in the CNS
is still not enough to accommodate nc. In this case, we
adopt a revised replacement strategy. Before actually replac-
ing the nodes, we examine whether the replacing process
can be done successfully. If so, ec1 is replaced by nc. Oth-
erwise, the next existing critical node ec2 whose benefit is
the second smallest in the CNS is checked. The benefit of
nc and the total benefit of ec1 and ec2 are compared. If
the latter is not smaller than the former, the insertion pro-
cess stops. Otherwise, we examine whether replacing both
ec1 and ec2 by nc can be done successfully. If so, ec1

and ec2 are replaced by nc. Otherwise, we check to see if
replacing three existing critical nodes by nc can be done,
and so on.

The high-level flowchart of the above critical nodes
insertion process is described as Process 2 and Process
2.1(greedy strategy) in Fig. 3. The detailed algorithm, which
is invoked in Algorithm 1, is shown as follow.

Algorithm 7 inserts a set of new critical nodes into the
CNS. It first checks that if the remaining space in the CNS
is large enough to accommodate all the new critical nodes
(line 1). If so, all the new critical nodes are inserted directed
(lines 2 - 4). Otherwise, the remaining work of the algo-
rithm can be done in three phases. The first phase is called
the preprocessing phase. The benefit values for all exist-
ing critical nodes are updated using the current MQDG by
invoking a function UpdateBenefit() (line 6). Next, accord-
ing to the benefit values, the new critical nodes are sorted in
the descending order and existing critical nodes are sorted in
the ascending order (line 8). The second phase is called the
insertion phase. The algorithm inserts as many new critical
nodes as possible until not enough space left (lines 10 – 12).
Next, a recursive function RecursiveInsertion() is called to

Algorithm 7 CriticalNodesInsertion (mqdg, cnset, vs, Benef itList , cmi, cme)
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decide whether to insert a new critical node to replace one or
more existing critical node in the CNS (lines 13 – 24). The
third phase is called the cleaning phase. For all the remain-
ing new critical nodes which are not inserted into the CNS,
the algorithm calls another function RemoveAndTransfer()
to safely remove them from the MQDG (lines 26 – 28). The
invoked functions UpdateBenefit() and RecursiveInsertion()
are given as follow.

Algorithm 8 UpdateBenefit (mqdg, cns, cmi, cme)

Algorithm 8 is a function to update the benefits for all the
existing critical nodes in the CNS using the given MQDG. It
first updates the impact and the effectiveness for each exist-
ing critical node n in the CNS (lines 3 – 4). Next, it applies
the benefit estimation model to calculate the potential ben-
efit for each n and save (node id, benefit) value pairs into a
benefit list (lines 5 – 6). Finally, the benefit list is returned
(line 8).

Algorithm 9 is a recursive function to decide whether
replacing a set of existing critical node in the CNS by a
new critical node. A node list NodeList , which contains
the identifiers of a list of existing critical nodes, is one of
the inputs of this function. If the benefit of the new critical
node n is larger than the total benefit of nodes in NodeList

(line 5), the size of n and the size of the available space in
the CNS (including the size of the remaining space in the
CNS and the total size of nodes in NodeList) are com-
pared. If the size of n is larger, it implies that the new
critical node cannot be accommodated into the CNS even
if some existing critical nodes (the nodes in NodeList) in
the CNS are removed. Therefore, another existing critical
node is added into NodeList and the function calls itself
to decide whether replacing a new set of existing critical
nodes (NodeList) in the CNS by n (lines 6 – 11). If the size
of the available space in the CNS is larger, it means that n

can be inserted successfully. Thus, the insertion process is
done as follows: first, the nodes in NodeList are removed

from the MQDG and the CNS (lines 14 – 15). Next, n is
inserted into the CNS and the insertion success flag is set
and returned (lines 18 – 20). Otherwise, the benefit of n is
equal or smaller than the total benefit of nodes in NodeList ,
it means that the insertion process cannot be done success-
fully. Hence, an insertion failure flag is returned (lines 22 –
23).

Note that the greedy strategy we discussed above seeks a
locally optimal solution. There may be a solution that is bet-
ter than the one found. Let us consider the following exam-
ple. Assume that size(CNS) is 10. There are three views
in the CNS: v1, v2, and v3. size(v1), size(v2), and size(v3)

are 2, 4, and 3, respectively. benef it (v1), benef it (v2), and
benef it (v3) are 4, 3, and 2, respectively. Three new criti-
cal nodes c1, c2, and c3 are ready to be inserted. size(c1),
size(c2), and size(c3) are 3, 2, 2, respectively. benef it (c1),
benef it (c2), and benef it (c3) are 3, 2.5, and 2, respec-
tively. Using the greedy strategy, c1 is considered to be
inserted first since its benefit is the largest among the three.
However, the remaining space in the CNS is not enough
to accommodate c1. Thus, benef it (c1) is compared with
benef it (v3) (v3 has the smallest benefit in the CNS) and
v3 is replaced. After that, the insertion process stops. The
total benefit of the nodes in the CNS is: 4+3+3=10. How-
ever, there exists a better solution, i.e., replacing v3 by
c2 and c3 instead of c1. In this case, the total benefit
is: 4 + 3 + 2.5 + 2 = 11.5.

We notice that the problem of maximizing the total ben-
efit of the critical nodes in the CNS is similar to the classic
knapsack problem, i.e., we have a set of items (existing crit-
ical nodes and new critical nodes) which are ready to be
added into a bag (CNS). Each item has a value (benefit)
and a weight (size). The total weight of items (total size)
is larger than the weight of the bag (size of the CNS). The
target is to find a subset of items which can be accom-
modated in the bag and the total value is maximized. The
most popular solution for the knapsack problem is to apply
a dynamic programming (DP) algorithm. Therefore, in our
work, we propose another insertion method based on the DP
technique.

The only difference between our problem and the knap-
sack problem is that, in our problem, most items (existing
critical nodes) are in the bag (CNS) before the algorithm
starts while in the knapsack problem, all the items are not
in the bag at the beginning. Hence, to solve the knap-
sack problem, we find an optimal subset solution based
on all the items and only insert the items in the subset
into the bag. However, in our problem, we do not need
to consider all the items (existing nodes and new nodes).
Some popular items which are in the bag (popular exist-
ing critical nodes) may never be moved out (replaced by
the new critical nodes). In this case, we only consider
those unpopular existing critical nodes (c1) and all the new
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Algorithm 9 RecursiveInsertion(n, nodelist, vs, benef itn, benef itt , ecBenef itList,mqdg)

critical nodes (c2), and apply the DP based method on c1

and c2 to find an optimal subset solution. In this way, the
problem size could be reduced, which makes the DP algo-
rithm to exhibit a reasonable performance even in the worst
case.

The main idea is to identify the set uec of unpopular
existing critical nodes from the CNS and apply the DP based
algorithm on uec and all the new critical nodes to find an
optimal inserting solution. Assume that the total benefit of
the new critical nodes is smaller than that of the existing crit-
ical nodes in the CNS. First, all the existing critical nodes
in the CNS and all the new critical nodes are sorted in the
descending order by their benefit values, respectively. Next,
the CNS is divided into two subspaces cns1 and cns2 with
the same size: s1 and s2. s1 and s2 can be adjusted slightly
to make two subspaces to accommodate an integer num-
ber of nodes. Since the nodes in the CNS have an order,
after dividing, the nodes with relatively large benefits are
in cns1. Hence, we consider the nodes in cns1 as the popu-
lar existing critical nodes. Next, we determine whether the
existing critical nodes in cns2 are popular. Let us use an
illustrative example in Fig. 7 to show how to determine
whether the nodes in cns2 are popular. In the example, the
total benefit and the total size of the existing critical nodes
in cns2 are denoted by b3 and s3, respectively. We esti-
mate how many new critical nodes can be accommodated
in the remaining space of the CNS. Assume that two new
critical nodes can be inserted directly, their total size and
total benefit are denoted by s5 and b5, respectively. After

that, for the remaining of the new critical nodes, we con-
sider how many of them can replace the existing nodes in
cns2. Assume that two critical nodes are considered. Their
total size and total benefit are s6 and b6, respectively. If
b3 is smaller than b6, it means that replacing the existing
nodes in cns2 by the new critical nodes can bring benefit. In
this case, we consider the existing nodes in cns2 as unpop-
ular nodes. Next, the DP based approach is applied based
on the unpopular nodes in the cns2 and all the new criti-
cal nodes. Otherwise, if b3 is not smaller than b6, it means
some nodes in cns2 can be considered as popular existing
critical nodes. In this case, cns2 will be divided in two sub-
spaces cns21 and cns22, and repeat the same analysis on
subspace cns22.

In general, let v1, v2, ..., vk (k ≥ 0) be the existing critical
nodes1 in the (current) CNS cns, listed in the descending
order of their benefit values; let c1, c2, ..., ct (t ≥ 1) be the
new critical nodes, listed in the descending order of their
benefit values. Clearly, the free space size for cns is:

size(f ree cns) = size(cns) −
k∑

j=1

size(vj ). (4)

1If k = 0, there is no existing critical node in cns. Assume
0∑

j=1
(...) = 0

in such a case.
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Fig. 7 An example of the DP
based insertion method

Let s be the largest integer2 in [0, t], satisfying:
s∑

i=1

size(ci) ≤ size(f ree cns). (5)

If s = t , all the new critical nodes can fit in the free space
of cns. In such a case, no DP based algorithm is needed –
the problem has been solved. If s < t and the following
condition holds:

∑
ci∈X

benef it (ci) <

k∑
j=1

benef it (nj ), (6)

where3

X =
{

cin | s + 1 ≤ in ≤ t AND

1≤n≤m AND iu < iw(f or any u < w) AND

im is the 1st integer in [s + 1, t] such that
m∑

n=1

size(cin) ≤
[
size(cns) −

s∑
i=1

size(ci)

]
AND

m∑
n

size(cin) + size(cj ) >

[
size(cns)−

s∑
i=1

size(ci)

]

f or any j ∈[im+1, t]
}

, (7)

we split cns into two subspaces cns1 and cns2 with sizes:

size(cns1) =
r∑

j=1

size(vj ) (8)

2If s = 0, the leading new critical node cannot fit in the free space.
Condition (5) is trivially true.
3Informally, X contains the first m new critical nodes ci1 , ci2 , ..., cim

from list cs+1, cs+2, ..., cs that can fit in the remaining space of cns

(after removing the space taken by c1, ..., cs ) to the maximum capacity.

where r is an integer in [1, k] such that
r−1∑
j=1

size(vj ) <

size(cns)/2 and
r∑

j=1
size(vj ) ≥ size(cns)/2; and

size(cns2) = size(cns) − size(cns1). (9)

When Condition (6) is true, we recursively use subspace
cns2 (in place of cns) as the current space to perform the
above analysis until Condition (6) does not hold for the cur-
rent space. When Condition (6) does not hold, we apply the
DP based algorithm on all the new critical nodes4 and the
unpopular existing critical nodes in the current space to find
an optimal subset of (new and/or existing) critical nodes to
be inserted into the current space.

The high-level flowchart of the DP based critical nodes
insertion process is described as Process 2 and Process
2.1(dynamic programming strategy) in Fig. 3. The detailed
algorithm is shown as follows.

Algorithm 10 inserts a set of new critical nodes into the
CNS. If the remaining space of the CNS is large enough to
accommodate all the new critical nodes, the new nodes are
directly inserted (lines 1 – 4). Otherwise, we sort all exist-
ing critical nodes in the CNS and new critical nodes in the
descending order by the benefit values, respectively (line
8) and invoke a function DivideAndInsertion() to recur-
sively determine the unpopular critical nodes in the CNS,
apply a DP based method to find an optimal subset of inser-
tion nodes, and complete the insertion process (line 9). The
invoked function DivideAndInsertion() is given as follows.

Algorithm 11 recursively determines a set of unpop-
ular existing critical nodes in cns and adopts a DP
based approach to search an optimal subset of new and

4Assume that any critical node that cannot fit in the current space has
been removed from consideration.



224 Inf Syst Front (2016) 18:205–231

Algorithm 10 CriticalNodesInsertion (mqdg, cnset, vs, Benef itList, cmi, cme)

Algorithm 11 DivideAndInsertion (mqdg, cns, tns, ncBenef itList, ecBenef itList)
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Algorithm 12 DPChecking(NodeList,BenefitList, SizeList, SpaceLimit)

unpopular critical nodes to store in the CNS. Lines 1 – 4
initialize some variables and obtain necessary information
about cns. Lines 5 – 11 check to see which leading new
critical nodes in ncNodeList can fit in the free space of
cns (i.e., applying Condition (5)). Lines 12 - 18 check to
see which remaining new critical nodes can substitute the
existing critical nodes in cns (i.e., using Eq. 7). Lines 19
- 33 handle the case in which Condition (6) does not hold.
In this case, the algorithm combines the lists of new and
unpopular critical nodes into one (lines 20 – 22) and applies
a DP method to find the optimal subset solution (line 23).
To reduce the input size for the DP problem, the algorithm
removes those critical nodes which cannot fit in the current
critical space (line 21). The algorithm then removes the uns-
elected existing critical nodes from the CNS (lines 24 – 27),
moves the selected new critical nodes from the TNS to the
CNS (lines 28 – 30), and discards the unselected new crit-
ical nodes (lines 31 – 33). Lines 34 – 43 handle the case
in which Condition (6) holds. In such a case, the algorithm
divides the current cns into two subspaces cns1 and cns2

based on Equations 8 and 9 (lines 35 – 41). The algorithm
then recursively invokes itself for subspace cns2 (line 42).
The invoked function DPChecking() is given as follows.

Algorithm 12 is a DP based function which determines
a subset of candidate critical nodes in the given input list
to make the total benefit of nodes in the subset to be max-
imized under the given input space limit. At the beginning,
two arrays B and T raceBack are constructed (line 1). B

is used to store the maximum benefit (combined) of any
subset of critical nodes of different size limits. T arceBack

is used to find each critical node after the optimal benefit
was reached. First, a nested loop is applied and the optimal

benefit under the input space limit is computed (lines 5 –
15). After that, we use T raceBack to find each critical node
which was used to reach the optimal benefit (lines 16 – 23).
Finally, the optimal subset of critical nodes is returned (line
24).

Note that, given a set of candidate critical nodes and
a space limit, the above DP based function can guarantee
to find a subset of the given critical nodes that maximizes
the total benefit under the given space limit. However, the
worst-case complexity of such a DP method is exponen-
tial with respect to the input problem size (i.e., the number
of given candidate critical nodes in our case). The greedy
strategies adopted in Algorithm 11 help reduce the input
problem size. Hence, our second method using Algorithms
10-12 is essentially a hybrid DP and greedy approach for
maintaining the CNS. For simplicity, we still refer to this
method as the DP based approach in this paper to distin-
guish it from the first purely greedy one using Algorithms 7
and 9.

4 Experiments

To evaluate the performance of our technique, we conducted
simulation experiments. The typical experimental results are
reported in this section.

4.1 Experiments setup

Experiment programs were implemented in Matlab 2007 on
a PC with Intel � dual core (1.5 GHz) CPU and 4 GB

memory running the Windows � 7 operating system.
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One hundred random generic progressive queries (PQ)
and 10 external tables with uniformly distributed data were
used in our experiments. The sizes for external tables ranged
from 1 to 1000 disk blocks and each disk block contained
4096 bytes. Each PQ was composed of one or more step-
queries (SQ), where the number of steps was randomly
chosen between 2 and 10. Each SQ could have one or more
input tables (external tables or previous SQ result tables)
and the number of inputs was also randomly generated
between 1 and 5. The result table size of an SQ was calcu-
lated by multiplying the product of all the input table sizes
with a selectivity. The I/O cost was approximated by the
product of the input table sizes of the SQ.

In addition, each input table of an SQ could be either
an external table or a result table for an executed SQ (tem-
porary SQ or critical SQ). The probabilities to choose an
external table or a result table for an SQ were not kept the
same in our experiments. It was assumed that users had a
higher preference to choose the result tables for SQs over
external tables for their new SQs since a user tends to uti-
lize their previous results in their new SQs. Hence, the
result tables for SQs were assigned a larger probability to be
chosen.

To build the relevant multiple query dependency graph
(MQDG), we recorded the starting and ending times for
each PQ and the execution time for each SQ. The maxi-
mum number of PQs allowed to be executed simultaneously
in the system was set to 10. The MQDG and the critical
node view space (CNS) were initially set to empty. When
the processing of a new PQ started, its executed SQs were

added into the MQDG gradually. Each SQ not only had a
chance to use the results of previous SQs from the same or
other in-process PQs in the MQDG but also had a chance to
use the results of critical SQs in the CNS. When a PQ pqi

was completed, we applied the model/formula introduced
in Section 3.2 to estimate the potential benefit of each SQ
in pqi . After the benefits of all the SQs in pqi were esti-
mated, we choose those SQs which could bring sufficient
potential benefits as critical SQs (nodes) and the critical
nodes were saved in the CNS if possible. In the following
experiments, the default setting is as follows: Wd was set
to 0.5, WE was set to 2, WI was set to 1, α and β were
set to 1, the space limit of the CNS was set to 25000 disk
blocks, and the DP based approach was adopted to address
the CNS maintenance issue. We conducted the following
experiments according to different purposes.

4.2 Performance of the critical nodes based PQ processing
approach

The first experiment was conducted to evaluate the effi-
ciency of our critical node based PQ processing approach.
The experiment compared the performance among the no-
critical node based PQ (NCPQ) processing approach, the
randomly picked critical nodes based PQ (RCPQ) process-
ing approach, and the estimated critical nodes based PQ
(ECPQ) processing approach. The NCPQ uses only tempo-
rary nodes (results of SQs of in-process PQs) in the MQDG
for processing SQs, while the RCPQ and the ECPQ can uti-
lize both temporary nodes and critical nodes in the MQDG

Fig. 8 Performance of different
PQ processing approaches
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as their inputs. The difference between the RCPQ and the
ECPQ is that for the RCPQ, the critical nodes are randomly
picked from the completed PQs, while, for the ECPQ, the
critical nodes are selected from the completed PQs based on
our benefit estimation model. The performance comparison
is shown in Fig. 8.

The X-axis represents the total number of SQs executed
in the test, and the Y-axis represents the I/O cost (i.e., the
number of disk block accesses). The main trend of the
figure is that the ECPQ approach is performed better than
the RCPQ approach, and the RCPQ approach is performed
better than the NCPQ approach. The reason for that is as
follows: compared to the ECPQ and the RCPQ, the NCPQ
has fewer materialized views (nodes) to utilize from the
MQDG. Hence, the NCPQ has less chance to improve the
performance of the SQs. As a result, the performance of the
NCPQ is the worst among the three. For the ECPQ and the
RCPQ, the numbers of views they can utilize to optimize the
SQs from the MQDG are the same while the quality of the
views are different. The critical nodes (views) discovered by
using the ECPQ represent the results for popular SQs in the
past, while the critical nodes found by using the RCPQ rep-
resent the results for randomly chosen SQs. Therefore, the
ECPQ can better optimize the SQs and reach a higher per-
formance. From the figure, we can see that at the beginning,
the performance difference among the three curves is not
very significant, as more and more PQs were executed, more
and more critical nodes were selected to optimize the future
SQs. As a result, at the right end of the figure, a significant
performance improvement can be observed.

4.3 Performance of benefit estimation model with different
parameters

The following two experiments were conducted to evalu-
ate how the factors in the benefit estimation model affect
the performance of our ECPQ based processing approach.
Recall that, for the benefit estimation model we introduced
in Section 3.2, α and β represent the importance of the
impact and the effectiveness in the model, respectively,
and Wd denotes the impact reducing rate as the distance
increases.

In the second experiment, three value pairs (α, β) were
set: (0.5, 1), (1, 1), and (1, 0.5), while other parameters
remained the same. Figure 9 shows the performance com-
parisons by using the ECPQ among different value pairs for
α and β. As we mentioned before, α and β represent the
importance of the impact and the effectiveness in the bene-
fit estimation model, respectively. The smaller the value is,
the larger the corresponding importance is. From the figure,
we can see that the ECPQ with α of 0.5 and β of 1 has the
best performance. It indicates that giving more importance
to the impact than the effectiveness in the model can achieve
a better performance. From this experiment, we can see that
actually, the importance of the impact is higher than that of
the effectiveness in the benefit estimation model.

In the third experiment, Wd was set to different values:
0.1, 0.5, and 1, while other parameters remained the same.
Figure 10 shows the performance comparisons by using the
ECPQ among different values for Wd . From the figure, we
can see that the performance of the ECPQ with Wd of 0.5 is

Fig. 9 Performance of ECPQ
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Fig. 10 Performance of
ECPQ with different Wd
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the best among the three. The reason for that is as follows.
Wd affects the impact of an SQ sq1. It determines that how
much impact the indirect child nodes of sq1 can receive. If
Wd is too small, e.g., Wd = 0.1, it means the indirect child
nodes of sq1 can contribute little to the impact of sq1. There-
fore, the estimation model has a trend to select nodes which
have many direct child nodes but few indirect child nodes
as critical nodes. In this case, the model may not be able
to differentiate the following two nodes: n1 and n2, which
have the same number of direct child nodes, but n1 has many
indirect child nodes while n2 has no indirect child node. It
is clear that n1 is better than n2. On the other hand, if Wd is
too large, e.g., Wd = 1, it means that the indirect child nodes
of sq1 can contribute the same as the direct child nodes of
sq1 to the impact of sq1. Therefore, the estimation model
has a trend to select nodes which have many indirect child
nodes as critical nodes. In this case, the model cannot differ-
entiate the following two nodes, n1 and n2, which have the
same number of child nodes (including direct and indirect),
but all the child nodes of n1 are direct child nodes, while
nearly all the child nodes of n2 are indirect child nodes. It is
also clear that n1 is better than n2. Hence, Wd is an impor-
tant affecting factor in the model and it needs to be set to a
proper value, e.g., 0.5.

4.4 Performance of different CNS maintaining strategies

The fourth experiment was conducted to compare the per-
formance behaviors between the DP based approach and the

greedy based approach for maintaining the CNS. The CNS
was allocated and assigned with a certain space limit (25000
disk blocks). It was initially set to empty. As more and
more PQs were processed, the CNS was expanded larger
and larger. Finally, the space limit was reached. Hence,
a mechanism is required to decide whether the new criti-
cal nodes which were identified from a completed PQ can
replace some existing nodes in the CNS. As we mentioned
before, two different strategies (greedy based approach and
DP based approach) are adopted.

Figure 11 shows the performance comparisons between
the DP based approach and the greedy based approach.
From the figure, we can see that the DP based approach
outperforms the greedy based approach as we thought. At
the beginning, two curves are coincided together because
the CNS was not full and the space maintaining methods
were not applied. After the CNS overflowed, both methods
started to work. The DP based approach usually keeps a set
of critical nodes with a higher overall quality in the CNS.
Hence, the critical nodes kept in the CNS by using the DP
based approach have a better chance to improve future SQs.
As a result, an improvement can be observed towards the
right of the figure.

The next experiment was conducted to compare the com-
puting cost between the DP based approach and the greedy
approach. The experiment data was the same as the previous
one. The total computing time was 0.041 second by using
the DP based approach and 0.0029 second by applying the
greedy approach. The total execution time for the 100 tested
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Fig. 11 Performance of CNS
maintenance methods

0 50 100 150 200 250 300 350 400 450 500

0

0.5

1

1.5

2

2.5

3

3.5

4

x 10
14

Number of step queries

T
o

ta
l 
I/

O
 c

o
s
t

Greedy based CNS management approach

 Dynamic Programming based CNS management approach

PQs in both cases was 1.8 second (average in 10 runs). From
the experiment, we can see that the computing time by using
the DP based approach is much higher than that by applying
the greedy approach. However, compared to the total query
execution time, the cost for the dynamic programming based
method is still acceptable.

4.5 Performance of differenct space limits of CNS

We varied the space limit for the CNS in this experiment
and wanted to see how it would affect the performance of
the ECPQ. For a given space limit, when the CNS over-
flowed, the DP based approach was used to maintain the

Fig. 12 Performance behavior
for different space limit of CNS
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CNS. The motivation for doing this experiment was as fol-
lows. This study would help us find an appropriate solution
to balance the time complexity and the space complexity.
In this experiment, the space limit for the CNS was varied
between 0 and 100000 disk blocks. The performance behav-
ior was shown in Fig. 12. From the figure, we can see that,
the general trend of the performance curve is that, as the
space limit for the CNS increases, the performance becomes
increasingly better. Furthermore, we noted that, at the begin-
ning, the cost decreases sharply. It means that increasing a
small space limit could bring a dynamically improved per-
formance. However, as the space limit continues increasing,
the performance curve becomes more and more flat. It is
observed that a balanced solution for our experiment case is
about 35000 disk blocks.

5 Conclusions

Efficiently processing PQs is demanded by numerous con-
temporary applications but is challenging. In this paper, we
have presented a new materialized-view based technique to
efficiently process generic PQs. The main contributions of
the paper are summarized as follows.

We have introduced a multiple query dependence graph
(MQDG) which captures the data source dependency rela-
tionships among the external tables, SQs of in-process PQs
and critical SQs of completed PQs. The MQDG can be used
to estimate the benefit of keeping an SQ result as a materi-
alized view. The materialized views are used to improve the
performance of the future SQs.

We have developed a mathematical model, which is
composed of two key components: the impact and the
effectiveness, to estimate the potential benefit of an SQ
in a completed PQ using the multiple query dependency
graph. A critical SQ is selected if its estimated benefit is
sufficiently large.

We have presented a progressive query processing pro-
cedure to dynamically construct an MQDG, identify critical
SQs by using the model on the MQDG, store their results
as materialized views, and apply the views to efficiently
process other SQs.

We have suggested a strategy to safely remove nodes
from the MQDG. We have also proposed different strategies
and algorithms to effectively maintain the critical node view
space.

We have studied a direct greedy method and a dynamic
programming method to maintain the materialized view
space. The former is more efficient, while the latter can
guarantee a better solution. To mitigate the high worst-case
complexity issue for the dynamic programming method, we
have suggested a greedy strategy to reduce the problem
input size.

Our experimental results demonstrate that the proposed
technique is quite promising in processing the generic PQs.

Our future work includes further improving the bene-
fit estimation model, extending our technique to handle
databases with updates, and applying the technique in a real
DBMS environment.
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