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Abstract—The increasing capabilities and decreasing cost of
information and communication technologies (ICTs) are enabling
new categories of vehicular telematics applications, such as wire-
less drive-through (WDT) services, in which an external service
provider provides services to in-vehicle occupants via a wireless
connection. Most telematics systems rely on proprietary protocols
for data exchange between an in-vehicle client and its exter-
nal counterpart in individual applications, making it difficult to
share data-exchange methods among applications. Sharing data-
exchange methods is important because it allows a rapid return
on ICT investments. In this paper, we study the data-modeling
issues for data exchange between an in-vehicle client and its service
provider for WDT services. We present a novel data model that
captures the main characteristics of data exchange for the WDT
application family, using a formal mathematical representation
and an intuitive graphical representation. We show that the pro-
posed data model provides generality for such data exchange. In
addition, we propose several optimization techniques based on the
data model to minimize user interaction so that a good usability
can be achieved. Our simulations and analysis demonstrate that
the proposed data model and relevant optimization techniques are
promising in supporting efficient WDT applications.

Index Terms—Data modeling, optimization strategies, telem-
atics, vehicular application, wireless drive-through (WDT)
service.

I. INTRODUCTION

V EHICLE telematics systems have been increasingly de-
ployed in production. The technology has advanced to a

stage that communication through a brought-in phone or built-
in wireless transceiver is a common practice in high-volume au-
tomobiles. The development of telematics applications provides
great convenience to drivers and makes real-time management
of transportation systems possible.

For the comfort and convenience of drivers, many passenger
vehicles have been equipped with onboard computing modules
running a great variety of applications, such as navigation sys-
tems, concierge services, and entertainment systems. The on-
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Fig. 1. Example of a WDT application.

board computing modules and the applications running on them
create an environment similar to that of a personal computer
that is connected to the Internet. This, coupled with the growing
power of consumer-chosen brought-in devices, enables a new
application domain—wireless drive-through (WDT) services.

When a traditional drive-through service is available at a
merchant, a customer (e.g., the driver or a passenger) in a
vehicle waits in a queue. The customer typically orders items
or services from a menu board. Eventually, the pickup window
will deliver items or services ordered by the customer. With a
WDT application client running in a vehicle, a customer can
place an order at any location that provides wireless network
access, which allows the client in the vehicle to connect to
a service provider. Similar to an online shopping site, the
customer places an order via the in-vehicle client online. After
the order has been fulfilled, the relevant items or services will
be either delivered or picked up at a preagreed location.

Fig. 1 shows a typical WDT service scenario. When a vehicle
arrives at a location of WDT services, the in-vehicle client
discovers available services, selects a service of interest (e.g.,
a fast-food restaurant) from a list, and establishes a wire-
less connection with the WiFi network of the chosen service
provider. Without any user interaction, the in-vehicle client and
the service provider mutually authenticate using the driver’s
credentials stored in the vehicle. Next, the in-vehicle client
requests a menu from the service provider. On the receiving
of the menu data, the in-vehicle client displays the menu for
the customer to place an order. After an order is submitted, the
in-vehicle client also handles the payment using stored credit
card information or via a third party (e.g., PayPal). Finally, the
customer may or may not inquire the status of the order before
the order is fulfilled and delivered or picked up. The customer
may also cancel or modify an order.

1524-9050/$26.00 © 2011 IEEE
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Although it seems that the only difference between a tradi-
tional drive-through service and a WDT service is where and
how an order is placed, this change brings great flexibility and
convenience to customers on the road. A customer (driver) may
place an order at a fast-food restaurant in the parking lot. Then,
free from waiting in a drive-through line, the customer may
decide to fill the gastank while the order is being fulfilled.
Another example would be even more interesting. Suppose the
vehicle has mobile Internet access—an order may be placed on
the way and picked up at a service provider’s location along the
driver’s route.

However, the vehicle customer does not have a conventional
keyboard or a mouse. Instead, he/she most likely has a touch
screen for user interaction. Hence, the implementation of a
WDT application should minimize user interaction. In addition,
the amount of information exchanged between an in-vehicle
client and its service provider should also be minimized. Note
that the menu data transferred from the service provider to the
corresponding in-vehicle client is the major piece of informa-
tion for a WDT application. This paper focuses on the data-
modeling issues for the menu data and the relevant optimization
techniques to minimize user interaction.

The communication method in telematics applications re-
mains in the proprietary domain. Clearly, these proprietary
approaches make it difficult to share the data-exchange methods
among different applications, resulting in duplicate efforts in
implementing similar applications. To our knowledge, we are
the first to develop WDT applications, and no similar work
has been reported in the literature. Since the WDT application
family shares characteristics that allow common data-exchange
methods to facilitate the development of new applications, we
need to define a data model.

To tackle the aforementioned problem, we propose a novel
data model that is applicable to the family of WDT applica-
tions. This model is derived by analyzing various requesting
relations (e.g., AND, XOR, and IMPLICATION) among the data
items/categories in menu data for different WDT applications.
The model is presented using a formal mathematical represen-
tation, which can be directly implemented in a system, and an
intuitive graph representation, which can be easily understood.
We also show how to perform optimization to minimize user
interaction based on the model. A set of optimization strategies,
including a shortcut method and four optimization rules, is
suggested. Our simulations demonstrate that the proposed opti-
mization techniques can significantly improve the performance
of a WDT service in terms of reduction of user interaction. Our
experience with the implementation of two WDT application
prototype systems has shown that the proposed data model
can significantly reduce the implementation efforts for multiple
WDT applications.

Note that wireless networking for a vehicular environment is
not the focus of this paper. Much work on vehicular networks
has been done previously. For example, a swarming protocol for
vehicular ad-hoc networks was proposed to reduce the hot-spot
problem in such networks [1]. Assuming an effective wireless
network is in place, our work introduces a design that further
assists in-vehicle customers in obtaining external services and
reduces data exchange between the in-vehicle client and the

service provider. The main contributions of this paper are to
develop a data model for challenging contexts exemplified by
in-vehicle WDT applications and to perform optimization for
minimizing user interaction in such an environment.

II. RELATED WORK

Telematics solutions deliver value-added services, including
safety, security, information, entertainment, and mobile com-
merce [2]–[4]. Larsson et al. introduced a system [5] that is a
typical application of telematics. A cargo-transportation com-
pany may install sensors in its vehicles so that relevant environ-
ment information, as well as vehicle location information, can
be collected and instantly sent to a responsible party. The in-
formation enables the real-time monitoring and management of
their vehicle fleet. In commercial applications, vehicle location
information also helps in overall material planning and logistics
by automatically taking into account traffic conditions [6], [7]
and recommending optimum routes [8], [9] and dispatching
[10]. See [11] for a great survey on in-vehicle positioning and
navigation technologies. WDT services are emerging as a new
type of telematics applications.

For a WDT service, the communication between the in-
vehicle client and the service provider happens in a predefined
order. Unlike the traditional online stores, in which the service
provider has full control of the ordering process, the WDT ser-
vice must be implemented in such a way that the vehicle client
has a certain level of control over the ordering process so that
the user interface is appropriate for driving [12], [13]. When
designing interfaces for mobile devices (e.g., telematics devices
in a vehicle), context and constraints have to be addressed
[14], [15]. Research shows that users weigh usability attributes
differently between Web sites and wireless sites cross banking,
news, shopping, and tourism [16]. For interface design, Byrne
provided a general framework for analyzing interactive tasks
and proposed a system to capture menu data of a graphical user
interface [17].

Most telematics systems rely on proprietary protocols for
data exchange between an in-vehicle component and its ex-
ternal counterpart [18]. For example, Bures discussed possible
usage of binary, XML (EXtensible Markup Language), and
HTML (HyperText Markup Language) data formats and dif-
ferent coding methods for geographical information in [19].
In [20], the authors investigated communication protocols for
vehicular ad hoc networks. Goodman et al. presented a system
that was designed for information transfer in a cellular network
in [21]. Note that the communication protocol should take
consideration of the customer’s privacy, which is important to
vehicular telematics applications [22], [23]. The WDT applica-
tions possess some unique characteristics for data exchange and
modeling. First, the format of the menu data needs to be well
defined so that the service provider and the in-vehicle client
understand each other without any ambiguities. Second, the
menu data should be modeled in such a way that the imple-
mentation of the client-side software promotes the usability of
the application, i.e., minimizes user interaction. Moreover, the
data model should make optimization possible. In this paper,
we study a new data-modeling method that is suitable for WDT
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applications and develop optimization techniques that utilize
the model to improve the WDT application usability.

Research shows that recommendations support and improve
consumer decision making [24] and have impact on consumer
choices [25]. Although existing algorithms for recommendation
systems such as [26]–[29], to name a few of many examples,
serve similar purposes, they are not suitable for the WDT
application family. First, they are designed to run on a server.
Second, the algorithms work on the history data of behavior of
many customers and try to predict the behavior of one particular
customer. Moreover, most existing recommendation systems
are too complicated to fit in an in-vehicle environment and
not necessarily efficient for our applications. The increased
complexity makes these techniques infeasible for WDT ap-
plications. Hence, we take an adaptive personalized approach
based on the individual customer’s past behavior [30], [31] to
develop our method for generating an item list for the shortcut
menu, which is one of our proposed optimization techniques.
With regard to our other optimization techniques, no related
work has been found in the literature.

III. MODELING OF DATA

All merchants that provide WDT services should follow the
data model for menu information. The model provides both
accuracy of data syntax and generality that supports different
applications in the family. Each application has a mathematical
expression defined in such a way that, each time a customer
selects an item following all the rules, the item is added into the
shopping cart, or the to-go bag.

A. Mathematical Representation

The menu data from a service provider in a given application
is a set of items organized under a number of categories, both
of which are related to one another by a set of rules that are
defined by a set of operators. Menu data M can be modeled as
a mathematical expression as follows:

M = 〈E, N, P, R, r〉 (1)

where E, N, P, R, and r are explained next.

B. Terminal Set E and Nonterminal Set N

E = {e1, e2, . . . , en} is a set of items from a given WDT ser-
vice provider. For example, an item ei, which is represented by
a leaf node in the tree structure of the graphical representation,
might be a “burger” or a “drink” in a fast-food restaurant.

N = {n1, n2, . . . , nm} represents a set of intermediate en-
tries in the menu, such as submenus, categories, or combos.
An element ni is represented by a nonleaf node in the tree
structure. In the case of a fast-food restaurant, an entry ni could
be “drinks” or “kids menu.”

A nonleaf node represents a nonterminal symbol, and a leaf
node represents a terminal symbol in the mathematical repre-
sentation. In (1), r is a special nonterminal in N. It is the root

Fig. 2. Tree structure example.

Fig. 3. Graphical representation of x ∧ y.

node of the tree structure as well as the entry point of ordering
an item in the menu.1 Fig. 2 shows a tree structure example.2

In the rest of this paper, we use the term “symbol” for a
terminal or a nonterminal when it is not important to distinguish
them.

C. Operator Set P

P denotes a set of operators that define the relations among
nonterminals/terminals. The possible operators are AND (“∧”),
XOR (“⊕”), IMPLICATION (“→”), and GROUP (“()”). Since P is
for a particular application, in general, P ⊆ {∧,⊕,→, ()}.

1) AND/XOR: The ∧ operator takes two symbols (terminal/
nonterminal) as operands. The operator indicates that both
symbols have to be selected as a bundle. For example, x ∧ y
means “choose both x and y.” Although an ∧ operator takes
only two operands, more than one ∧ operator can be applied.
For example, x ∧ y ∧ z means all three symbols must be se-
lected together. Graphically, we use a solid curve to connect all
branches that lead to participating symbols of an AND relation
(see Fig. 3 for an example). Note that the solid dot at the cross
of the curve and the branch indicates the inclusion of the branch
in the relation.

Similarly, the ⊕ operator indicates the XOR (exclusive OR)
relation of two symbols. For example, x⊕ y means “choose
either x or y, but not both.” Like the ∧ operator, the ⊕ operator
can be also applied multiple times. Graphically, we use a dashed
curve to connect all the branches that lead to symbols in the
relation (see Fig. 4 for an example).

1The entry point (node) is where a customer starts in the menu tree structure
when selecting an item/combo. A node other than the root could also be
assigned as the entry node. For example, the node last visited for the previously
selected item/combo could be the entry node for selecting the next item.
However, using the last visited node as the entry node may make customers
go through more links in some situations where the menu tree is balanced and
all leaf nodes have the same probability of getting selected next.

2This example only illustrates the leaf nodes (terminals) and nonleaf nodes
(nonterminals). Relations among branches introduced later are not shown.
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Fig. 4. Graphical representation of x ⊕ y.

Fig. 5. Graphical representation of GROUP.

Note that the inclusive OR operator can be realized by mul-
tiple visits to the menu tree structure, with each visit selecting
only one item or combo from those with XOR relations. For
simplicity, OR is omitted from our operator set.

2) GROUP: In general, the ∧ and ⊕ operators may be eval-
uated in any order (e.g., from left to right) in the mathematical
expression. Should a mathematical expression be evaluated in
a particular order, the GROUP operator (expressed by a pair
of parentheses in the mathematical expression) is applied to
indicate a higher priority. A GROUP operator can be embedded
in another one recursively, with the most inner one having the
highest priority. Graphically, each GROUP operator is repre-
sented by a curve that crosses the interested branches. When
a group of branches after a GROUP operation is part of an
AND/XOR operation, a short branch is created with both ends
dotted to indicate “connections.” Fig. 5 shows an example of a
graphical representation for ((x1 ∧ x2)⊕ x3) ∧ y ∧ (z1 ⊕ z2).
Note that the operators at the same level are either all ∧ or all⊕,
but not both, after the GROUP operators. In the given example,
the top level operator is ∧, i.e., x ∧ y ∧ z, where x = x′ ⊕ x3

and z = z1 ⊕ z2, and in turn, x′ = x1 ∧ x2.
Although the aforementioned graphical representation pro-

vides a direct and precise view of a menu tree structure, it may
become difficult to be visualized when the tree has nodes with
a large number of child nodes and involves multiple levels of
∧ and/or ⊕ operators. A “normalization” method is suggested
here to resolve the problem. For each GROUP operator in a
given mathematical formula, we create a new node in the tree
structure, as shown in Fig. 6.

Not surprisingly, the nodes created for the GROUP opera-
tors correspond to the intermediate variables created for the
mathematical formula, namely, x, z, and x′. If we apply the
normalization method throughout the menu tree structure, it is
easy to see that all child nodes of a parent node are either all in
the AND relation or all in the XOR relation, but not both.

Note that the nonleaf nodes in the tree structure before
normalization have semantic meanings. For instance, they can
be categories in which the items in a menu are organized such
as a breakfast menu. However, the new nodes added during
normalization are created only for the representation purpose.

Fig. 6. Creation of new nodes for GROUP.

Fig. 7. Example of IMPLICATION.

It is possible that a node x involves in more than one ∧ or
⊕ operator. If two nodes are created during the normalization
process, both of which are the parent nodes for node x, then
the tree structure is violated. In this case, we create a copy
(instance) of x for each operator and treat each copy (symbol)
as an independent node (symbol).

We have introduced all necessary operators to express the re-
lations among sibling nodes. Nonetheless, the relation between
two or more nodes that do not share the same immediate parent
node is also useful when the merchant offers several items
as a combo to customers. For example, a fast-food restaurant
may offer a burger, fries, and a drink as a combo. One way
of representing combos in the menu data is to list all valid
combinations. However, in most cases, this is not practical
due to the possible large number of valid combinations. To
overcome the problem, we show the combo to a customer one
item at a time and allow the customer to make a decision one
item at a time as well. To realize this approach, we need to
define another operator, which is discussed as follows.

3) IMPLICATION: The IMPLICATION operator, which is de-
noted by →, is used in the case when the symbol (terminal
or nonterminal) on the left side is selected, the symbol on the
right side should be also selected. Fig. 7 shows the example for
x1 → y1 and x2 → y. Note that some other operators, such as
∧ or ⊕, are not shown in this figure. The directed dashed line
from the symbol on the left of the operator to the symbol on the
right represents the IMPLICATION operator.

There are cases in which selection of an item requires two
or more of another item as a combo. We use a number on the
dashed line to indicate the number of the other item required.
For example, x→ y ∧ y would need a number 2 on the dashed
directed line from node representing x to node representing y.
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Fig. 8. Example of the rule set.

We can omit the number if the value is 1. It is also noted that
each IMPLICATION operation in the menu tree can be applied
only once during a cascading invocation. This constraint avoids
possible dead loops.

D. Rule Set R

R is a set of rules that utilize the aforementioned operators to
define the root node in the tree structure. The set of rules starts
with the definition for the symbol represented by root node r,
then the symbols represented by the nodes that are the child
nodes of the root node. Eventually, all the nonterminal symbols
are defined by the terminal symbols. The rule set of an example
mathematical expression is given as follows:

R = {r := x1 ⊕ x2 ⊕ x3 ⊕ (x4 ∧ x5),
x1 := y1 ∧ y2 ∧ y3,

x2 := y4 ⊕ y5,

x3 := y6 ∧ y7 ∧ y8,

x4 := y9 ⊕ y10,

x5 := y11 ⊕ y12,

y6 := z1 ⊕ z2 ⊕ z3,

y7 := z4 ⊕ z5 ⊕ z6 ⊕ z7,

y8 := z8 ⊕ z9,

y7 → z2 ⊕ z3}
where “:=” denotes “defined as.” Fig. 8 shows the tree structure
generated from this rule set. As explained in Section III-C2,
node x′ is added to the menu tree structure during the nor-
malization process to simplify (x4 ∧ x5). Node z′ is created to
simplify (z2 ⊕ z3) for an IMPLICATION.

E. Customer Order

After a customer has placed all his/her items or combos in the
to-go bag, a customer order O is formed by two sets, namely,
S and W. The former is a set of terminal symbols or expressions
of terminal symbols connected by ∧ and/or () operators, and
the latter is a set of nonterminal symbols that are not temporary
ones created during the normalization process, i.e.,

O = 〈S, W〉 (2)

where S ⊆ E, W ⊆ N, and elements in S and W were chosen
following all the rules defined in R.

F. Example

Let us consider an example of such menu data defined by
the previously introduced modeling method. This example is a
simplified version of menu data from a real fast-food restaurant.

The mathematical expression of the menu data is given as
follows:

M = 〈E, N, P, R, r〉
E : see leaf nodes in Fig. 9

N : see nonleaf nodes in Fig. 9

(excluding those generated by normalization)
P = {∧,⊕, (),→}
R = {r := Regular ⊕ Combos⊕Kids⊕ Pick2,

Regular := Burgers⊕ Fries⊕Beverages,

Burgers := Ham⊕ Chicken⊕ Fish,

Fries := French ∧ Sizes,

Sizes := Small ⊕Medium⊕ Large,

Beverages := Drinks⊕ Juice,

Drinks := (Tea⊕ Cola) ∧ Sizes,

Combos := Burgers′ ∧ Fries′ ∧Beverages′,
F ries′ := French′′ ∧ (Medium′ ⊕ Large′),
Beverages′ := (Tea′′ ⊕ Cola′′)

∧ (Medium′′ ⊕ Large′′),
Kids := (French′ ⊕ Tea′ ⊕ Cola′) ∧ Small′,
P ick2 := Snack ⊕Nuggets,

Nuggets := Grilled⊕ Crispy,

P ick2→ Pick2} .

Fig. 9 shows the graphical representation of the menu data.
The darkly filled circles represent nodes that are copies of
other nodes. For example, node Burgers′ is a copy of node
Burgers under Regular, which indicates that node Burgers′

under Combos has exactly the same number of child nodes as
Burgers under Regular does, and all child nodes of Burgers′

are copies of the child nodes of Burgers. To save space and
make the figure more readable, we do not show child nodes for
copies. To avoid a dead loop in copying, the subtree rooted from
a node x cannot include any part from the subtree rooted from
a node x′ if x′ is a copy of x.

Note that a copy of node is not the same as the original node
due to their different identities. A node is identified by its whole
path from the root node. For example, node Burgers has the
identity menu−Regular−Burgers, and node Burgers′ has
the identity menu−Combos−Burgers′.

An interesting IMPLICATION represented by the dashed di-
rected line from Pick2, as well as to Pick2, is shown in this
example. This operation is used to represent “Pick 2 from the
following items.”

Following the menu data tree structure, a customer could
have a to-go bag containing Ham, French′ ∧ Small′,
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Fig. 9. Example of the menu data.

Snack ∧ Crispy, and Fish′ ∧ (Medium′ ∧ French′′) ∧
(Medium′′ ∧ Cola′′). This customer order is given as follows:

O = 〈S, W〉
S = {Ham,French′ ∧ Small′, Snack ∧ Crispy,

F ish′ ∧ (Medium′ ∧ French′′)
∧(Medium′′ ∧ Cola′′)}

W = {Regular,Burgers, P ick2, Nuggets,

Combos,Burgers′, F ries′, Beverages′}.

Note that Fish′ is a copy of node that is not shown in the
figure. The parent node of Fish′ is Burgers′ under Combos.

IV. OPTIMIZATION

Unlike applications running on desktop or laptop computers,
which enjoy the convenience provided by a keyboard and a
mouse, WDT applications have to use a relatively limited touch
screen in a vehicle for user interaction. As a consequence, it
is crucial to minimize user interaction throughout the whole
ordering procedure. Since the menu data structure is highly
related to the development of the user interface, which, in turn,
affects the user interaction required, the menu data needs to be
optimized as well.

A. Optimization Measures

To place an item into the to-go bag, a customer needs to
start at the root node of the menu tree structure, then go
through the nonleaf nodes, and eventually reach a leaf node for
a terminal symbol. Repeating the said procedure completes a
combo in the to-go bag when necessary. Hence, in the menu tree
structure, each link on the path from the root node to a leaf node
represents a click on the touch screen in the implementation of
the user interface. We want to keep each leaf node as close to
the root as possible, without violating other restrictions of the
menu data so that a customer would go through fewer steps to

select an item. Hence, the optimization objective becomes to
optimize the menu tree structure.

There are several possible ways to evaluate optimization
techniques. The total links in the tree structure is one of the pos-
sible measures to evaluate the quality of a menu tree. However,
the total number of links is highly related to the total number
of categories and items in the menu data. The total number of
nodes in a menu tree structure exhibits a similar characteristic.
Another possible measure would be the maximum depth of the
tree structure. This represents the maximum number of clicks
needed to place a single item into the to-go bag. Being pes-
simistic, this measure only states the worst-case scenario. On
the other hand, the minimum depth is too optimistic. Obviously,
the average number of links between leaf nodes and the root
node is more appropriate for evaluation of menu tree quality.
The worst case complexity of calculating each of aforemen-
tioned measures is O(n), where n is the number of nodes in the
entire menu data tree structure.

In this paper, we adopt the average and maximum depths as
our optimization measures. In the rest of this section, we discuss
several data optimization techniques for the WDT application
family.

B. Shortcut Strategy

The shortcut optimization method tries to connect the desired
items directly to the root node. The idea is to create a list
of most likely being ordered items/combos from a customer’s
previous order history. These items/combos are displayed on
the first screen of the user interface in an attempt to minimize
user interaction.

Each item i in the order history is associated with a weight
value wi that is used for the sorting purpose. The most signif-
icant factor affecting the value of wi would be the number of
times the item has been ordered. However, some other factors
can be also significant, which include how recent the order was
placed, what time of the day the order was placed, what season
of the year the order was placed, where the order was placed,
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and who placed the order. Before discussing the general case,
let us first use a fast-food restaurant as an example to illustrate
the idea of our shortcut strategy with two variables defined as
follows:

h =

{ 0, morning
1, day
2, evening

and s =

{ 0, summer
1, spring/fall
2, winter.

Combining different values of h and s, we have in total
nine classes for the order history data according to the time
when an order was placed. These classes are denoted by
Ch,s (0 � h, s � 2). In each class, an item i keeps a variable
ph,s

i that is initialized to 0 and updated each time an order is
placed during time h and season s as follows:

ph,s
i =

{
1 + α · ph,s

i , i is included in the order
α · ph,s

i , i is not included in the order
(3)

where α is a real number satisfying 0 � α � 1. Depending on
the value of α, the more recent orders might be considered more
important than earlier ones.

The general equation for wi is defined as follows:

wi = li ·
m−1∑
h=0

n−1∑
s=0

(
ph,s

i · e−(β·|h−h0|+γ·|s−s0|)
)

(4)

where e stands for the base of the natural logarithm; li is the
number of links that would be saved if item i appears in the
shortcut menu; β and γ are positive real numbers; m and n are
the numbers of possible values that h and s have, respectively;
and h0 and s0 are the current values.

In (4), the previous orders are classified by two dimensions,
namely, h and s, into m× n classes. In our restaurant example,
the two dimensions could be a small-scale time slot and a large-
scale time zone. For other service providers, the two dimensions
could be a time zone and a location, or other criteria to classify
the previous orders. If a previous order with an h value has little
effect on the current order with value h0, a large β value can be
chosen so that e−(β·|h−h0|) approaches 0 and the corresponding
ph,s

i value contributes little to the overall weight. On the other
hand, if the h value should affect the overall weight heavily,
then a smaller value of β can be chosen. Similarly, selecting an
appropriate value for γ can control the portion of contribution
to the overall weight wi by the offset of the s dimension.

The ph,s
i values in one of the m× n classes are updated

at the time of placing an order according to (3). The time
complexity of updating is O(j), where j is the number of items
in the history data. The cost of sorting occurs at the time when
the application starts. Calculation of wi for all items has time
complexity of O(k), where k is the number of valid items in
the whole menu data. The cost of sorting is O(k log k) using
merge-sort. Nonetheless, because of the relatively small k value
of menu data and relatively advanced computer technologies,
the cost for sorting is tolerable. When the k value for a certain
application is considerably large, we could calculate all values
at application idle time, e.g., at the time while the customer is
waiting for the order to be delivered after placing an order, and
use the appropriate one at the next start time.

Fig. 10. Example: Optimization Rule 1—Single leaf. (a) Before. (b) After.

Fig. 11. Example: Optimization Rule 1—Single nonleaf. (a) Before. (b) After.

Fig. 12. Example: Optimization Rule 2.

C. Optimization Rules

We now discuss the optimization strategies on the menu
data tree structure. Note that all the optimization rules to be
discussed are not applied to root node r.

Optimization Rule 1: If a node x has no siblings, then
merge x into its parent node, e.g., y. If x has k child nodes
z1, z2, . . . , zk, then move z1, z2, . . . , zk up as the direct child
nodes of y. �

Figs. 10 and 11 show examples of applying Optimization
Rule 1 on a single leaf node and a single nonleaf node,
respectively.

Optimization Rule 2: If a symbol represented by a leaf node
x is in the AND relation with other symbols represented by the
siblings of x, merge x into one of its siblings. �

When one of the items in a combo, e.g., x, is directly in the
AND relation with other groups of items, it has to be selected to
place the combo into the to-go bag. Hence, item x can be in the
parent node of a group of items that are to be selected by the
customer as part of the combo. Fig. 12 shows such an example.

Interestingly, the new subtree in Fig. 12(b) then falls into the
condition for applying Optimization Rule 1. Fig. 12(c) shows
the subtree structure after applying two rules.

On each screen of the user interface, a number of icons show
all the choices a customer currently has. These icons represent
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Fig. 13. Example: Optimization Rule 3. (a) Before. (b) After.

the nodes in the menu tree structure, and all the nodes are
in the XOR relation. If the clicked icon represents a leaf node,
then the corresponding item is added into the to-go bag. Oth-
erwise, the child nodes, which are also in the XOR relation,
are shown as icons on the screen. Limited by the size of the
screen, the number of icons that can be shown on each screen
is bounded from the top,3 e.g., N . Since we can always split
a node if it has more than N child nodes, without loss of
generality, we can assume that each node in a given menu tree
structure has less than or equal to N child nodes. To minimize
the number of screens shown to a customer, we want to show
the maximal possible number of icons on each screen. For this
purpose, we introduce the following two rules to optimize the
menu tree structure.

Optimization Rule 3: If a node x is in the XOR relation with
its siblings and all of its child nodes are in the XOR relation
as well, then distribute x into every child node of x, and move
all the child nodes of x up to become direct child nodes of the
parent node of x, provided that the total number of resulting
siblings is less than or equal to N . �

An example of applying this rule is shown in Fig. 13.
Optimization Rule 4: Let p and q be two sibling nodes that

are in the AND relation. If the child nodes of p and q are in their
respective XOR relations, then convert p ∧ q into a disjunctive
form with each clause represented by a single node, and the
resulting nodes become the child nodes of a new node that is
a combination of p and q, provided the resulting number of
sibling nodes is less than or equal to N . �

Fig. 14 shows an example of applying this rule.

D. Optimization Algorithm

When applying the optimization rules, we need to follow a
sequence such that applying one of the rules shall not result in a
(sub)tree structure that another rule that has been applied before
can be applied again, in which case, the complexity of applying
the rules may not be polynomial to the number of nodes in the
tree. See Fig. 12 for an example.

Algorithm 1 introduced can avoid such repeated applications
of the same rule. N in the algorithm is the maximum number
of icons one screen can show.

3Note that the choice of N is based on the display size, the icon size, and the
number of icons with which a user is comfortable dealing. We assume that, for
a given application, N is chosen in such a way that these factors are properly
considered.

Fig. 14. Example: Optimization Rule 4. (a) Before. (b) After.

Algorithm 1 Menu Tree Optimization

procedure Optimize(node p, int N)
1: for each unprocessed child node c of p do
2: Optimize(c,N)
3: if c = leaf & c has siblings & in ∧ then
4: merge c into a sibling node
5: else
6: for each of c’s processed siblings b that is in ∧

with c do
7: k ← number of nodes generated for disjunction

form of c ∧ b
8: if k � N then
9: merge b into c, having disjunction clause

nodes as processed children
10: end if
11: end for
12: m← number of siblings of c
13: n← number of children of c
14: if c in⊕& children of c in⊕& m + n � N then
15: incorporate c into each child, then replace c by

children
16: else if c has no sibling then
17: if c has children then
18: move children up as children of p
19: end if
20: merge c into its parent p
21: else
22: mark c as processed
23: end if
24: end if
25: end for

The algorithm consists of a procedure that makes recursive
calls on all child nodes of an input node. Initially, all nodes
in the menu tree structure are marked as unprocessed. We take
root node r as the initial input, and then, the procedure works
through the whole tree structure, from leaf nodes up to the
root (note that the root node r is not processed for optimiza-
tion). First, lines 3–4 implement Optimization Rule 2. Then,
lines 6–11 implement Optimization Rule 4. Next, Optimization
Rule 3 is implemented by lines 12–15. Finally, lines 16–20
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implement Optimization Rule 1. Line 22 marks either node c
or its derived node (i.e., for the case in which other node(s) has
merged into c) if c did not merge into other node(s).

The complexity of the algorithm is O(n), where n is the
total number of nodes. Alerted readers may have noticed that
n may change during the optimization process. Nonetheless,
it decreases during the process except for the application of
Optimization Rule 4, in which case the total number of siblings
of each involved node is bounded from the top by N . Line 6
involves pairing two nodes out of s sibling nodes; thus, the
time complexity of this procedure is O(s2), where s is the
largest number of sibling nodes throughout the entire menu tree.
In addition, note that s may change during the optimization
process. Fortunately, s � N as well. Therefore, the overall
complexity is O(n ·N2).

The following theorem ensures that the sequence of the
optimization rules applied in the algorithm avoids the issue of
the repeated applications of the rules on the same node.

Theorem 1: Algorithm 1 implements the four optimization
rules in such a sequence that the rules that run later do not create
a (sub)tree structure suitable to apply the rules that have run
earlier in the algorithm.

Proof: The algorithm runs from leaf nodes to the root
node, i.e., a node would not be processed by the algorithm until
all of its child nodes have been processed. This fact allows us
to prove the theorem by induction as follows.

For the initial step, we show the theorem stands for leaves.
For each node, the algorithm implements the four rules in the

following sequence: Rule 2→ Rule 4→ Rule 3→ Rule 1.
Suppose a leaf node y is a child node of node x and the

algorithm is executing Optimize(x,N).
After application of Optimization Rule 1, y either remains

unchanged or merges into x to form a new node x− y, which
will run the algorithm for all four rules later. In either case,
Optimization Rule 1 does not change any other existing node
that has been applied the other three rules.

Next, let us consider Optimization Rule 3. Application of this
rule does not create any new node that is in the AND relation
with its siblings and, hence, does not create any structure to
which Optimization Rule 4 or 2 is applicable.

Finally, Optimization Rule 4 does not create any leaf node
that is in the AND relation with its siblings, which is the only
situation in which Optimization Rule 2 applies.

For the induction step, suppose again x has a child node y,
which has child nodes z1, . . . , zk, and assume that the theorem
stands for all nodes that are descendants of y. The arguments are
very similar to those for the initial step except for Optimization
Rule 1.

If y has no other siblings, after application of Optimization
Rule 1, y merges into x, and z1, . . . , zk become child nodes
of x. Nonetheless, the only nodes that have been changed and
applied all the rules are z1, . . . , zk, and neither their number
of siblings nor their relation changes. Hence, no condition is
created for applying the other three rules. �

After applying the optimization algorithm on a specific menu
data tree structure, some nodes that have been involved in an
IMPLICATION operation might have changed or even merged
into other nodes. Nonetheless, the application of the four rules

does not affect the IMPLICATION operations when the following
changes are made.

1) If a node y has merged into x to form a new node x− y
after applying Optimization Rule 1, 2, or 4, replace y and
x by x− y in all the operations.

2) If a node y is distributed into its child nodes x1, . . . , xk

and replaced by newly generated nodes y − x1, . . . , y −
xk after applying Optimization Rule 3, replace y by y −
x1 ⊕ · · · ⊕ y − xk and replace xi by y − xi (1 � i � k)
in all the operations.

V. SIMULATION STUDY

We conducted extensive simulation experiments to evaluate
the performance of the optimization strategies, and the results
are presented here.

A. Performance of the Shortcut Menu

The first set of simulation experiments was to evaluate the
shortcut menu strategy. The simulation settings are described
as follows.

For (4), we set α = 0.5 as the fading speed of the effect
of previous orders. To adequately emphasize the difference
between classes, we set β = γ = 1. We chose the total number
of classes to be 6, three values for variable h and two values for
variable s. In addition, we chose N = 8.

For the order history, each class kept previously ordered
items in a queue, whose size was limited by the window size.
We assumed that each order only included one item. When
an item was ordered in a certain class, it was added to the
corresponding queue, and the oldest item in the queue was
deleted when an overflow occurred.

We used a simplified menu from a typical fast-food restaurant
to construct a menu tree structure in the simulation. The menu
included 44 items in total. Among them, 10 items had a depth
of 3, five items had a depth of 4, five items had a depth of 5, and
24 items had a depth of 6. Note that some items were combo
items, and their depth reflected the number of links a customer
needs to go through to reach all items of a combo.

Reordering happens when an item is selected from the his-
tory queue. An item is selected from the input menu when
reordering does not happen. Human behavior dramatically af-
fects the performance of a shortcut-menu-based system, but the
most affecting factor is the reordering probability. A higher
probability would result in a better performance. We repeated
the simulation under different probabilities of reordering. For
each fixed reordering probability, 600 orders were executed,
averaging 100 for each class.

Fig. 15 shows a typical result for the aforementioned settings.
The reordering probability ranged from 0.05 to 0.95. Before an
order was placed, a shortcut menu was constructed with eight
items with larger wi values. The probability of finding an item
in the shortcut menu is very close to the reordering probability,
which indicates that the wi value of an item provides an
accurate means for sorting items and constructing a shortcut
menu accordingly.
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Fig. 15. Improvement (%) by the shortcut strategy.

If the ordered item was included in the shortcut menu, the
link count was 1. Otherwise, the link count was the depth of
the item in the menu tree plus 1, since a customer would need
to take one extra step to check the shortcut menu first. The
percentage of the number of links saved was calculated by com-
paring the system with a shortcut menu to the system without
a shortcut menu, in which case, the link count for an order was
exactly the depth of the item in the order. The percentage of
the number of links saved also increases proportionally to the
reordering probability at a slope almost identical to that of the
percentage of ordered from the shortcut menu.

When the reordering probability was less than 20%, the
system worked better without a shortcut menu. This is because
the customer takes an extra step of checking the shortcut menu
without finding the desired item. When a customer had a more
than 20% reordering probability, the system with a shortcut
menu outperformed the original system significantly, particu-
larly when the reordering probability was higher than 40%. For
example, if the reordering probability was 50%, a customer
had a 44% chance of finding a desired item in the shortcut
menu, and on average, the system had a 24% performance
improvement.

B. Performance of Optimization Rules

To evaluate the performance of the optimization rules, we
adopted randomly constructed test menu trees. Starting from
the root node, a tree structure was created one node at a time.
The root node had child nodes that were in the XOR relation.
For each child node, we generated child nodes randomly con-
strained by the following parameters.

The first parameter was screen size N , which was a limit
for the number of child nodes that a parent node can have, and
the number of child nodes was randomly chosen from 1 to N .
The second parameter was the maximum depth D of the tree.
We set the probability for a node to have child nodes decrease
by the depth of the node. To be specific, when a random real
number rand between 0 and 1 was generated, the probability
for a node to have child nodes was set to rand/depth, where
depth was the depth of the node. We set the cutoff probability to
be 0.1, i.e., if rand/depth < 0.1, the node had no child nodes.
Otherwise, a random number between 1 and N was chosen as
the number of child nodes. From the aforementioned settings,
the maximum depth was set to be bounded from the top by
10. The third parameter in the simulation was the probability
P for sibling nodes to be in an AND relation.

Fig. 16. Improvement (%) by four rules (N = 8, D = 8, P = 0.2).

Fig. 17. Improvement (%) versus screen size N (D = 8, P = 0.2).

We empirically applied the four optimization rules to each
of the randomly generated test tree structures. For each set
of parameters, 100 samples had been taken for the average
depth of all leaf nodes in a particular tree structure. The results
showed that each optimization rule contributes to the overall
improvement (%) (i.e., decrease (%) for the average depth of
all leaf nodes). Fig. 16 shows one of the results with a typical
set of parameter values. Although the average depth does not
fully reflect the contributions of Optimization Rule 4 since it
does not consider the fact that a leaf node created by this rule
represents a combo (multiple items), this rule still provided an
overall saving of about 30% on average.

Next, we show the effect from each of the three parameters
for the test tree structure construction on the improvement
provided by the optimization rules. Each time, we varied one
of the three parameters and fixed the other two. We again took
the average of 100 samples.

First, we changed screen size N from 2 to 16 and fixed the
other two parameters. Fig. 17 shows that the optimization rules
provided a larger improvement when N < 6 since a smaller
value of N leads to a larger probability of single child node
cases. However, when N � 6, the screen size had a limited
effect on the two performance measures. In general, the menu
tree had a 25%–40% improvement on the average depth of all
leaf nodes and a 2%–22% improvement on the maximum depth
of all the leaf nodes.

Fig. 18 shows a typical result when we increased the value of
D from 4 to 16 and fixed the other two parameters. The result
indicated our optimization rules performed consistently across
different values of the maximum depth. The optimization rules
provided about 30% savings on the average depth of all leaf
nodes of a menu tree structure and about 5% savings on the
maximum depth of a menu tree structure.

Since our optimization rules work toward nodes that are in
an AND relation more aggressively, the possibility of nodes
in the AND relation when we generate a menu tree plays a
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Fig. 18. Improvement (%) versus maximum depth D (N = 8, P = 0.2).

Fig. 19. Improvement (%) versus AND probability P (N = 8, D = 8).

very important role in the improvement (%) of the performance
measures. Fig. 19 shows a typical result when we increased
the value of P from 0.2 to 0.7 and kept the other two values
constants. The result indicated that the improvement (%) on
the average depth of all leaf nodes of a menu tree structure
dramatically increased (40%–50% improvement on average)
when the value of P was increased. The improvement (%) on
the maximum depth of a menu tree structure stayed unchanged
at about 4% across different P values.

The simulation results here show that our optimization strate-
gies provide a significant improvement on the performance of
WDT applications.

VI. CONCLUSION

We have introduced the notion of WDT services, proposed
a formal mathematical framework for the applications, and
built a core simulation platform with two prototypes. Both
mathematical and graphical representations of the data model
have been developed. The former is useful for both the efficient
implementation and the repurposing of the model, whereas
the latter makes the model easy to comprehend. Since the
data model provides generality of data exchange for the WDT
application family, its utilization can significantly reduce the
implementation efforts for such applications.

The proposed data model also provides a base for performing
optimization to minimize user interaction, which is crucial to
WDT applications due to the attention-demanding vehicle en-
vironment. We have presented several optimization techniques.
Our optimization algorithm has been made efficient by follow-
ing a particular sequence of invoking four optimization rules
to avoid the reconsiderations of invocations. Our simulation re-
sults demonstrate that the proposed optimization techniques can
significantly improve the performance of a WDT application in
terms of reduction of user interaction.

Our work is just the beginning of a rich body of research
that needs to be carried out for the realization of efficient WDT
applications. Our research plans include extending the data
model to incorporate more constraints (e.g., membership priv-
ileges and general conditional policies), studying the shortcut
algorithms, fine-tuning our models to best match the real-world
expectations of the WDT service to maximize the customer
experience, and conducting human behavior study and compre-
hensive statistical analysis to evaluate our techniques in real-
world and hypothetical settings.
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