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Abstract XML structural joins, which evaluate the containment (ancestor-descendant) rela-
tionships between XML elements, are important operations of XML query processing. Esti-
mating structural join size accurately and quickly is crucial to the success of XML query
plan selection and the query optimization. XML structural joins are essentially complex
θ -joins, which render well-known estimation techniques for relational equijoins, such as
discrete cosine transform, wavelet transform, and sketch, not applicable. In this paper, we
model structural joins from a relational point of view and convert the complex θ -joins to
equijoins so that those well-known estimation techniques become applicable to structural
join size estimation. Theoretical analyses and extensive experiments have been performed
on these estimation methods. It is shown that discrete cosine transform requires the least
memory and yields the best estimates among the three techniques. Compared with state-of-
the-art method IM-DA-Est, discrete cosine transform is much faster, requires less memory,
and yields comparable estimates.

Keywords Semi-structured databases · XML databases · Query optimization · Selectivity
estimation

1 Introduction

Boosted by the popularity of the Internet and online applications, Extensible Markup
Language (XML) has recently become the de facto standard for presenting, storing, and
exchanging data on the Internet. Different from the relational paradigm, XML data are
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semi-structured and usually modeled as trees. Therefore, queries over XML data are usually
specified as pattern trees [22] or path expressions [6,9].

There have been considerable efforts devoted to XML query optimization with the objec-
tive to select an efficient query execution plan. Usually, the plan selection is based on the cost
estimates of alternative plans, in which selectivity estimation plays a major role. Existing
approaches focus on estimating selectivity of query patterns at different structural levels.
For instance, some estimate the selectivities of the whole path expressions or pattern trees
[1,7,12,23], while others study the structural relationships between pairs of node sets. Those
methods focusing on path expressions or pattern trees generally rely on some pre-stored
statistics to capture the structures of XML documents. For example, path trees and Markov
tables [1] were proposed to aid in estimating the selectivities of simple XML path expres-
sions. Freire et al. [12] adopted XML Schema types to gather statistics and used histograms
to store the statistics. Polyzotis et al. [23] introduced a graph-synopsis model to provide sta-
tistical summaries for large XML data graphs. The model exploits localized graph stability
to efficiently partition XML data nodes.

Instead of estimating the selectivities of path expressions or pattern trees, some methods
opt to estimate the selectivities of the structural constraints between pairs of nodes in the query
patterns. Structural joins that study the structural relationships between pairs of XML nodes
have been recognized as vital operations in this regard. Due to the importance of structural
join operations, a variety of methods have been proposed. While most of them concentrate on
efficient execution of structural join operations[2,18,20,27], few [25,26] address the issue
of structural join size estimation, which is nevertheless crucial to the query optimization.

Compared with estimating the selectivities of path expressions or query patterns, it is usu-
ally faster, easier, more flexible, and more precise to estimate structural join sizes between
pairs of nodes. The estimates of structural joins can serve to locate the performance bottle-
neck of candidate query plans. Moreover, if necessary, the selectivity of path expressions
or query patterns can be derived by multiple structural join size estimates. Based on these
arguments, our research focuses on estimating structural join sizes.

Wu et al. [26] proposed a grid model for XML structural join size estimation. The grid
model represents the entire XML dataset as a two-dimensional feature space and partitions
this space into predefined grid cells. Each grid cell is associated with a count that indicates
the number of nodes that fall in it. Wang et al. [25] proposed an interval model and a position
model. The interval model represents each ancestor node as an interval and each descendant
node as a point. The position model represents the structural information in two tables, cov-
ering table and start table. The covering table models the structural information of ancestor
nodes while the start table stores the structural information of descendant nodes.

XML structural joins are essentially complex θ joins, which render well-known estima-
tion techniques for relational equijoins, such as discrete cosine transform, wavelet transform,
and sketch, not directly applicable to their size estimations [25]. In this paper, we propose
an innovative relational model for XML structural joins. Our model captures the structural
information of XML data by relations. It converts structural joins to simple equijoins and
thus makes those well-known estimation techniques applicable to structural join size estima-
tion. Unlike Wang’s IM-DA-Est method [25], which requires extensive search on external
index structures, these three methods, namely discrete cosine transform, wavelet transform,
and sketch, require only simple computations and little memory space for structural join size
estimation. Theoretical analyses and extensive experiments have been performed. The exper-
imental results show that, the estimation method using discrete cosine transform requires the
least memory space and generates the best estimates among the three methods. Compared with
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state-of-the-art method IM-DA-Est [25], discrete cosine transform is much faster, requires
less memory, and yields comparable estimates.

The rest of the paper is organized as follows. Section 2 briefly reviews related research
in XML structural join size estimation. Section 3 introduces the three approximation tech-
niques, namely discrete cosine transform, wavelet transform and sketch. Section 4 discusses
the relational modeling of the structural joins and their estimations utilizing the three approx-
imation techniques. Section 5 compares the three estimation methods and the IM-DA-Est
method. Detailed theoretical analyses and experimental results are presented. Finally, Sect. 6
concludes this paper.

2 Preliminaries

To facilitate structural join operations, Wu et al. [26] proposed a region coding scheme,
which is similar to the one adopted in the Niagara [27] project. Specifically, the coding
scheme assigns a pair of values, start and end, called the region codes, to each node in the
XML data tree. The region codes specify the nodes’ locations and coverage. A structural join
between an ancestor node a and a descendant node d is essentially to evaluate the logical
expression of a.start ≤ d.start && d.end ≤ a.end .

Existing models for structural join include grid, interval and position models [25,26].
The grid model [26] is a two-dimensional model. It represents the entire XML dataset as a
two-dimensional feature space and partitions this space into predefined grid cells. Each grid
cell represents a range of start region codes and a range of end region codes. It keeps count
of XML nodes that fall in it. The structural join size is estimated by examining the spatial
relationships between the grid cells based on the assumption that XML nodes are uniformly
distributed in the two-dimensional space. However, such an assumption could lead to poor
estimation accuracy especially when the ancestor nodes are not self-nested. The Coverage
histogram [26] is thus proposed to remedy this problem by estimating the fraction of cover-
age. However, the estimation accuracy is still severely impaired by the additional assumption
that the local coverage statistics could substitute for the global coverage statistics.

Wang et al. [25] proposed the interval model and the position model. The interval model
represents each ancestor node as an interval and each descendant node as a point. For each
node with the region codes (start, end), it is represented as an interval of [start, end] when
it acts as an ancestor and it is represented as a point with value start when it acts an a
descendant. The position model stores the structural information of XML data in two tables,
covering table and start table. Both tables have two attributes. The covering table has attri-
butes position and coverage. The coverage attribute indicates the number of ancestor nodes
that cover each respective position. The start table has attributes position and start. The start
attribute indicates the number of descendant nodes that start at each respective position.

Wang et al. [25] have also proposed two sampling-based methods, IM-DA-Est and PM-
Est. Both methods estimate structural join size by first computing the structural join sizes over
samples and then scaling up the results proportionally. IM-DA-Est adopts the interval model
and samples only the descendant set while PM-Est uses the position model and samples both
the ancestor and the descendant sets. IM-DA-Est was shown to yield better estimates than
all other methods including those based on the grid model [25]. However, since excessive
data accesses are required, the sampling approaches are generally very slow. To expedite
structure join size estimation, external index structures, such as XR tree and T + tree, are
used in IM-DA-Est and PM-Est. However, there is still much room for improvement on the
estimation speed.
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Fourier transform is a versatile linear transform that decomposes a waveform or function
as a sum or integral of sinusoidal functions multiplied by some coefficients (amplitudes). As
a variant of the Fourier transform, the discrete cosine transform is known to have excellent
energy compaction properties, where most of the signal information tends to be concentrated
in a few low-frequency components of the transform [5]. Therefore, the original waveform
or function can be approximated, without much information loss, by its first few terms.

Wavelet transform is another special form of mathematical transforms. It decomposes
the original signal by applying highpass and lowpass filters repeatedly until a predefined
decomposition level is reached. The Haar transform is conceptually the simplest wavelet
transform. For the Haar transform, it is proved [13] that the largest coefficients in absolute
value carry the most important information of the original signal. Thus the original signal
can be compressed using a few coefficients that have large absolute values.

Recently, a randomizing technique, called sketch [3,4], has been proposed. It uses a set
of independent randomized linear-projection variables, termed atomic sketches, to estimate
the join size. Each atomic sketch has the expected value of the true join size and its variance
is relatively small.

Discrete cosine transform, wavelet transform, and sketch have been successfully applied
in selectivity estimation. However, it is not clear how these techniques can be applied to struc-
tural join size estimation [25]. In this paper, we propose a relational modeling of structural
joins to accomplish this task.

3 Technical background

In this section, we briefly discuss the discrete cosine transform, wavelet transform, and
the sketch method. While wavelet and sketch have been applied to join size estimation
[4,11,19,21], to the best of our knowledge, discrete cosine transform has only been applied
to range query size estimation [16]. Therefore, we shall explain in more detail how to apply
discrete cosine transform to join size estimation. We attempt to use these techniques to
approximate frequency functions of attributes for structural join size estimation.

A relational equi-join is generally performed between attributes with discrete domains.
Since a categorical domain can be easily mapped to a numerical domain, we from now on
assume all attributes are discrete numerical.

3.1 Discrete cosine transform

The discrete cosine transform is a special form of mathematical transforms that can be used
to approximate a signal with only a few coefficients.

3.1.1 Normalization

Let X be an attribute of a relation. We attempt to describe the frequencies of attribute values
by a mathematical frequency function. To simplify the notations and implementation of the
discrete cosine transform, we opt to normalize the domain of X to a predetermined domain
[0, 1]. Let max X and minX be the maximum and minimum value of X , respectively. Then,
each value x ∈ X is normalized as follows:

xz = x − minX

max X − minX
(1)
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where xz denotes the normalized value of x . For example, suppose {0, 1, 2, 3, 4} is the domain
of function f . Then the normalized domain is {0, 1/4, 1/2, 3/4, 1}.

3.1.2 Discrete cosine transform

Let N be the total number of tuples in the relation, and n the size of domain X , i.e. |X | = n.
Let vi , 1 ≤ i ≤ n, be the i th value of attribute X and vz

i be its normalized value. Let countvz
i

be the number of times that vi appears in the relation.
The frequency function of X defined on the normalized domain [0, 1], denoted as f , is

defined as
f (x) = countx (2)

The frequency function has the following property:
∑1

x=0 f (x) = N .
By the theory of discrete cosine transform, f (x) can be represented as

f (x) =
∞∑

k=0

αkφk(x)

where φk(x) = N for k = 0, and φk(x) = √
2 cos kπx for k > 0. αk is computed as:

αk ≈
N∑

j=1

φk(t
z
j ) =

n∑

i=1

countvz
i
φk(v

z
i ) (3)

where t z
j is the normalized X value of the tuple t j , 1 ≤ j ≤ N .

The Cosine transform is known to have excellent energy compaction properties, where
most of the signal information tends to be concentrated in a few low-frequency compo-
nents of the transform [5]. Therefore, in practice, f (x) is often approximated, without much
information loss, by its first few terms as

f (x) ≈
m∑

k=0

αkφk(x)

where m is a small number.

Example Consider a function f (x) defined on the normalized domain [0, 1]. The values of
f (x) are: f (0) = 1, f (0.32) = 2, f (0.56) = 1, f (1) = 1. The Cosine transform of f (x) is
derived as follows. Given that φk(x) is

√
2 cos kπx for k ≥ 1, αk is calculated as:

α0 = 5

α1 =
∑

all x

f (x)φ1(x) ≈ 1.2504

α2 =
∑

all x

f (x)φ2(x) ≈ 0.3092

. . . . . . . . .

Finally, function f (x) is approximated as f (x) ≈ 5 + 1.2504
√

2 cos πx + 0.3092√
2 cos 2πx + · · · .
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3.2 Wavelet transform

Wavelet Transform [8] is another special mathematical transform that is able to compress a
signal using a few coefficients.

Our application focuses on the Haar wavelet transform, which is conceptually the simplest
and has been used in various database applications [19,21]. Haar wavelet transform is usually
computed by recursive averaging and differencing, as illustrated below by an example.

Example Consider a series of numbers, listed as {12, 9, 3, 7, 1, 8, 4, 6}. Note that the size of
the series is deliberately selected to be a power of 2, which simplifies the computation and
analysis. The computation of its Haar transform H f takes 3 stages.

Stage 1:

H f1 = {12 + 9, 3 + 7, 1 + 8, 4 + 6}√
2

H f2 = {12 − 9, 3 − 7, 1 − 8, 4 − 6}√
2

H f = H f1 ∪ H f2

= {21, 10, 9, 10, 3,−4,−7,−2}/√2

Stage 2:

H f =
{ 21+10√

2
, 9+10√

2
, 21−10√

2
, 9−10√

2
, 3,−4,−7,−2}

√
2

= { 31√
2
,

19√
2
,

11√
2
,
−1√

2
, 3,−4,−7,−2}/√2

Stage 3:

H f =
{ 31+19

(
√

2)
2 , 31−19

(
√

2)
2 , 11√

2
, −1√

2
, 3,−4,−7,−2}

√
2

= { 50

(
√

2)
2 ,

12

(
√

2)
2 ,

11√
2
,
−1√

2
, 3,−4,−7,−2}/√2

� {17.68, 4.24, 5.5,−0.5, 2.12,−2.83,−4.95,−1.41}
To summarize, let the size of the signal be len. Then, its Haar transform takes log2 len

stages to compute. In stage i , only the first len/2i−1 elements change their values. The new
values are resulted from pair-wise averaging and then differencing of the first len/2i elements
in the previous stage i −1. The computation of Haar wavelet is O(len), which is much faster
than the computation of Cosine transform whose complexity is O(m · len).

The entries in the Wavelet transform are referred to as Wavelet coefficients. It is proved
[13] that for Haar transform, the largest coefficients in absolute value carry the most impor-
tant information and thus should be selected to represent the original signal. Assume that we
are to represent the original series in the above example by three coefficients. Then, they are
{17.68, 5.5, −4.95}.
3.3 Sketch

The sketch technique utilizes a set of randomized linear-projection variables to estimate the
join size [11]. Consider a join between relations R1 and R2 on attribute X and let f1 and
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f2 be the frequency functions of R1 and R2 on X , respectively. Assume |X | = n. Then, a
randomized linear-projection variable X for this join is computed as follows:

– Generate n four-wise independent variables {ξi }, where each ξi ∈ {−1, 1} and Prob[ξi =
1]=Prob[ξi = −1] = 1/2 (i.e., E[ξi ] = 0).

– J = (
∑n

i=1 f1(vi ) · ξi ) × (
∑n

i=1 f2(vi ) · ξi ), where vi is the i th value in the domain of
X .

As shown above, each randomized linear-projection variable J is a product of two num-
bers, namely

∑n
i=1 f1(vi ) · ξi and

∑n
i=1 f2(vi ) · ξi . These two numbers are termed atomic

sketches, whose values only depend upon one relation.
To improve the precision of join size estimation, usually s1 ·s2 J ’s are used. These random-

ized linear-projection variables are organized in s1 groups, of which each has s2 members.
The values of s1 and s2 are determined by the desired estimation precision and the desired
estimation confidence, respectively.

Example Consider a join on attribute X between relations R1 and R2. Suppose the fre-
quency function of R1 on attribute X is: f1(0) = 2, f1(1) = 3, f1(2) = 1, f1(3) = 7 and
the frequency function of R2 on attribute X is: f2(0) = 1, f2(1) = 3, f2(2) = 4, f2(3) = 0.

To calculate the randomized liner-projection variables, we first generate their correspond-
ing four-wise independent random number series. Assume we intend to use 3 randomized
liner-projection variables and the 3 four-wise independent random number series generated
are: f w1 = {−1,−1, 1, 1}, f w2 = {−1, 1,−1,−1}, and f w3 = {1, 1, 1,−1}. Then the
3 J ’s would be calculated as: J1 = 3×0 = 0, J2 = (−7)×(−2) = 14, and J3 = (−1)×8 =
−8.

4 Estimating XML structural join size

In this section, we develop a model to capture the structural information of XML data in a
relational manner so that an XML structural join, which is essentially a complex θ join, can
be modeled as an equi-join. This model makes well known selectivity estimation techniques
for relational equi-joins, such as discrete cosine transform, wavelet transform, and sketch,
applicable to structural join size estimation.

4.1 Assumptions and definitions

An XML dataset usually consists of multiple XML documents. To ensure a coherent region
coding scheme, all documents are first integrated into one single XML document, which is
often accomplished by creating a pseudo root tag above all the existing root tags of the XML
documents. Hereafter, for simplicity, we shall assume an XML dataset consists of only one
document.

An XML document is generally represented by an XML data tree. We assume an XML
data tree encompasses all the information of the original XML dataset, with elements, attri-
butes, and text data of the dataset represented by nodes and their relationships by edges in the
tree. Consequently, queries on an XML dataset can be specified against its XML data tree.

We use capital letters for node types or node sets, and small letters for individual data
nodes. For instance, A represents the type of node or a set of nodes whose tag name is A,
while a represents a data node of type A.

The region coding scheme [26] assigns a pair of integer values (start , end) to each node
in the XML data tree. The root node has the region code (0, n), where n is the smallest
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Fig. 1 An XML Data Tree

integer number for the root node to cover all its descendants. The region [0, n] is also termed
the coding domain Dom. The region coding scheme [26] is able to capture the structural
information of XML data elegantly. A node d is a descendant of a node a iff a.start ≤
d.start && d.end ≤ a.end . A structural join between two sets A and D, where A acts as
the ancestor set and D the descendant set, is to find all pairs of (a, d) such that a ∈ A, d ∈ D
and a is an ancestor (or parent) of d . We assume the node sets involved in a structural join
are distinct.

4.2 A relational model for structural join

Wang et al. [25] use two models to capture the structural information. In their Interval Model
(IM), each node is represented by an interval when it acts as an ancestor in the query, and
a point when acts as a descendant in the query. In their Position Model (PM), two tables, a
covering table and a start table, are used to capture the structural information. In the covering
table, each position is associated with the number of nodes covering it, and in the start table,
each position is associated with the number of nodes starting at it. In this research, we model
the structural information of XML data as relations so that a structural join of XML data can
be treated as an equi-join of relations. Our model can be viewed as a semantic extension of
Wang ’s position model [25].

For each node set T , we model it by two relations, the Coverage and Start-position rela-
tions, for its different roles in structural joins. Both relations have two attributes, Sequence
number and Position. The Sequence number attribute serves no purpose other than avoid-
ing generating duplicate tuples in the relation. The Position attribute has the coding domain
Dom as its domain. For each T node with a region code (start, end), it is represented by a
set of end–start + 1 tuples whose Position attribute values are start, start + 1, . . . , end
in the Coverage relation for T , and as a single tuple whose Position value is start in the
Start-position relation for T . The Coverage relation is used when T acts as an ancestor set in
a structural join, while the Start-position relation is used when T acts as a descendant set in
a structural join. It should be noted that the Coverage and Start-position relations are intro-
duced only to serve the purpose of modeling the structural join. They are not materialized in
any form.

Figure 1 shows an example of an XML data tree, in which two nodes, namely a1 and a2,
are of type A, and three other nodes, namely d1, d2 and d3, are of type D. Nodes that are of
interest also have their region codes labeled close by. For example, node d2 has region codes
(5, 6).

Tables 1, 2, 3 and 4 show how A and D nodes are represented in our relational model.
Each node with a region code (start, end) is represented by end–start + 1 tuples in the
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Table 1 Coverage relation for A Sequence no. Position

1 0

2 1

3 2

4 3

5 4

6 5

7 6

8 7

9 8

10 9

11 10

12 11

13 12

14 13

15 14

16 15

17 2

18 3

19 4

20 5

21 6

22 7

23 8

24 9

Table 2 Start-position relation
for A

Sequence no. Position

1 0

2 2

Table 3 Coverage relation for D Sequence no. Position

1 3

2 4

3 5

4 6

5 7

6 8

Coverage relation and a single tuple in the Start-position relation. In the coverage relation,
the Position attribute values of these tuples start from start to end . In the Start-position
relation, the tuple’s Position attribute value is start .
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Table 4 Start-position relation
for D

Sequence no. Position

1 3

2 5

3 7

The structural join between an ancestor set A and a descendant set D is to find all pairs of
(a, d) such that a ∈ A, d ∈ D and a contains d . It can be easily observed that this operation
is equivalent to find all pairs of tuples from A’s Coverage relation and D’s Start-position
relation, respectively, such that the two tuples have the same Position attribute value.

Lemma 1 The structural join between an ancestor set A and a descendant set D is the
equi-join between A’s Coverage relation and D’s Start-position relation on the Position
attribute.

The above reasoning can be easily extended to multi-structural joins that are essentially
simple linear path queries. For example, consider a query //A1//A2//D, where only the deepest
node set D acts as the descendant while the other node sets, A1 and A2, act as the ancestors.
Theorem 1 generalizes this reasoning to multi-structural join size computation.

Theorem 1 The structural join among distinct ancestor sets A1, A2, . . . , An and a descen-
dant set D, is the equi-joins among the Coverage relations of A1, A2, . . . , An and D’s
Start-position relation on the Position attribute.

In what follows, we shall discuss the computation of structural join size using frequency
functions.

4.3 Join size computation

To compute the equi-join size, we need to know the number of occurrences of each position
in the relations, that is, the frequency distribution of the Position attribute. Therefore, for
each node set, we define two frequency functions, the Coverage and Start-position func-
tions, to describe the frequency distributions of the Position attributes in the Coverage and
Start-position relations, respectively.

Definition 1 The coverage function of a node set T at position pos ∈ Dom, denoted as
CT (pos), is the number of T nodes whose region codes cover pos or the number of tuples
whose Position attributes values are pos in the Coverage relation of T .

Definition 2 The start-position function of a node set T at position pos ∈ Dom, denoted
as ST (pos), is the number of T nodes whose start region codes equal pos or the number of
tuples whose Position attribute values are pos in the Start-position relation of T .

Figures 2, 3, 4 and 5 show the corresponding frequency functions for the two node sets
A and D in the example XML data tree. For instance, CA(6) = 2 because both A nodes,
namely a1 and a2, cover position 6.

The coverage function is intended for use when the node set acts as the ancestor in a struc-
tural join and the start-position function is used when the node set acts as the descendant.
The value of CT (pos) can be greater than 1 since T nodes covering pos might be nested;
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Fig. 2 Coverage function for A

Fig. 3 Start-position function for
A

Fig. 4 Coverage function for D

Fig. 5 Start-position function for
D

the value of ST (pos) can only be either 0 or 1 because no nodes can have two identical start
region codes.

Thus, the structural join size between an ancestor set A and a descendant set D is the inner
product of CA(pos) and SD(pos), denoted as 〈CA, SD〉, over the coding domain, namely:

∑

pos∈Dom

CA(pos) × SD(pos) (4)
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Moreover, the structural join size among any distinct ancestor sets A1, A2, . . ., An and a
descendant set D, is the inner product of CA1(pos), CA2(pos), . . ., CAn (pos) and SD(pos),
denoted as 〈CA1 , CA2 , . . . , CAn , SD〉, over the coding domain, namely:

∑
pos∈Dom CA1(pos)×

· · · × CAn (pos) × SD(pos).

4.4 Structural join size estimation

The storage of the frequency functions can consume a lot of space. Therefore, we opt to
use three techniques, namely the discrete cosine transform, wavelet transform, and sketch,
that need only small amounts of storage space to approximate the frequency functions. In
addition, unlike Wang’s approaches [25], which could require a considerable number of disk
accesses, these join size estimation methods need only simple computations. In this section,
we will mainly focus on the discrete cosine transform as the other two methods, namely the
wavelet transform and sketch, have been discussed thoroughly in the literature [3,4,8,13].

4.4.1 Estimation via the discrete cosine transform

Recall that before applying the discrete cosine transform to a function, a normalization of
the function’s domain is performed first. In our case, the coding domain Dom, namely [0,
n], is mapped to the region [0, 1] and each position pos in Dom is normalized to posz by
Eq. (1) accordingly. For example, 0z = 0 and nz = 1.

We denote the coverage function CA on the new domain [0, 1] as C′
A, such that CA(pos) =

C′
A(posz). Likewise, the start-position function SD is redefined on [0, 1] as S ′

D and
SD(pos) = S ′

D(posz).
The two new frequency functions can now be expressed in discrete cosine series as:

C′
A(posz) = ∑∞

k=0 akφk(posz) and S ′
D(posz) = ∑∞

k=0 bkφk(posz) respectively, where ak

and bk are computed following Eq. 3.
Now the structural join size computation (Eq. (4)) can be rewritten as:

∑

pos∈Dom

CA(pos) × SD(pos)

=
n∑

pos=0

CA(pos) × SD(pos)

=
n∑

i=0

count Ai · count Di (5)

where count Ai is the number of tuples whose Position values are i in the coverage relation
for A and count Di is the number of tuples whose Position values are i in the start-position
relation for D.

On the other hand, by the definition of frequency function, we obtain

〈C′
A, S ′

D〉 =
n∑

i=0

count Ai · count Di (6)

By Parsevel’s identity [14], the following equation holds:

〈C′
A, S ′

D〉 =
∞∑

k=0

ak × bk (7)
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From Eqs. (5), (6) and (7), the structural join size is computed as
∑∞

k=0 ak × bk .
The join size can be approximated by using only the first m coefficients of each series as∑m−1
k=0 ak × bk .

4.4.2 Estimation via wavelet transform

The Haar transforms of the frequency functions can be computed as discussed in Sect. 3. The
structural join size between an ancestor node set A and a descendant node set D is equal to
the inner product between A′s coverage function and D′s start-position function, which is
also equal to the inner product of their respective Haar transform [19].

The structural join size between an ancestor node set A and a descendant node set D is
estimated as follows. Firstly, the m largest coefficients in absolute value of A′s and D′s Haar
transforms are selected respectively. Secondly, those non-selected coefficients are assumed
to be 0s. Finally, the estimation is carried out by computing the inner product of the revised
coefficients.

4.4.3 Estimation via sketch

Consider a structural join between an ancestor node set A and a descendant node set D. We
attempt to use s1 · s2 randomized linear-projection variables to approximate the structural
join size between A and D, where s1 determines the estimation precision and s2 determines
the estimation confidence. These randomized linear-projection variables are organized in s1

groups, of which each has s2 members. The structural join size estimate is the median of the
averages of the groups [4].

5 Experimental results

We have implemented four estimation methods, the discrete cosine transform, the Haar wave-
let transform, sketch, and IM-DA-Est [25]. IM-DA-Est is included in the comparison because
it was shown [25] to outperform other approaches, such as the PH Histogram and Coverage
Histogram [26], PL Histogram and PM-Est [25]. In this section, we report the experimental
results. All experiments are conducted on a PC with a Pentium 4, 1.6 GHz processor and
256 MB RAM.

The datasets we used include a synthetic XML benchmark dataset XMARK [24] and a real
XML database DBLP [10]. For each dataset, we select pairs of node sets and then perform a
structural join on each pair. Tables 5 and 6 show the set of queries performed on each dataset.

To investigate how dataset size would affect the estimation accuracy, we used two versions
of each dataset. For XMARk, one version corresponds to the scale factor 1 (roughly 100 MB)
and the other scale factor 5 (roughly 500 MB). These two XMARK datasets are called X1
and X5 for short. For DBLP, we used an old version of about 120 MB and a current version
of about 370 MB. For short, these two versions are called Do and Dc, respectively. Tables 7
and 8 show the selected node sets and their detailed statistics in each dataset.

5.1 Storage space

The discrete cosine transform and sketch derive structural join size estimates directly from the
cosine coefficients and atomic sketches, respectively. Only the cosine coefficients or atomic
sketches need to be stored for these methods.
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Table 5 Queries on XMARK Query Ancestor Descendant

Q1 Closed_auction Annotation

Q2 Closed_auction Quantity

Q3 Closed_auction Seller

Q4 Item Name

Q5 Item Quantity

Q6 Person Name

Q7 Person Emailaddress

Q8 Open_auction Itemref

Q9 Open_auction Quantity

Q10 Open_auction Seller

Q11 Open_auction Text

Q12 Open_auction Type

Table 6 Queries on DBLP Query Ancestor Descendant

Q1 Inproceedings Author

Q2 Inproceedings Title

Q3 Inproceedings Cite

Q4 Article Title

Q5 Article Cite

Q6 Incollection Year

The Haar wavelet transform stores not only the coefficients but also their indexes so that
the coefficients can be correctly matched. Therefore, it needs twice as much space as the
above two methods for the same number of coefficients or atomic sketches.

As for the IM-DA-Est method, it stores a start-position table for each descendent node
set, from which samples are drawn. The table size is in the order of the number of descen-
dent nodes in question. In addition, it also requires space for an external index structure,
such as an XR-tree or T-tree [25], to expedite the examination of the structural relationships
between sample descendant nodes and ancestor nodes. An XR-tree (or a T-tree) is built for
each ancestor node set and requires a space in the order of the size of the ancestor nodes in
question.

Let us use an example to illustrate the memory usage of these methods. In the experi-
ments, we use three space budget settings, namely 200, 400, 800, and 1,600 bytes memory
for discrete cosine, wavelet, and sketch methods. As for IM-DA-Est, excluding the external
index structure, even the smallest table, created for the descendant node set annotation in X1,
has 21, 750 entries, which amounts to 4 × 21, 750 = 87, 000 bytes of memory consumption.
Therefore, the memory consumption of IM-DA-Est is much greater, for instance, about 100
times greater than the three proposed methods in our experiments. In short, the three proposed
methods require much less memory space than IM-DA-Est.
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Table 7 Statistics for XMARK Tag name Node count in X1 Node count in X5

Annotation 21,750 108,750

Closed_auction 9,750 48,750

Emailaddress 25,500 127,500

Item 21,750 108,750

Itemref 21,750 108,750

Name 48,250 241,250

Open_auction 12,000 60,000

Person 25,500 127,500

Quantity 43,500 217,500

Seller 21,750 108,750

Text 105,114 527,147

Type 21,750 108,750

Table 8 Statistics for DBLP Tag name Node count in Do Node count in Dc

Article 213,949 322,755

Author 1,331,301 2,105,709

Cite 172,406 172,401

Incollection 1,535 2,530

Inproceedings 357,848 531,130

Title 581,570 876,759

Year 580,420 866,382

5.2 Estimation error

The relative estimation error is used to determine the accuracy of the estimation. It is defined
as |x−x̂ |

x × 100%, where x is the actual join size and x̂ is the estimate.
The estimation accuracy depends on the number of samples drawn in IM-DA-Est, and the

number of coefficients or atomic sketches used in the other three methods. Unfortunately,
it is difficult to compare the estimation accuracy based on the same amount of memory
consumption because of the outstanding difference in memory usage between IM-DA-Est
and the proposed methods. Recall that the proposed methods store coefficients and atomic
sketches, while IM-DA-Est stores tables and external index structures. IM-DA-Est, exclud-
ing the external index structures, can consume several orders of magnitude more memory
than the other three methods. Therefore, the memory (consumption) constraints used in the
experiments, such as 200, 400, 800, and 1,600 bytes apply, strictly speaking, only to the pro-
posed methods. However, to observe the effects of sample size on estimation accuracy, these
constraints are also used to specify the size of samples for IM-DA-Est. Readers are advised
to be aware of this difference when interpreting the results.

The estimation accuracy is measured based on various memory constraints: 200, 400, 800,
and 1,600 bytes. For example, a 200-byte memory constraint would mean 50 sample nodes
(4 bytes each), or 50 cosine coefficients, or 50 atomic sketches, or 25 wavelet coefficients,
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recalling that each wavelet coefficient is stored with its index. Note that the memory con-
straints indicate only the sample size of IM-DA-Est, but they are all the memory space
required by the three proposed methods.

We first compare the estimation accuracy between sketch, discrete cosine transform and
wavelet. Then the best of the three is compared with IM-DA-Est.

5.2.1 Comparisons between sketch, discrete cosine transform and wavelet

In general, sketch performs much worse than the other two methods. Therefore, we sep-
arate its results from the other two so that the comparisons between the cosine and wavelet
methods are clearer. Figure 6 shows the performance of the sketch method on the X1 data-
set. The results are the averages of 50 runs. The performance of the sketch method on the
other datasets, namely X5, Do, and Dn, is very similar and is thus omitted. Figure 6 has four
sub-figures that correspond to the four memory space constraints respectively. The x axis
denotes the queries executed and the y axis shows the relative estimation errors.

As shown in Fig. 6, the sketch method performs very poorly in structural join size estima-
tion. Even with the largest 1,600 byte space budget, the average relative estimation errors for
all the queries are still around 40%. In addition, the variance of the relative estimation error
is also quite large, as demonstrated by the huge performance variation of query 3 under the
800 and 1,600 byte constraints.

Theoretically, join size estimation via sketch has its best case when all the tuples in the
join relations have the same and sole join attribute value, while it has its worst case when
the attribute values are uniformly distributed. The frequency functions of the datasets in the
experiments are more uniformly distributed than being concentrated on a few specific points,
which explains the poor performance of the sketch method.

Figures 7 and 8 show the performance of discrete cosine transform and wavelet on the
X1 and X5 datasets while Figs. 9 and 10 show their performance on the Do and Dn datasets.
Results from both methods are placed side by side for easy comparison.

Recall that the Haar wavelet transform consumes twice as much space as the discrete
cosine transform for storing the same number of coefficients. Therefore, under the same
memory space constraint, the Haar wavelet transform method can use only half the number
of coefficients that the discrete cosine transform method uses. The titles of the subfigures
indicate the total number of discrete cosine coefficients used for estimation.

The performance of both the discrete cosine transform and wavelet methods depends on
how well the frequency functions are approximated or compressed. In general, the smoother
the frequencies, the better the approximation.

As shown in Figs. 7, 8, 9, and 10, overall discrete cosine transform performs better than
wavelet on all the four XML datasets. Indeed, the estimation accuracy of the discrete cosine
transform method is generally 2–3 times better than that of the wavelet method. Even with
the same number of coefficients for both methods, discrete cosine transform is still generally
better than wavelet, which can be observed by comparing their performance in neighboring
figures. These figures also show that it is the distribution characteristics of the data, instead of
the data size, that primarily determines the estimation accuracy of discrete cosine transform.
For instance, X5 is about five times as large as X1, but since both datasets have similar data
distribution characteristics, the performance of discrete cosine transform on them is very
similar.

As discrete cosine transform is shown to have the best estimation accuracy, in the follow-
ing, it is compared with the IM-DA-Est method. Note that the comparison is based not on
the same memory consumption but the same numbers of coefficients and samples.
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Fig. 6 Sketch on XMARK. a
Space limit:200 bytes, b Space
limit:400 bytes, c Space
limit:800 bytes, d Space
limit:1,600 bytes,
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Fig. 7 Performance on X1. a
Space limit:200 bytes, b Space
limit:400 bytes, c Space
limit:800 bytes, d Space
limit:1,600 bytes
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Fig. 8 Performance on X5. a
Space limit:200 bytes, b Space
limit:400 bytes, c Space
limit:800 bytes, d Space
limit:1,600 bytes
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Fig. 9 Performance on Do. a
Space limit:200 bytes, b Space
limit:400 bytes, c Space
limit:800 bytes, d Space
limit:1,600 bytes

123



A relational model for XML structural joins and their size estimations 117

Fig. 10 Performance on Dn. a
Space limit:200 bytes, b Space
limit:400 bytes, c Space
limit:800 bytes, d Space
limit:1,600 bytes
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5.2.2 Comparisons between discrete cosine transform and IM-DA-Est

The IM-DA-Est method works very well when the structural relationships between the ances-
tor and descendant nodes are regular, that is, when the number of ancestor nodes that cover a
descendant node, namely the size of a subjoin, does not vary substantially. In this situation,
a small number of sample subjoins would be sufficient to yield a good estimate for the join.
On the other hand, if the relationships are irregular, poor estimate might be generated.

The performance of discrete cosine transform depends on how well the frequency func-
tions are approximated. In general, the smoother the frequency functions, the better the
approximation. Specifically, for the coverage function, discrete cosine transform approxi-
mates better when the nodes on average have larger ranges of coverage. For the start-position
function, the more 1’s, the denser the distribution, and the better the approximation.

Figures 11 and 12 show the performance of IM-DA-Est and discrete cosine transform on
the X1 and X5 datasets. Both methods perform quite well. The good performance is due
to the regularity exhibited in the ancestor-descendant relationships for IM-MD-Est and the
smoothness of the coverage functions for discrete cosine transform. Indeed, there exist perfect
regularities between the ancestors and descendants in query 7, that is, the number of ancestor
nodes covering a descendant node is a constant. IM-DA-Est yields error-free estimation in
this situation. Discrete cosine transform also yields very accurate estimate, though not error
free.

Figures 13 and 14 show the performance on the Do and Dn datasets. Discrete cosine
transform yields below or near 10% errors for all queries and outperforms IM-DA-Est for
most of the queries.

5.3 Estimator Construction Time

Since IM-DA-Est applies random sampling directly to descendant sets, there is virtually no
set-up requirement.

As discussed earlier in Sect. 3, given the region coding domain size |Dom| and the number
of coefficients m in an estimator, cosine transform takes O(|Dom| ·m) to calculate the first m
coefficients. Haar wavelet transform takes O(|Dom|) to calculate all the |Dom| coefficients
and �(|Dom| · m) to identify the m most significant ones. However, in practice, since ele-
ments are sparsely distributed in the region coding domain, we can do much better. Assume
the element under consideration has ne entries in the XML document, cosine transform only
takes �(ne · m), where ne � |Dom|, to calculate the first m coefficients. Besides, the sparse
distribution of the element under study implies that the overwhelming majority of its wavelet
coefficients are 0’s. We thus only need to identify the m most significant coefficients among
the non-zero coefficients. Assume the number of non-zero wavelet coefficients is nnz , it takes
O(nnz · m), where nnz � |Dom|, to identify the m most significant ones. Finally, the time
complexity to calculate m atomic sketches is �(|Dom| · m). As there is no optimization
possible, sketch requires the longest construction time.

Tables 9, 10, and 11 show the construction time for the wavelet coefficients, cosine coeffi-
cients, and atomic sketches, respectively. The construction time is categorized by the number
of coefficients and dataset. It is the average time to construct the coefficients/atomic sketches
for each element. In other words, the time covers the construction of the coefficients/atomic
sketches required to approximate both the coverage and start-position functions of an element.

Table 9 shows that wavelet transform takes the least amount of construction time and
there is little time difference in constructing estimators with different numbers of coeffi-
cients for the same dataset, which is because all wavelet coefficients have to be computed
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Fig. 11 Performance on X1. a
Space limit:200 bytes, b Space
limit:400 bytes, c Space
limit:800 bytes, d Space
limit:1,600 bytes
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Fig. 12 Performance on X5. a
Space limit:200 bytes, b Space
limit:400 bytes, c Space
limit:800 bytes, d Space
limit:1,600 bytes
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Fig. 13 Performance on Do. a
Space limit:200 bytes, b Space
limit:400 bytes, c Space
limit:800 bytes, d Space
limit:1,600 bytes
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Fig. 14 Performance on Dn. a
Space limit:200 bytes, b Space
limit:400 bytes, c Space
limit:800 bytes, d Space
limit:1,600 bytes
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Table 9 Construction time for
wavelet coefficients (S)

Coefficients X1 X5 Do Dc

200 0.36 1.482 0.386 1.29

400 0.365 1.486 0.39 1.294

800 0.372 1.501 0.393 1.298

1,600 0.377 1.504 0.398 1.303

Table 10 Construction time for
cosine coefficients (S)

Coefficients X1 X5 Do Dc

200 0.337 1.675 1.674 4.961

400 0.644 3.23 3.261 9.66

800 1.265 6.338 6.414 18.458

1,600 2.505 12.546 12.759 37.743

Table 11 Construction time for
atomic sketches (S)

Coefficients X1 X5 Do Dc

200 54 231.2 95.47 225.8

400 103.8 452.4 177.94 438.6

800 212.45 912.8 356.88 873.2

1,600 424.7 1817.6 736.76 1760.4

no matter how many of them would be used. Table 10 shows that cosine transform gener-
ally takes much longer construction time than wavelet transform. The construction time for
cosine coefficients primarily relies on the number of element entries. For instance, although
dataset Dc is smaller than X5, it takes longer construction time as its elements on average
have larger number of entries. Table 11 shows that sketch takes the longest construction
time. The construction time for atomic sketches relies heavily on the region coding domain
size |Dom|.

It should be pointed out that the construction costs for these estimators are incurred only
once. All the three proposed methods can dynamically update their coefficients in the face
of data additions and deletions. Dynamic update for wavelet transform is discussed in [19].
For sketch, addition or deletion of an entry is handled by adding/subtracting its mapped
value from affected atomic sketches. In the case of cosine transform, its coefficients are com-
puted as the averages of the basis functions on the values. One can add/subtract the portion
contributed by the newly added/deleted entries easily [17].

5.4 Estimation time

All the three proposed methods perform simple mathematical calculations for structural join
size estimation. For discrete cosine transform and wavelet, the estimation is performed by
summing up the products of pairs of coefficients. For sketch, the estimate is derived by
selecting the median of the group averages of products of atomic sketch pairs.

Consider using 400 pairs of coefficients or atomic sketches (with s1 = s2 = 20) as an
example. To derive a join size estimate, it takes less than 80, 80 and 82µs for discrete cosine
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transform, wavelet transform, and sketch, respectively. All these three methods can estimate
XML structural join size quickly and have a complexity of O(m), where m is the number of
coefficients for discrete cosine transform and wavelet, or the number of atomic sketches for
sketch.

As for the IM-DA-Est method, it needs to probe an external index structure for each sample
to find out the number of covering ancestor nodes, which may require several disk acces-
ses[25]. Indeed, it may take, for example, O(logF N + R) disk accesses on an XR-tree in the
worst case [15], where N is the number of indexed nodes, F is the fanout of the XR-Tree and
R is the output size. The modern hard disk access time is about 4–14 ms. Therefore, even if
there is only one disk access for each estimation, IM-DA-Est is still significantly slower than
the other three methods. Our experiments show that the estimation time of IM-DA-Est varies
with the size of the ancestor node set. In general, it takes tens to hundreds of milliseconds to
derive an estimate from 100 sample nodes using an XR-tree. For instance, the open_auction
ancestor node set in X1 requires about 60 ms to derive the estimate using 100 samples. As
part of the query optimizer, the structural join size estimation is expected to be performed
quickly and frequently. The three proposed methods certainly demonstrate their superiority
in this regard.

In summary, the three proposed methods consume much less memory space and are much
faster than IM-DA-Est. As for the estimation accuracy, discrete cosine transform is slightly
better than or, at least comparable to, IM-DA-Est.

6 Conclusions

Well-known estimation techniques for relational equijoins, such as discrete cosine transform,
wavelet transform, and sketch, have been applied successfully to selectivity estimation for
relational data. These methods perform simple calculations and require little memory space.
They provide a quick and economical estimation approach. However, no existing models
make these techniques applicable to XML structural join size estimation.

In this paper,we propose an innovative relational model for XML structural join size esti-
mation. Our model captures the structural information of XML data by relations. It converts
structural joins, which are essentially complex θ -joins, to simple equijoins and makes those
well-known estimation techniques applicable to structural join size estimation.

Theoretical analyses and extensive experiments have been performed. The experimental
results show that, the three proposed methods consume much less memory space and are
much faster than IM-DA-Est [25]. As for the estimation accuracy, discrete cosine transform
is slightly better than or, at least comparable to, IM-DA-Est.
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