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Abstract A skyline query returns a set of candidate records that satisfy several preferences.
It is an operation commonly performed to aid decision making. Since executing a skyline
query is expensive and a query plan may combine skyline queries with other data opera-
tions such as join, it is important that the query optimizer can quickly yield an accurate
cardinality estimate for a skyline query. Log Sampling (LS) and Kernel-Based ( KB) sky-
line cardinality estimation are the two state-of-the-art skyline cardinality estimation methods.
LS is based on a hypothetical model A(log(n))B . Since this model is originally derived under
strong assumptions like data independence between dimensions, it does not apply well to
an arbitrary data set. Consequently, LS can yield large estimation errors. KB relies on the
integration of the estimated probability density function (PDF) to derive the scale factor �ds .
As the estimation of PDF and the ensuing integration both involve complex mathematical
calculations, KB is time consuming. In view of these problems, we propose an innovative
purely sampling-based (PS) method for skyline cardinality estimation. PS is non-parametric.
It does not assume any particular data distribution and is, thus, more robust than LS. PS does
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not require complex mathematical calculations. Therefore, it is much simpler to implement
and much faster to yield the estimates than KB. Extensive empirical studies show that for
a variety of real and synthetic data sets, PS outperforms LS in terms of estimation speed,
estimation accuracy, and estimation variability under the same space budget. PS outperforms
KB in terms of estimation speed and estimation variability under the same performance mark.

Keywords Skyline query · Cardinality estimation · Sampling

1 Introduction

Considering a multi-dimensional data space, a point p1 dominates another point p2 if p1
is better than p2 on at least one dimension and not worse than p2 on the other dimensions.
If we regard smaller values as better, point dominance can be formally defined as follows.
Given a d-dimensional data set ds, a point p1 ∈ ds dominates another point p2 ∈ ds iff
∃i , where 1 ≤ i ≤ d , such that p1i < p2i and ∀ j where 1 ≤ j ≤ d and j �= i , such that
p1 j ≤ p2 j . A skyline query on a data set is to find the set of points that are not dominated
by any others.

To perform a skyline query, the user specifies whether smaller or larger values are pre-
ferred for each attribute of interest. For instance, considering Table 1 that contains the hotel
information, suppose the two most important factors for the user to choose a hotel is the price
and the distance between the hotel and the conference venue, naturally, the user prefers the
price to be lower and the distance to be shorter. With these criteria, performing a skyline
query on Table 1 would return hotels h1, h2, h3, and h4. Notice that hotel h5 is eliminated
because it is dominated by at least one of the other hotels, for instance, hotel h1. As this
example demonstrates, a skyline query returns a set of candidates when multiple preferences
cannot be satisfied simultaneously by a single record. The decision maker can decide the
relative weight for each preference later and choose the best candidate accordingly.

The skyline problem was first studied in the discipline of computational geometry, where
it is known as the Maximal Vector Problem [4]. Later, Börzsönyi et al. [6] introduced the
skyline problem to the database community. Since then, it has sparked many researches. For
instance [2,20,27], to name a few. Evaluating a skyline query is expensive. Among the many
proposed evaluation algorithms [1,4–6,10,14,22,23], the Double Divide-and-Conquer algo-
rithm [22] has the lowest worst-case time complexity of O(n2 log(d − 2)), where n is the
data set size and d ≥ 2 the dimensionality. Moreover, practical applications usually combine
skyline queries with join operations. Therefore, it is essential that an accurate cardinality
estimate for a skyline query can be derived efficiently. The query optimizer will then be able
to use the estimates to choose the best execution plan.

Sampling has been applied extensively to cardinality estimations [8,11,16–19,24]. The
popularity of sampling benefits from at least the following four aspects. Firstly, sampling

Table 1 A skyline application HotelId Price($) Distance(mi)

h1 70 6

h2 85 4

h3 127 3

h4 60 7

h5 140 7
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evaluates only a fraction of the original data set. It is a cost-effective approach particularly
suitable for studying large databases. Secondly, compared with other well-known compres-
sion or approximation methods such as histogram [15,26], cosine transform [7], and wavelet
[12,25], sampling is the least affected by the increase of dimensionality known as the “curse
of dimensionality” [3]. It is, thus, a strong candidate to handle high-dimensional data. Thirdly,
sampling is a non-parametric approach. It assumes no particular distribution of the original
data set. Hence, it does not rely on the usual assumptions like uniformity and independence,
which do not hold true for many real-life data sets. Moreover, it avoids the non-trivial task of
a parametric method to model the data set. Lastly, but not leastly, sampling does not require
any special evaluation algorithms for cardinality estimation. In fact, the same evaluation
algorithm that produces the exact result for the whole data set can be used by sampling to
estimate the cardinality. This implies that any research advances on the evaluation algorithms
will directly benefit the sampling approach.

Despite the aforementioned advantages, applying sampling to skyline cardinality esti-
mation is non-trivial. The difficulty lies in the non-linear relationship between the skyline
cardinality of the sample and that of the whole data set. Log Sampling (LS) [9] and Kernel-
Based ( KB) skyline cardinality estimation [28] are the two state-of-the-art skyline cardinality
estimation methods. LS is an overall parametric approach. Sampling is used only to derive the
parameters. Like other parametric approaches, it relies on assumptions like independence.
When such assumptions do not hold, its accuracy suffers. KB integrates the estimated prob-
ability density function (PDF) to derive the scale factor �ds . As the estimation of PDF and
the ensuing integration both involve complex mathematical calculations, KB is complicated
and slow to yield estimates.

In view of these problems, we propose an innovative and purely sampling-based skyline
cardinality estimation approach (PS). PS carries all the advantages of a pure sampling
approach. For instance, it is non-parametric, meaning it does not require any particular data
distribution and is, thus, applicable to any data sets. In addition, PS is almost immune to the
“curse of dimensionality,” meaning it can handle high-dimensional data with ease. Further-
more, PS does not require any expensive mathematical calculations, so it is easy to implement
and quick to yield estimates. Extensive empirical studies show that for a variety of real and
synthetic data sets, PS outperforms LS in terms of estimation speed, estimation accuracy, and
estimation variability using the same sample size. PS outperforms KB in terms of estimation
speed and estimation variability under the same performance mark.

The rest of the paper is organized as follows. Section 2 reviews related research in
skyline query cardinality estimation. Section 3 discusses how to apply a purely sampling-
based approach (PS) to skyline cardinality estimation. Section 4 compares PS with LS and
KB. Detailed theoretical analyses and experimental results are presented. Finally, Sect. 5
concludes this paper.

2 Related work

Assuming that for each point, the value on one dimension is distributed independently of
the value on another dimension, and on each dimension, the values for each point in the
data set are distinct, Bentley et al. [4] derived an asymptotic bound for skyline cardinality
as O((ln(n))d−1), where n is the data set size and d the dimensionality. Godfrey et al. [13]
relaxed the distinctive value restriction by assuming that the majority of the points have
distinct values on any dimension, and the values of the points on any one dimension are
uniformly distributed. They derived the cardinality formula as (ln(n) + γ )d/d!.
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Chaudhuri et al. [9] relaxed the distinctive value restriction further to allow repeated values
on any dimensions. They derived a formula that works with both numerical and categorical
values. They also attempted to relax the independence assumption, so that other distributions
can be accommodated. By empirical studies, they observed that when the data distribution
does not have significant correlations/anti-correlations, the skyline cardinality follows the
model: A(log(n))B , where A and B are two constants.

Log Sampling (LS) is based on this hypothetical model. LS draws a small sample to
estimate the two parameters A and B, which are then used to estimate the skyline cardinality
of the whole data set. More specifically, it takes the following steps:

1. Draw a small sample from the data set using simple random sampling without replacement.
2. Split the sample into two parts , s1, s2, of different sizes, that is, |s1| �= |s2|.
3. Evaluate skyline queries on s1 and s2 to get their skyline cardinality, |Skys1

| and |Skys2
|,

respectively.
4. Solve A and B. According to the model: |Skys1

| = A(log(|s1|))B and |Skys2
| =

A(log(|s2|))B , Therefore, B = log(|Skys2
|)−log(|Skys1

|)
log(log(|s2|))−log(log(|s1|)) and A = |Skys1

|
(log(|s1|))B .

5. Estimate the skyline cardinality of the whole data set. |Skyds | = A(log(n))B

The major drawbacks of LS lie in the hypothetical model it is based on. Firstly, the model
is proposed according to observations, rather than rigorous mathematical deductions. There-
fore, it may not be accurate. Secondly, many data sets do not follow this model. Notable
examples include significantly correlated / anti-correlated data.

Kernel-Based skyline cardinality estimation ( KB) [28] uses kernels to estimate the proba-
bility density function (PDF) at an arbitrary position in the data space from a random sample.
Given a random sample s and an arbitrary position q , the PDF at q can be estimated by the
formula:

PDF(q) =
∑

si ∈s

1

|s|hd
√

det
(∑) K

(
dist∑(q, si )

h

)
(1)

where h is the kernel bandwidth,
∑

(a d × d matrix) is the kernel orientation, det
(∑)

is
the determinant of

∑
, dist∑(q, si ) is the Mahalanobis distance between q and the sample

point si , and K is the kernel function, which in practice is usually implemented as Gaussian
Kernel [21], as defined in the equation:

K (x) = 1√
2π

e− x2
2

KB estimates the skyline cardinality generally as follows:

1. Draw a sample s from the data set ds using simple random sampling without replacement
2. Evaluate skyline query on the sample s to get local skyline points skys
3. For each local skyline point p ∈ skys , calculate the probability that a random point in

the data set falls in its inverse dominance region (IDR). This probability, denoted as �p ,
can be calculated by the integration of PDF over the whole region of IDR.

�p =
∫

IDR(p)

PDF(q)dq (2)

4. Estimate the skyline cardinality of the data set using the formula:

|Skyds | = |ds| × 1

|s|
∑

p∈skys

(1 − �p)
|ds|−|s|
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Since KB uses complex mathematical calculations, for instance, Eqs. 1 and 2, it is com-
paratively complex and slow. The goal of query optimization is to quickly identify an efficient
query plan. With a time-consuming estimation method, query optimization would lose much
of its merit.

3 Applying sampling to skyline cardinality estimation

3.1 A naive sampling approach for skyline cardinality estimation

We can easily propose a naive sampling approach to estimate skyline cardinality. The steps
are as follows:

1. Draw a small sample using simple random sampling without replacement.
2. Evaluate skyline query on the sample to find its skyline cardinality.
3. Scale the sample’s skyline cardinality to estimate the data set’s skyline cardinality.

Unfortunately, as noted by Chaudhuri et al. [9], this naive sampling approach yields erro-
neous estimates. According to them, “this does not work for the reason that the size of the
Skyline is not a linear function of the data size”.

For the sake of exposition, we define the symbols in Table 2.
Moreover, without loss of generality, we assume that smaller values are preferred.
The following example illustrates this unique feature of skyline query.

Table 2 Symbols Symbol Meaning

ds The data set

n The data set size

Skyds The skyline point set of the data set

s The sample

m The sample size

skys The skyline point set of the sample

|Skyds | Cardinality of the data set’s skyline

˜|Skyds | Cardinality estimate of the data set’s skyline

|skys | Cardinality of the sample’s skyline

Table 3 Data set characteristics Data set Size Dimensionality

Household 100,000 6

Corel 60,000 9

NBA 300,000 16

Spatial skyline 500,000 5

IND 300,000 6

COR 300,000 6

ANT 300,000 6
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Fig. 1 Naive sampling

Considering a two-dimensional data set ds that has 4 points: A(4, 1), B(1, 4), C(2, 4),
and D(4, 2), the points are plotted in Fig. 1. Clearly, the data set’s skyline point set Skyds =
{A(4, 1), B(1, 4)}. Assume we apply the naive sampling approach to derive ˜|Skyds |.
1. We sample two points from ds. Suppose the points drawn are A(4, 1) and C(2, 4), namely

s = {A(4, 1), C(2, 4)} and m = 2.
2. Derive the sample’s skyline point set skys . Because neither point A nor C is dominated

by another point, therefore, skys = s = {A(4, 1), C(2, 4)} and |skys | = 2.
3. Estimate the cardinality of Skyds .

˜|Skyds | = |skys |
m

× n = 2

2
× 4 = 4

As the example demonstrates, point C is a sample’s skyline point, but not a data set’s
skyline point. Scaling the cardinality of the sample’s skyline point set will overestimate the
data set’s skyline cardinality.

3.2 A purely sampling-based approach for skyline cardinality estimation

The naive sampling approach produces erroneous estimates, because skyline points local to
the sample are not necessarily a subset of the data set’s global skyline point set. Skyline
cardinality depends on not only data size but also data scope. Skyline cardinality of the local
sample and that of the global data set belong to different scopes. It is technically incorrect to
scale the former to estimate the latter.

Based on the above analyses, we realize that the key to devise a purely sampling-based
approach is to break the scope boundary. That is to say, the skyline cardinality to be scaled
must be in the same data scope as that to be estimated.

Let us define another symbol Skys to denote the global skyline point set contained in the
sample. Please note that although looks similar, the symbol skys that we defined earlier has
a totally different meaning. It denotes the local skyline point set of the sample.

We follow three steps to estimate the skyline cardinality:

1. Draw a sample s of size m using simple random sampling without replacement.
2. Determine the global skyline point set contained in the sample Skys .
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3. Scale |Skys | to estimate the skyline cardinality Skyds .

˜|Skyds | = |Skys |
m

× n

Theorem 1 ˜|Skyds | is an unbiased estimator of the global skyline point cardinality.

Proof (sketch). Since the points are sampled randomly, each point is equally likely to be
selected. Therefore, when we sample m points, the expected number of global skyline points
contained in the sample should be |Skyds |

n × m, that is: E(|Skys |) = |Skyds |
n × m. Hence,

|Skyds | = E(|Skys |)
m ×n. Because ˜|Skyds | = |Skys |

m ×n, therefore E( ˜|Skyds |) = E(|Skys |)
m ×n =

|Skyds |. 	

Example Considering a two-dimensional data set ds that has 4 points: A(4, 1), B(1, 4),

C(2, 4), and D(4, 2), the points are plotted in Fig. 1. Clearly, the data set’s skyline point set
Skyds = {A(4, 1), B(1, 4)}.
1. We sample two points from ds. Suppose the points drawn are A(4, 1) and C(2, 4),

namely s = {A(4, 1), C(2, 4)} and m = 2.
2. Derive the set of global skyline points contained in the sample Skys . Because point C is

dominated by another point B, therefore, it is not a global skyline point. Skys = {A(4, 1)}
and |Skys | = 1.

3. Estimate the cardinality of Skyds .

˜|Skyds | = |Skys |
m

× n = 1

2
× 4 = 2

It is straightforward to implement steps 1 and 3; However, step 2 requires further
investigation.

3.2.1 Determining the global skyline points in the sample Skys

To determine the global skyline points in the sample s, we can simply compare each point
p ∈ s with the rest of the n − 1 points in the data set ds. If p is dominated by at least one of
the n − 1 points, then p is not a global skyline point. If none of the n − 1 points dominates
p, then p is a global skyline point.

However, this simple approach, let’s call it Skys1, is time consuming. Firstly, the com-
parison itself takes time. In addition, Skys1 needs to access the whole data set. This implies
that very likely it has to access the secondary storage device (e.g., hard disk), because a large
data set cannot fit in the memory, thus further slow down the estimation. The whole point of
query optimization is to quickly identify an efficient query plan. If the estimation time itself
is comparable to the query execution time, we lose the benefit of using query optimization
at all.

Alternatively, Skys can be determined by performing the following steps.

1. Determine the local skyline point set of the sample skys .
2. Determine the local skyline point set of the remaining data set ds − s. Let us call it

skyds−s .
3. For each point p in skys , check whether it is dominated by at least one point in skyds−s .

p is a global skyline point if no points in skyds−s dominate it.

The correctness of this approach is based on the following two theorems.
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Theorem 2 The local skyline point set of the sample skys is a superset of the global skyline
points contained in the sample Skys . In other words, skys ⊃ Skys .

Proof Theorem 2 can be proved by contradiction. Suppose there exists a point p in the sample
s, such that p ∈ Skys but p /∈ skys . p ∈ Skys means p is not dominated by any point in the
entire data set ds, while p /∈ skys means p is dominated by at least one point in the sample s
of the data set. This is a contradiction. Therefore, p does not exist. In other words, if a point
in the sample is a global skyline point, it must also be a local skyline point of the sample.

	

Theorem 3 Given a point p in skys . If no points in skyds−s dominate it, then it is a global
skyline point.

Proof Theorem 3 can also be proved by contradiction. Suppose there exists a point p ∈ skys
that is not dominated by any points in Skyds−s , but it is not a global skyline point. p is not
a global skyline point implies that it is dominated by at least one point in the data set. The
point that dominates p, let us call it pd , must come from one of the two sources, the sample
or the rest of the data set. Case 1: pd comes from the sample s. pd coming from s means
p is dominated by another point in the sample, therefore p can not be a local skyline point.
This contradicts the condition that p ∈ skys . Case 2: pd comes from the rest of the data set.
pd coming from ds − s means p is dominated by a point in ds − s. If pd is in skyds−s , this
contradicts the given condition that no point in skyds−s dominates p. If pd is not in skyds−s ,
there must exist another point in skyds−s that dominated pd and in turn also dominates p.
This also contradicts the condition that no point in skyds−s dominated p. Combining these
cases, the assumption cannot be true. 	

Example Considering a two-dimensional data set ds that has 4 points: A(4, 1), B(1, 4),

C(2, 4), and D(4, 2), the points are plotted in Fig. 1. Clearly, the data set’s skyline point set
Skyds = {A(4, 1), B(1, 4)}.
1. We sample two points from ds. Suppose the points drawn are A(4, 1) and C(2, 4),

namely s = {A(4, 1), C(2, 4)} and m = 2. Since A and C do not dominate each other,
skys = s = {A(4, 1), C(2, 4)}.

2. The rest of the points are in ds − s. ds − s = {B(1, 4), D(4, 2)}. Similarly, skyds−s =
ds − s = {B(1, 4), D(4, 2)}.

3. Comparing each point in skys with the points in skyds−s , it is found that point C is dom-
inated by point B. Therefore, the global skyline points in the sample Skys = {A(4, 1)}.

Although technically correct, this approach, let us call it Skys2, is still not efficient. How-
ever, Skys2 does have one advantage. It divides the data set into two independent parts, s and
ds − s, which opens the door to devise a more efficient algorithm. More specifically, step 1
focuses exclusively on the sample s. Since s is usually small, its associated time complexity
is acceptable. Step 2 focuses exclusively on the remaining data set ds − s. It contributes
the lion’s share to the overall time complexity. The structure of Skys2 makes it possible to
improve step 2, while leaving the other two steps intact.

As we are estimating skyline cardinality, we do not need to derive the actual set of skyds−s .
It is sufficient if we can find an alternative set that is quick to derive, small to store, and approx-
imates skyds−s well. skyds−s contains the local skyline points of ds − s. These points are
not dominated by any other points in ds − s. We argue that within ds − s, a set of points
that have a good chance to dominate others can serve as a good approximation of skyds−s .
The rationale is that because the set ds − s is finite, given a point p ∈ ds − s, p has a good
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chance to dominate any other points, which means p has a good chance to be dominated by
no other points. Therefore, p is very likely a local skyline point.

According to the definition of point dominance, given a d-dimensional data set ds, a point
p1 ∈ ds dominates another point p2 ∈ ds iff ∃i , where 1 ≤ i ≤ d , such that p1i < p2i and
∀ j where 1 ≤ j ≤ d and j �= i , such that p1 j ≤ p2 j . If we sum up the d inequalities, we
have

∑d
m=1 p1m <

∑d
m=1 p2m . In other words, if p1 dominates p2, then the sum of p1’s

attribute values is smaller than the sum of p2’s attribute values. Therefore, to approximate
skyds−s , we can use a set of points whose sums of attribute values are the top k smallest.
The value of k depends on the space budget and performance considerations. Section 4 will
discuss this issue in detail.

It should be pointed out that the attribute value on each dimension is expected to play
an equally important role in deciding point dominance. It is very likely that the domain of
each dimension is different, which will cause a larger domain to have a larger weight in
deciding point dominance. To prevent this problem, we need to normalize each dimension
before summing up the attribute values. We opt to normalize the domain of each dimension
to a pre-determined domain [0, 1]. Let X be the attribute of a given dimension, max X and
minX the maximum and minimum value of X , respectively. Then, each value x ∈ X is
normalized as follows:

xz = x − minX

maxX − minX

where xz denotes the normalized value of x . For example, the set of x values, {0, 1, 2, 3, 4},
is normalized to {0, 1/4, 1/2, 3/4, 1}.

4 Experimental results

This section presents the experimental results of our purely sampling-based method (PS) on
both synthetic and real-life data sets. We compare its performance with that of LS [9] and
KB [28].

4.1 Experimental settings

Techniques All the three methods were implemented in Visual C++ 6.0. Zhang [28] kindly
provided the source codes of LS and KB. He also provided the real-life data sets. The exper-
iments were conducted on a dedicated computer with a 2.4 GHz CPU and 768 MB RAM.

Data sets Four real-life data sets, Household, Corel, NBA, and Spatial skyline were
selected for the experiments. Household is available at http://www.ipums.org. Each tuple has
6 attributes that record the percentage each American family spend on gas, electricity, water,
heating, insurance, and property tax. Corel is available at kdd.ics.uci.edu. Each tuple has 9
attributes that record the mean, standard deviation, and skewness of the H, S, and V values
of an image pixel. NBA is available at http://www.basketballreference.com. Each tuple has
16 attributes that record each player’s statistics such as number of games played, minutes
played, etc. Spatial skyline is available at http://www.rtreeportal.org. Each tuple records the
2D co-ordinates of a place in Los Angles. Zhang et al. [28] used a new version of this data-
base. Each tuple in the new version has 5 attributes, which were randomly chosen from the
original data set.

In addition, three synthetic data sets, which have independent (IND), correlated (COR),
and anti-correlated (ANT) attributes, respectively, were tested in the experiments. These syn-
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thetic data sets are generated by the data set generator based on [6]. The generator is available
at pgfoundry.org. Each tuple in these synthetic data sets has 6 attributes.

Table 3 summarizes the major characteristics of the tested data sets.
Parameter configurations The LS method splits a random sample s into two parts s1 and

s2. There are no guidelines regarding the sizes of s1 and s2. However, since the formula that
estimates B is a fraction,

B = log(|Skys2
|) − log(|Skys1

|)
log(log(|s2|)) − log(log(|s1|))

the denominator cannot be zero. Therefore, the sizes of s1 and s2 cannot be the same. Besides
this restriction, the choices of |s1| and |s2| also affect the time complexity of LS, although
not significantly. Let the space budget be b. In our experiments, we set |s1| = 2|s2| and
|s1| + |s2| = b.

KB also draws two samples s1 and s2 to calculate the local skyline points and estimate
the PDF of the data set. Zhang’s implementation has |s2| = 2|s1| and |s1| + |s2| = b.

For PS, we have one random sample s1 from the data set ds, k points that have the top
k smallest sums of attribute values in ds − s1, and another random sample s2 from ds − s1.
The top k points and s2 together approximate the local skyline points in ds − s1. In our
experiments, we set |s1| = 2|s2|, k = |s2|, and |s1| + k + |s2| = b.

Error metric The error metric we used is the absolute value of the relative error, which is
defined as RE = 100∗|t −e|/t , where t and e are the true and estimated skyline cardinalities,
respectively.

Reported values The reported estimation speed and estimation accuracy were the averages
and medians of every 10 runs, respectively. The reported standard deviations were derived
from every 10 runs.

4.2 Comparisons between LS and PS

We first show the comparisons between LS and PS. Since these two methods have compa-
rable estimation speed, we compare them with the same space budget. More specifically,
each data set is tested under three space budgets, namely 5, 10, and 15% of the data set size.
Under each space budget, the two methods were compared in estimation speed, estimation
accuracy, and estimation variability.

4.2.1 Estimation speed

For both LS and PS, local skyline query evaluations and checking point dominance take the
lion’s share of the total cost. For simplicity’s sake, we assume a straightforward algorithm is
used to determine whether a point p is dominated by any point in a given data set ds. The
algorithm is implemented as a function check Dominance(), whose pseudo-code is shown in
Fig. 2. The function returns true if p is not dominated by any point in ds, and false otherwise.

For LS, finding the local skyline points for s1 has time complexity O
(

b2

9 d
)

, where b

is the space budget and d the dimensionality. Finding the local skyline points for s2 takes

O
(

4b2

9 d
)

. Adding them up, the time complexity of LS is roughly O
(

5b2

9 d
)

.

For PS, finding the local skyline points for s1 takes O
(

b2

4 d
)

. Checking if each point in

the local skyline point set of s1 is dominated by any points in the top k points or s2 takes

O
(

b2

4 d
)

. It should be noted that since the top-k points can be pre-computed, the processing
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Fig. 2 Algorithm checkDominance

time is not taken into consideration. Adding them up, the time complexity of PS is roughly

O
(

b2

2 d
)

. Therefore, PS is in general slightly faster than LS.

Table 4 shows the estimation speed on the chosen data sets. The estimation speed is mea-
sured in seconds. The experimental data show that the estimation time for both LS and PS is
only a small fraction of the time to actually calculate the skyline cardinality. A case in point
is the Corel data set; even with the largest 15% space budget, the estimation time is only
about 3% of the time to calculate the actual skyline cardinality. In fact, in most cases, the 5%
space budget is enough to derive a good estimate, as shown in the next section estimation
accuracy. This clearly shows the benefits of efficient skyline cardinality estimation methods.

In addition, Table 4 shows that the estimation speed is not only associated with the data set
size and dimensionality but It also largely depends on the data set distribution. For instance,
although the data set COR has the same size and dimensionality as IND and ANT, it is much
faster to execute a skyline query on COR.

Finally, the experimental data confirm that given the same sample size, PS is slightly faster
than LS in most cases.

4.2.2 Estimation accuracy

We show both the cardinality estimates and estimation errors to report estimation accuracy.
The error metric we used is the absolute value of the relative error, which is defined as
RE = 100 ∗ |t − e|/t , where t and e are the true and estimated skyline cardinalities, respec-
tively. Clearly, the true skyline cardinality, which resides in the denominator, greatly affects
the estimator error. For instance, a small true skyline cardinality will magnify the differ-
ence between the true and estimated skyline cardinalities. Therefore, the original cardinality
estimates are also presented.

Real-life data sets A real-life data set usually consists of data that have intricate
correlations. It is difficult to accurately capture its distribution. Consequently, using a sim-
plified data model A(log(n))B to summarize a real-life data set will generally result in large
estimation errors. In contrast, PS is a non-parametric method. It does not rely on any assump-
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Table 4 Estimation speed Datasets Techniques 5% 10% 15%

Household LS 0.7 3 6.1

PS 0.6 2.3 4.8

Actual 85

Corel LS 1.2 6.9 16.4

PS 1 6 14.6

Actual 556

NBA LS 16.4 54.8 109.5

PS 11.9 36.9 78.3

Actual 2,786

Spatial LS 63.1 250.4 560.2

PS 227.9 890.4 2,058.1

Actual 10,228

IND LS 9.1 27.6 50.7

PS 6.2 19.4 36.4

Actual 392

COR LS 0.4 1.2 1.8

PS 0.9 5.8 5.3

Actual 9

ANT LS 37.6 134.5 277.9

PS 28.9 98 199

Actual 3,436

Fig. 3 Estimation errors of
household

tions of data distribution and is, therefore, applicable to any data sets. Figures 3, 4, 5, and 6
show that PS outperforms LS in terms of estimation accuracy by wide margins. Particularly,
almost all of the estimation errors of PS are below 10%, even under the 5% space budget.

Interestingly, Figs. 7, 8, 9, and 10 show that LS tend to underestimate skyline cardinality,
while PS tend to overestimate skyline cardinality.

Synthetic datasets Figures 11 and 12 show that both LS and PS perform well on IND.
Under 10% space budget and above, the estimation errors of both methods are well below
10%. Datasets with independent distributions fit well in the A(log(n))B model, thus the
estimates of LS are quite accurate.

Figures 13 and 14 show that the true skyline cardinality of ANT is large, while that of
COR is small. This is because we prefer small values on all dimensions. For COR, a point
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Fig. 4 Estimation errors of corel

Fig. 5 Estimation errors of NBA

Fig. 6 Estimation errors of
spatial skyline

Fig. 7 Estimates of household

that has a small value on a dimension i where 1 ≤ i ≤ d tends to also have small values
on other dimensions. Therefore, COR has a small set of skyline points. For similar reasons,
ANT has a large set of skyline points.

Figures 15 and 16 show that the estimation errors of PS on COR and ANT are comparable.
Although PS performs slightly better on ANT than on COR, the performance edge is not
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Fig. 8 Estimates of corel

Fig. 9 Estimates of NBA

Fig. 10 Estimates of spatial
skyline

Fig. 11 Estimates of IND
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Fig. 12 Estimation errors of IND

Fig. 13 Estimates of COR

Fig. 14 Estimates of ANT

Fig. 15 Estimation errors of
COR

significant. As far as LS is concerned, it performs much better on ANT, which suggests
A(log(n))B models ANT much better than it models COR.

To summarize, PS outperforms LS for all the three synthetic data sets. When the space
budget is around 10%, the estimation errors of PS are under 10%.
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Fig. 16 Estimation errors of
ANT

Table 5 Standard deviation of
the estimation

Datasets Techniques 5% 10% 15%

Household LS 1,418.0 871.7 510.4

PS 252.4 206.3 190.5

Corel LS 619.48 594.0 368.8

PS 453.9 276.6 201.2

NBA LS 5,879.9 5,759.0 3,035.9

PS 508.1 405.0 294.1

Spatial LS 4,866.1 8,505.1 5,175.4

PS 1,337.8 1,321.0 626.1

IND LS 1,251.3 834.2 699.8

PS 382.1 259.2 197.5

COR LS 424.4 313.2 271.3

PS 40.2 32.8 28.3

ANT LS 4,122.5 2,913.7 2,715.4

PS 1,420.7 917.9 826.7

4.2.3 Estimation variability

Table 5 shows the standard deviations of the estimations for the chosen data sets. The values
were derived from 10 runs. Generally speaking, the standard deviation for both methods
are small in comparison with the actual skyline cardinality. Still, PS has smaller standard
deviations than LS. LS’s standard deviations are on average 3 times as large as those of PS.
This demonstrates that PS is a more robust method.

4.3 Comparisons between KB and PS

AS preliminary experiments show that given the same sample size, KB is significantly slower
than PS, but KB can yield estimates with good accuracy using small sample size, we decided
not to compare the performance of KB and PS based on the same sample size. Instead,
we compared these two methods based on the same desirable estimation accuracy. More
specifically, for each data set, we require the estimation error to be 15% or less. Under this
condition, we compared the sample size, estimation speed, and estimation variability of the
two methods.

The experiments were conducted by gradually increasing the sample size in each iter-
ation. When the estimation method achieved 85% or better estimation accuracy for three
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Table 6 Comparisons between
KB and PS

Data set Technique Sample Estimation Standard
size speed deviation

Household KB 600 1.7 1,378.6

PS 2,200 0.1 1,126.7

Corel KB 300 1.4 1,971.9

PS 460 0 110.0

NBA KB 2,400 58.9 1,094.0

PS 2,000 0.3 619.7

Spatial KB 390 1.9 27,616.2

PS 350 0 3,532.1

IND KB 300 0.6 1,760.4

PS 1,750 0.1 681.9

COR KB 62,700 70.9 47.6

PS 25,000 3.3 31.7

ANT KB 2,000 65.8 4,931.6

PS 16,000 30.5 1,361.0

consecutive iterations, the experiment stopped and the experimental data for the first of the
three consecutive iterations were reported. Again, each iteration consisted of 10 runs.

As Table 6 shows, generally, both KB and PS are able to yield accurate estimates using
small samples. Except for the COR data set, both methods achieved 85% or better estimation
accuracy using less than 5% of the original data. In the majority of the cases, KB used smaller
samples than PS to reach the 85% performance mark. However, for the NBA and COR data
sets, KB had to use larger samples. The NBA data set has the largest dimensionality (16).
Since KB needs to integrate the PDF over the IDRs, the higher the dimensions, the more
samples are needed to achieve a desirable estimation accuracy. This is a classical form of
“curse of dimensionality” [3]. The COR data set has a very low ratio of skyline points. Out of
the total 300, 000 points, there are only 62 skyline points. It requires relatively large samples
to yield good estimates.

As far as estimation speed is concerned, KB was shown to be a much slower method than
PS. Under the same 85% performance mark, PS took much less time, sometimes several
orders of magnitude less time, than KB to yield the estimates for all the data sets. Consid-
ering that KB generally used smaller samples, the estimation speed gap between these two
methods can be even wider.

In the case of estimation variability, PS’s standard deviations of the estimates were smaller
than KB’s for all the data sets. In some cases, such as the Corel and Spatial data sets, the dif-
ferences were substantial. Although increasing the sample size can help reduce the standard
deviation, doing so will further slow down the estimation.

Under the same performance mark, in comparison with KB, PS was able to yield esti-
mates with much higher speed and smaller variability. Although generally it required larger
samples, we argue PS is still a better estimation method for the following reasons. Firstly, the
sample sizes of PS were well below 5% of the original data set sizes in most cases. A modern
computer can easily provide enough memory to store theses samples. Secondly, even with
relatively larger samples size, PS outperformed KB in terms of estimation speed by wide
margins. Thirdly, PS is more robust because it has much smaller estimation variability than
KB. Finally, KB does not work well with high-dimensional data because of “curse of dimen-
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sionality”. It is not an effective method for data sets with small ratios of skyline points may
be because it requires larger sample sizes, which results in even slower estimation speed. In
contrast, PS is a clear winner in these two cases.

4.4 Summary

The experimental results show that using the same sample size, PS outperformed LS in terms
of estimation speed, estimation accuracy, and estimation variability. Under the same per-
formance mark, namely 85%, PS generally required larger sample size than KB. However,
the sample size for KB was still only a small fraction of the original data set size. In most
cases, the sampling ratio was well below 5%. Furthermore, PS outperformed KB in terms of
estimation speed and estimation variability by wide margins. Lastly, PS was a clear winner
for high-dimensional data and data sets with small skyline point ratios.

5 Conclusions

Generally, a real-life data set contains intricate correlations among attribute values as well as
points. Given this complexity, it is difficult, if not impossible, to model the skyline cardinality
of an arbitrary data set. The state-of-the-art skyline cardinality estimation method Log Sam-
pling (LS) is based on a hypothetical model A(log(n))B . This model is derived under strong
assumptions like data independence between dimensions. Since a data set usually does not
satisfy these assumptions, the estimation accuracy of LS suffers.

Kernel-Based ( KB) skyline cardinality estimation is another state-of-the-art method. KB
involves complex mathematical calculations to estimate the PDF of the data set and the
scaling factor. It is slow to yield estimates. Because KB needs to integrate PDF over IDRs,
which are essentially spatial regions, it suffers from “curse of dimensionality”. KB has to
use comparatively large samples for data sets with small skyline point ratios, which further
slows down it’s estimation speed.

We propose a non-parametric purely sampling-based (PS) method for skyline cardinality
estimation. PS does not assume any particular data distribution. It is, thus, more robust and
applicable to any data sets. Extensive experiments confirm that PS outperforms LS in estima-
tion speed, estimation accuracy, and estimation variability using the same sample size. PS does
not require complex mathematical calculations. It is, thus, significantly faster and simpler
than KB. Experimental results demonstrate that given the same performance mark, although
the sample size of PS was generally slightly larger than that of KB, its overall sampling
ratio was still small—well below 5% in most cases. On the other hand, PS outperformed
KB in terms of estimation speed and estimation variability by wide margins. In addition,
PS is a clear winner for high-dimensional data sets and data sets with small skyline point
ratios.
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