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how the result is obtained. How to e�ciently processsuch a global query is the task of global query opti-mization.There are a number of new challenges for queryoptimization in an MDBS, caused primarily by localautonomy. Among these challenges, a crucial one isthat local information needed for global query opti-mization, such as local cost formulas (models), typi-cally are not available at the global level. To performglobal query optimization, methods to derive approx-imate cost models for an autonomous local DBS arerequired.This issue has attracted a number of researchersrecently. In [3], Du et al. proposed a calibrationmethod to deduce necessary local cost parameters.The idea is to construct a special local synthetic cali-brating database and then run a set of special queriesagainst this database. Cost metrics for the queries areused to deduce the coe�cients in the cost formulasfor the access methods supported by the underlyinglocal database system. In [14], Zhu and Larson pre-sented a query sampling method to tackle this issue.The idea of this method will be reviewed below. In[15, 16], Zhu and Larson proposed a fuzzy optimiza-tion method to solve the problem. The idea is to builda fuzzy cost model based on experts' knowledge, ex-perience and guesses about local DBSs and performquery optimization based on the fuzzy cost model. In[6, 13], Lu and Zhu discussed issues for employing dy-namic (adaptive) query optimization techniques basedon information available at run time in an MDBS.The idea of the query sampling method that weproposed in [14] is as follows. The �rst step is togroup all possible queries for a local database1 intomore homogeneous classes so that the costs of queriesin each class can be estimated by the same formula.This can be done by classifying queries according totheir potential access methods. For example, unary1We assume that each local DBS has an MDBS agent thatprovides a uniform relational interface to the MDBS globalserver. Hence all local DBSs can be viewed as relational ones.



queries whose quali�cations have at least one conjunc-tive term2 R:a = C, where R:a is an indexed columnin table R, can be put in one class because they areusually executed by using an index scan in a local DBSand, therefore, follow the same performance pattern.Several such unary and join query3 classes can be ob-tained. The second step of the query sampling methodis to draw a sample of queries from each query class.A mixture of judgment sampling and simple randomsampling is adopted in this step. The sample queriesare then performed against the relevant local databaseand their costs are recorded. The costs are used to de-rive a cost formula for the queries in the query classby multiple regression. The coe�cients of the costformulas for the local database system are kept in themultidatabase catalog and retrieved during query op-timization. To estimate the cost of a query, the queryclass to which the query belongs needs to be identi�ed�rst, and the corresponding cost formula is then usedto give an estimate for the cost of the query.Although a number of sampling techniqueshave been applied to query optimization in theliterature[5; 8; 11], all of them perform data sampling(i.e., sampling data from databases) instead of querysampling (i.e., sampling queries from a query class).The query sampling method overcomes several short-comings of Du et al.'s calibration method[14].However, the statistical procedure for deriving costestimation formulas in [14] was oversimpli�ed. In thispaper, an improved statistical procedure is presented.The formulas are automatically determined based onobserved sampling costs. More explanatory variablesin a formula are considered. A series of measures forensuring useful formulas are adopted.The rest of this paper is organized as follows. Sec-tion 2 reviews the general linear regression model andthe related terminology. Section 3 identi�es potentialexplanatory variables for a regression cost model. Sec-tion 4 discusses how to determine a cost model for aquery class. Section 5 discusses the measures used toensure that the developed cost models are useful. Sec-tion 6 presents some experimental results. Section 7summarizes the conclusions.2We assume that the quali�cation has been converted to con-junctive normal form.3A select that may or may not be followed by a project iscalled a unary query. A (2-way) join that may or may not befollowed by a project is called a join query. Only unary and joinqueries are considered in this paper since most common queriescan be expressed by a sequence of such queries.

2 Multiple Linear Regression ModelMultiple regression allows us to establish a statis-tical relationship between the costs of queries and therelevant contributing (explanatory) variables. Such astatistical relationship can be used as a cost estimationformula for queries in a query class.Let X1; X2; � � � ; Xk be k explanatory variables.They do not have to represent di�erent independentvariables. It is allowed, for example, that X3 =X1 �X2. The response (dependent) variable Y tendsto vary in a systematic way with the explanatory vari-ables X 's. If the systematic way is a statistical linearrelationship between Y and X 's, which we assume istrue in our application, a multiple linear regressionmodel is de�ned asYi = B0 +B1Xi;1 +B2Xi;2 + � � �+BkXi;k + "i;(i = 1; � � � ; n)where Xi;j (j = 1; 2; � � � ; k) denotes the value of thej-th explanatory variable Xj in the i-th trial; Yi isthe i-th dependent random variable corresponding toXi;1; Xi;2; � � � ; Xi;k; "i denotes the random errorterm; B0; B1; � � � ; Bk are regression coe�cients. Thefollowing assumptions are usually made in regressionanalysis:0. B0; B1; � � � ; Bk are unknown constants, andXi;1; Xi;2; � � � ; Xi;k are known values.1. Any two "i1 and "i2 (i1 6= i2) are uncorrelated.2. The expected value of every "i is 0, i.e., E("i) = 0,and the variance of "i is a constant �2, for all i.3. Every "i is normally distributed.For n sample observations, we can get the valuesof Yi; Xi;1; Xi;2; � � � ; Xi;k (i = 1; � � � ; n). Applyingthe method of least squares, we can �nd the valuesbB0; bB1; � � � ; bBk for B0; B1; � � � ; Bk that minimizeLS = nXi=1 [Yi � (B0 +B1Xi;1 +B2Xi;2+ � � �+BkXi;k)]2 = nXi=1 "2i :The equationbY = bB0 + bB1X1 + bB2X2 + � � �+ bBkXk (1)is called a �tted regression equation. For a given set ofvalues ofX 's, (1) gives a �tted value bY for the response221



variable Y . If we use a �tted regression equation as anestimation formula for Y , a �tted value is an estimatedvalue for Y corresponding to the given X 's.To evaluate the goodness of estimates obtained byusing the developed regression model, the variance �2of the error terms is usually estimated. A point esti-mate of �2 is given by the following formula:s2 = SSE=[n� (k + 1)]where SSE = Pni=1(Yi � bYi)2 = Pni=1 e2i ; Yi is anobserved value; bYi is the corresponding �tted value;and ei = Yi� bYi. The square root of s2, i.e., s, is calledthe standard error of estimation. It is an indicationof the accuracy of estimation. The smaller s is, thebetter the estimation formula.Using s, the i-th standardized residual is de�ned asfollows: e�i = [ei � nXi=1 ei=n]=s :A plot of (standardized) residuals against the �ttedvalues or the values of an explanatory variable is calleda residual plot.In addition to s, another descriptive measure usedto judge the goodness of a developed model is the coef-�cient of multiple determination R2, which is de�nedas: R2 = 1� SSE=SSTwhere SST =Pni=1[Yi�(Pnj=1 Yj)=n]2 : R2 (2 [0; 1])is the proportion of variability in the response variableY explained by the explanatory variables X 's. Thelarger R2 is, the better the estimation formula.The standard error of estimation measures the ab-solute accuracy of estimation, while the coe�cient ofmultiple determination measures the relative strengthof the linear relationship between the response variableY and the explanatory variables X 's. A low standarderror of estimation s and a high coe�cient of multipledetermination R2 are evidence of a good regressionmodel.3 Explanatory VariablesIn our application, the response variable Y repre-sents query cost, while the explanatory variables X 'srepresent the factors that a�ect query cost. It is notdi�cult to see that the following types of factors usu-ally a�ect the cost of a query:1. The cardinality of an operand table. The higherthe cardinality of an operand table is, the higherthe query (execution) cost. This is because the

number of I/O's required to scan the operand ta-ble or its index(es) usually increases with the car-dinality of the table.2. The cardinality of the result table. A large re-sult table implies that many tuples need to beprocessed, bu�ered, stored and transferred dur-ing query processing. Hence, the larger the resulttable is, the higher the corresponding query cost.Note that the cardinality of the result table isdetermined by the selectivity of the query. Thisfactor can hence be considered as the same as theselectivity of a query.3. The size of an intermediate result. For a joinquery, if its quali�cation contains one or moreconjunctive terms that refer to only one ofits operand tables, called separable conjunctiveterms, they can be used to reduce the relevantoperand table before further processing is per-formed. The smaller the size of such an inter-mediate table is, the more e�cient the query pro-cessing would be. For a unary query, if it canbe executed by an index scan method, the queryprocessing can be viewed as having two stages:the �rst stage is to retrieve the tuples via anindex(es), the second stage is to check the re-trieved tuples against the remaining conditionsin the quali�cation. The number of tuples thatare retrieved in the �rst stage can be consideredas the size of the intermediate result for such aunary query.4. The tuple length of an operand table. This factora�ects data bu�ering and transferring cost duringquery processing. However, this factor is usuallynot as important as the above factors. It becomesimportant when the tuple lengths of tables in adatabase vary widely; for example, when multi-media data is stored in the tables.5. The tuple length of the result table. Similar tothe above factor, this factor a�ects data bu�eringand transferring cost, but it is not as importantas the �rst three types of factors. It may becomeimportant when it varies signi�cantly from onequery to another, compared with other factors.6. The physical sizes (i.e., the numbers of used diskblocks) of operand tables and result tables. Al-though factors of this type are obviously con-trolled by factors of types 1, 2, 4 and 5, theymay re
ect additional information, such as thepercentage of free space assigned to an operand222



table (or a result table) and a combined e�ect ofthe previous factors.7. Contention in the system environment. Factorsof this type include contention for CPU, I/O,bu�ers, data items, and servers, etc. Obviously,these factors a�ect the performance of a query.However, they are di�cult to measure. The num-ber of concurrent processes, the memory residentset sizes (RSS) of processes, and some other infor-mation about processes that we could obtain canonly re
ect part of all contention factors. This iswhy contention factors are usually omitted fromexisting cost models.8. The characteristics of an index, such as indexclustering ratio, the height and number of leavesof an index tree, the number of distinct values ofan indexed column, and so on. If all tuples withthe same index key value are physically storedtogether, the index is called as a clustered index,which has the highest index clustering ratio. Fora referenced index, how the tuples with the sameindex key value are scattered in the physical stor-age has an obvious e�ect on the performance of aquery. Other properties of an index, such as theheight of the index tree and the number of dis-tinct key values, also a�ect the performance of aquery.The variables representing the above factors are thepossible explanatory variables to be included in a costformula.4 Regression Cost Models4.1 Variables Inclusion PrincipleIn general, not all explanatory variables in the lastsection are necessary in a cost model. Some variablesmay not be signi�cant for a particular model, whilesome other variables may not be available at the globallevel in an MDBS. Our general principle for includingvariables in a cost model is to include important vari-ables and omit insigni�cant or unavailable variables.Among the factors discussed in Section 3, the �rstthree types of factors are often more important. Thevariables representing them are usually included in acost model. Factors of types 4 and 5 are less impor-tant since their variances are relatively small. Theirrepresenting variables are included in a cost modelonly if they are signi�cant. Variables representing fac-tors of type 6 are included in a cost model if they

are not dominated by other included variables. Vari-ables representing the last two types of factors will beomitted from our cost models because they are usu-ally not available at the global level in an MDBS. Infact, we assume that contention factors in a consid-ered environment are approximately stable. Underthis assumption, the contention factors are not veryimportant in a cost model. The variables representingthe characteristics of referenced indexes4 can possiblybe included in a cost model if they are available andsigni�cant.How to apply this variable inclusion principle todevelop a cost model for a query class will be discussedin more details in the following subsection. Let us �rstgive some notations for the variables.Let RU be the operand table for a unary query; RJ1and RJ2 be the two operand tables for a join query;NU , NJ1 and NJ2 be the cardinalities of RU , RJ1 andRJ2, respectively; LU , LJ1 and LJ2 be the tuple lengthsof RU , RJ1 and RJ2, respectively; RLU and RLJ bethe tuple lengths of the result tables for the unaryquery and the join query, respectively. Let SU andSJ be the selectivities of the unary query and the joinquery, respectively; SJ1 and SJ2 be the selectivities ofthe conjunctions of all separable conjunctive terms forRJ1 and RJ2, respectively; SU1 be the selectivity ofa conjunctive term that is used to scan the operandtable via an index, if applicable, of the unary query.4.2 Regression Models for Unary QueryClassesBased on the inclusion principle, we divide a regres-sion model for a unary query class into two parts:model = basic model + secondary part : (2)The basic model is the essential part of the regressionmodel, while the secondary part is used to improvethe model.The set VUB of potential explanatory variables tobe included in the basic model contains the variablesrepresenting factors of types 1� 3. By the de�nition ofa selectivity, TNU = NU �SU1 and RNU = NU �SU arethe cardinalities of the intermediate table and resulttable for a unary query, respectively. Therefore, VUB =f NU ; TNU ; RNU g.If all potential explanatory variables in VUB are cho-sen, the full basic model isY = B0 +B1 �NU +B2 � TNU +B3 �RNU : (3)4Only local catalog information, such as the presence of anindex for a column, is assumed to be available at the global level.Local implementation information, such as index tree structuresand index clustering ratio, is not available.223



As it will be discussed later, some potential variable(s)may be insigni�cant for a given query class and, there-fore, is not included in the basic model.The basic model captures the major performancebehavior of queries in a query class. In fact, the ba-sic model is based on some existing cost models[4; 10]for a DBMS. The parameters B0; B1; B2 and B3 in(3) can be interpreted as the initialization cost, thecost of retrieving a tuple from the operand table, thecost of an index loo-up and the cost of processing aresult tuple, respectively. In a traditional cost model,a parameter may be split up into several parts (e.g.,B1 may consist of I/O cost and CPU cost) and canbe determined by analyzing the implementation de-tails of the employed access method. However, in anMDBS, the implementation details of access methodsare usually not known to the global query optimizer.The parameters are, therefore, estimated by multipleregression based on sample queries instead of an ana-lytical method.To further improve the basic model, some sec-ondary explanatory variables may be included intothe model. The set VUS of potential explanatory vari-ables for the secondary part of a model contains thevariables representing factors of types 4 � 6. Thereal physical sizes of the operand table and resulttable of a unary query may not be known exactlyin an MDBS. However, they can be estimated byZU = NU � LU and RZU = RNU �RLU , respectively5.We call ZU and RZU the operand table length andresult table length, respectively. Therefore, VUS =f LU ; RLU ; ZU ; RZU g. Any other variables, if avail-able, could also be included in VUS.If all potential variables in VUS are added to (3),the full regression model isY = B0 +B1 �NU +B2 � TNU +B3 �RNU+B4 � LU +B5 �RLU +B6 � ZU +B7 �RZU :Note that, for some query class, a variable mightappear in its regression model in another form. For ex-ample, if the access method for a query class sorts theoperand table of a query based on a column(s) beforefurther processing, some terms likeNU �log NU and/orlog NU could be included in its regression model. Leta new variable represent such a term. This new vari-able may replace an existing variable in VUB [ VUS5The physical size of an operand table can be more accu-rately estimated by (NU + d1) � LU � d2, where the constantsd1 and d2 re
ect some overhead such as page overhead and freespace. Since the constants d1 and d2 are applied to all sampledata, they can be omitted. Estimating the physical size of aresult table is similar.

or be an additional secondary variable in VUS. A re-gression model can be adjusted according to availableinformation about the relevant access method.4.3 Regression Models for Join QueryClassesSimilarly, the regression model for a join query classconsists of a basic model plus a possible secondarypart.The set VJB of potential explanatory variables forthe basic model contains the variables representingfactors of types 1 � 3. By de�nition, RNJ = NJ1 �NJ2 � SJ is the cardinality of the result table fora join query; TNJi = NJi � SJi is the size of theintermediate table obtained by performing the con-junction of all separable conjunctive terms on RJi(i = 1; 2). TNJ12 = TNJ1 � TNJ2 is the size of theCartesian product of the intermediate tables. There-fore, VJB = f NJ1; NJ2; TNJ1; TNJ2; TNJ12; RNJ g.If all potential explanatory variables in VJB are se-lected, the full basic model isY = B0 +B1 �NJ1 +B2 �NJ2 +B3 � TNJ1+B4 � TNJ2 +B5 � TNJ12 +B6 �RNJ :Similar to a unary query class, the basic model is basedon some existing cost models for a DBMS. The pa-rameters B0; B1; B2; B3; B4; B5 and B6 can beinterpreted as the initialization cost, the cost of pre-processing a tuple in the �rst operand table, the cost ofpre-processing a tuple in the second operand table, thecost of retrieving a tuple from the �rst intermediatetable, the cost of retrieving a tuple from the secondintermediate table, the cost of processing a tuple inthe Cartesian product of the two intermediate tablesand the cost of processing a result tuple, respectively.The basic model may be further improved by in-cluding some additional bene�cial variables. Theset VJS of potential explanatory variables for thesecondary part of a model contains the variablesrepresenting factors of types 4 � 6. Similar tounary queries, the physical size of a table is esti-mated by the table length. In other words, thephysical sizes of the �rst operand table, the secondoperand table and the result table are estimated bythe variables: ZJ1 = NJ1 � LJ1, ZJ2 = NJ2 � LJ2,RZJ = RNJ � RLJ , respectively. Therefore, VJS =f LJ1; LJ2; RLJ ; ZJ1; ZJ2; RZJ g. Any other usefulvariables, if available, could also be included in VJS .If all potential explanatory variables in VJS areadded to (4), the full regression model isY = B0 +B1 �NJ1 +B2 �NJ2 +B3 � TNJ1224



+B4 � TNJ2 +B5 � TNJ12 +B6 �RNJ+B7 � LJ1 +B8 � LJ2 +B9 �RLJ+B10 � ZJ1 +B11 � ZJ2 +B12 �RZJ :Similar to a unary query class, all variables in VJBand VJS may not be necessary for a join query class.A procedure to choose signi�cant variables in a modelwill be described in the following subsection. In addi-tion, some additional variables may be included, andsome variables could be included in another form.4.4 Selection of Variables for RegressionModelsTo determine the variables for inclusion in a regres-sion model, one approach is to evaluate all possiblesubset models and choose the best one(s) among themaccording to some criterion. However, evaluating allpossible models may not be practically feasible whenthe number of variables is large.To reduce the amount of computation, two typesof selection procedures have been proposed[2]: theforward selection procedure and the backward elim-ination procedure. The forward selection procedurestarts with a model containing no variables, i.e., onlya constant term, and introduces explanatory variablesinto the regression model one at a time. The backwardelimination procedure starts with the full model andsuccessively drops one explanatory variable at a time.Both procedures need a criterion for selecting the nextexplanatory variable to be included in or removed fromthe model and a condition for stopping the procedure.With k variables, these procedures will involve eval-uation of at most (k + 1) models as contrasted withthe evaluation of 2k models necessary for examiningall possible models.To select a suitable regression model for a queryclass, we use a mixed forward and backward proceduredescribed below (see Figure 1). We start with the full
Y  =  B0    +    B1 * X1    +    ......    +    Bn * Xn        +    .......    +    Bm * Xm
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Secondary  PartFigure 1: Selection of Variables for Regression Modelbasic model (3) or (4) for the query class and apply thebackward elimination procedure to drop some insignif-icant terms (explanatory variables) from the model.We then apply the forward selection procedure to �nd

additional signi�cant explanatory variables from theset (VUS or VJS) of secondary explanatory variablesfor the query class.The next explanatory variable X to be removedfrom the basic model during the �rst backward stageis the one that (1) has the smallest simple correla-tion coe�cient6 with the response variable Y and (2)makes the reduced model (i.e., the model after X isremoved) have a smaller standard error of estimationthan the original model or the two standard errorsof estimation very close to each other, for instance,within 1% relative error. If the next explanatory vari-able satisfying (1) does not satisfy (2), or there are nomore explanatory variable, the backward eliminationprocedure stops. Condition (1) chooses the variablewhich usually contributes the least among other vari-ables in predicting Y . Condition (2) guarantees thatremoving the chosen variable results in an improvedmodel or a�ects the model only very little. Removingthe variables that a�ect the model very little can re-duce the complexity and maintenance overhead of themodel.The next explanatory variable X to be added intothe current model during the second forward stage isthe one that (a) is in the set of secondary explana-tory variables; (b) has the largest simple correlationcoe�cient with the response variable Y that has beenadjusted for the e�ect of the current model (i.e., thelargest simple correlation coe�cient with the residualsof the current model); and (c) makes the augmentedmodel (i.e., the model that includes X) have a smallerstandard error of estimation than the current modeland the two standard errors of estimation not veryclose to each other, for instance, greater than 1% rel-ative error. If the next explanatory variable satisfying(a) and (b) does not satisfy (c), or no more explana-tory variable exists, the forward selection procedurestops. The reasons for using conditions (a) � (c) aresimilar to the situation for removing a variable. In par-ticular, a variable is not added into the model unless itimproves the standard error of estimation signi�cantlyin order to reduce the complexity of the model.A description of the whole mixed forward and back-ward procedure is given below.Algorithm 4.1 : Select Explanatory Variables fora Regression ModelInput: the set VB of basic explanatory variables;the set VS of secondary explanatoryvariables; observed data of samplequeries for a given query class.Output: a regression model with selected6The simple correlation coe�cient of two variables indicatesthe degree of the linear relationship between the two variables.225



explanatory variablesMethod:1. begin2. Use observed data to �t the full basic modelfor the query class;3. Calculate the standard error of estimation s;4. for each variable X in VB do5. Calculate the simple correlation coe�cientbetween X and the response variable Y6. end;7. backward := `true';8. while backward = `true' and VB 6= ; do9. Let X 0 be the explanatory variable in VBwith the smallest simple correlationcoe�cient;10. VB := VB � f X 0 g;11. Use the observed data to �t the reducedmodel with X 0 removed;12. Calculate the standard error of estimations0 for the reduced model;13. if s > s0 or j(s� s0)=sj very small then14. begin15. Set the reduced model as the currentmodel;16. s := s0;17. end18. else backward := `false'19. end;20. forward := `true';21. while forward = `true' and VS 6= ; do22. for each X in VS do23. Calculate the simple correlationcoe�cient between X and theresiduals of the current model24. end;25. Let X 0 be the variable with thelargest simple correlation coe�cient;26. Use the observed data to �t the augmentedmodel with X 0 added;27. Calculate the standard error of estimations0 for the augmented model;28. if s > s0 and j(s� s0)=sj not very smallthen29. begin30. Set the augmented model as thecurrent model;31. VS := VS � f X 0 g;32. s := s033. end34. else forward := `false'35. end;36. Return the current model as theregression model37. end.Since we start with the basic model, which has ahigh possibility to be the appropriate model for thegiven query class, the backward elimination and for-ward selection will most likely stop soon after theyare initiated. Therefore, our procedure is likely moree�cient than a pure forward or backward procedure.However, in the worst case, the above procedure willstill check (k + 1) models for k potential explanatoryvariables, which is the same as a pure forward or back-

ward procedure.5 Measures Ensuring Useful ModelsTo develop a useful regression model, measuresneed to be taken during the analysis. Furthermore, adeveloped regression model should be veri�ed beforeit is used. Improvements may be needed if the modelproves not acceptable. In this section, based on thecharacteristics of the cost models for query optimiza-tion, we identify the appropriate statistical methodsand apply them to ensure the signi�cance of our de-veloped cost models.5.1 OutliersOutliers are extreme observations. In a residualplot, outliers are the points that lie far beyond thescatter of the majority of points. Under the method ofleast squares, a �tted equation may be pulled dispro-portionately towards an outlying observation becausethe sum of the squared deviations is minimized.There are two possibilities for the existence of out-liers. Frequently, an outlier results from a mistake orother extraneous causes. In our application, it may becaused by an abnormal situation in the system duringthe execution of a sample query. In this case, theoutlier should be discarded. Sometimes, however, anoutlier may convey signi�cant information. For exam-ple, in our application, an outlier may indicate thatthe underlying DBMS uses a special strategy to pro-cess the relevant sample query, which is di�erent fromthe one used for other queries. Since outliers representa few extreme cases and our objective is to derive acost estimation formula that is good for the majorityof queries in a query class, we simply discard the out-liers and use the remaining observations to derive acost formula.In a (standardized) residual plot, an outlier is usu-ally four or more standard deviations from zero[7].Therefore, an observation whose residual exceeds acertain amount of standard deviations D, such asD = 4, can be considered as an outlier and be re-moved. The residuals of query observations used hereare calculated based on the full basic model since sucha model usually captures the major behavior of the �-nal model.5.2 MulticollinearityWhen the explanatory variables are highly cor-related among themselves, multicollinearity among226



them is said to exist. The presence of multicollinear-ity does not, in general, inhibit our ability to obtaina good �t nor does it tend to a�ect predictions ofnew observations, provided these predictions are madewithin the region of observations. However, the esti-mated regression coe�cients tend to have large sam-pling variability. To make reasonable predictions be-yond the region of observations and obtain more pre-cise information about the true regression coe�cients,it is better to avoid multicollinearity among explana-tory variables.A method to detect the presence of multicollinear-ity that is widely used is by means of variance in
ationfactors. These factors measure how much the vari-ances of the estimated regression coe�cients are in-
ated as compared to when the independent variablesare not linearly related. If R2j is the coe�cient of to-tal determination that results when the explanatoryvariable Xj is regressed against all the other explana-tory variables, the variance in
ation factor for Xj isde�ned as V IF (Xj) = 1=(1�R2j ) :It is clear that if Xj has a strong linear relationshipwith the other explanatory variables, R2j is close to 1and V IF (Xj) is large.To avoid multicollinearity, we use the reciprocal ofa variance in
ation factor to detect instances wherean explanatory variable should not be allowed intothe �tted regression model because of excessively highinterdependence between this variable and other ex-planatory variables in the model.More speci�cally, the set VB of basic explanatoryvariables used by Algorithm 4.1 is formed as follows.At the beginning, VB only contains the basic explana-tory variable which has the highest simple correlationcoe�cient with the response variable Y . Then thevariable Xj which has the next highest simple correla-tion coe�cient with Y is entered into VB if 1=V IF (Xj)is not too small. This procedure continues until allpossible basic explanatory variables are considered.Similarly, when Algorithm 4.1 selects additional bene-�cial variables from VS for the model, any variable Xjwhose 1=V IF (Xj) is too small is skipped.5.3 Validation of Model AssumptionsUsually, three assumptions of a regressionmodel (1)need to be checked: 1. uncorrelation of error terms;2. equal variance of error terms; and 3. normal dis-tribution of error terms.Note that the dependent random variables Yi'sshould satisfy the same assumptions as their error

terms since the Xi;j 's in (1) are known values. Ingeneral, regression analysis is not seriously a�ected byslight to moderate departures from the assumptions.The assumptions can be ranked in terms of the seri-ousness of the failure of the assumption to hold fromthe most serious to the least serious as follows: as-sumptions 1, 2 and 3.For our application, the observed costs of repeatedexecutions of a sample query have no inherent rela-tionship with the observed costs of repeated execu-tions of another sample query under the assumptionthat the contention factors in the system are approx-imately stable. Hence the �rst assumption should besatis�ed. This is a good property because the viola-tion of assumption 1 is the most serious to a regressionmodel.However, the variance of the observed costs of re-peated executions of a sample query may increasewith the level (magnitude) of query cost. This is be-cause the execution of a sample query with longer time(larger cost) may su�er more disturbances in the sys-tem than the execution of a sample query with shortertime. Thus assumption 2 may be violated in our re-gression models. Furthermore, the observed costs ofrepeated executions of a sample query may not followthe normal distribution; i.e., assumption 3 may nothold either. The observed costs are usually skewed tothe right because the observed costs stay at a stablelevel for most time and become larger from time totime when disturbances occur in the system.Since the uncorrelation assumption is rarely vio-lated in our application, it is not checked by our regres-sion analysis program. For the normality assumption,many studies have shown that regression analysis is ro-bust to it[7; 9]; that is, the technique will give usableresults even if this assumption is not satis�ed. In fact,the normality assumption is not required to obtain thepoint estimates of bBi's, bY and s. This assumption isrequired only when constructing con�dence intervalsand hypothesis-testing decision rules. In our applica-tion, we will not construct con�dence intervals, andthe only hypothesis-test that needs the normality as-sumption is the F -test which will be discussed later.Like many other statistical applications, if only thenormality assumption is violated, we choose to ignorethis violation. Thus, the normality assumption is notchecked by our regression analysis program either.When the assumption of equal variances is violated,a correction measure is usually taken to eliminate orreduce the violation. Before a correction measure isgiven, let us �rst discuss how to test for the violationof equal variances.227



Assuming that a regression model is proper to �tsample observations, the sampled residuals should re-
ect the assumptions on the error terms. We can,therefore, use the sampled residuals to check the as-sumptions. There are two ways in which the sampledresiduals can be used to check the assumptions[7; 9]:residual plots and statistical tests. The former is sub-jective, while the latter is objective. Since we try todevelop a program to test assumption 2 automatically,we employ the latter.As mentioned before, if the assumption of equalvariances is violated in our application, variances typ-ically increase with the level of the response variable.In this case, the absolute values of the residuals usu-ally have a signi�cant correlation with the �tted valuesof the response variable. A simple test for the correla-tion between two random variables u and w when thebivariate distribution is unknown is to use Spearman'srank correlation coe�cient[9; 12], which is de�ned asrs = 1� 6 nXi=1[r(ui)� r(wi)]=[n(n2 � 1)];where r(ui) and r(wi) are the ranks of the values uiand wi of u and w, respectively. The null and alternatehypotheses are as follows:H0 : The values of u and w are uncorrelated.HA : Either there is a tendency for larger values of uto be paired with the larger values of w, or thereis a tendency for smaller values of u to be pairedwith larger values of w.The decision rule at the signi�cance level � is:If �1��=2 � rs � ��=2, conclude H0.If rs < �1��=2 or rs > ��=2, conclude HA.The critical values ��=2 = ��1��=2 can be found in [9].If HA is concluded for the absolute residuals and �ttedvalues, the assumption of equal variances is violated.If the assumption of equal variances is violated, theestimates given by the corresponding regression modelwill not have the maximum precision[2]. Since the es-timation precision requirement is not high for queryoptimization, the violation of this assumption can betolerated to a certain degree. However, if the assump-tion of equal variances is severely violated, accountshould be taken of this in �tting the model.A useful tool to remedy the violation of the equalvariances assumption is the method of weighted least

squares. The idea is to provide di�ering weights in(1); that is,LSw = nXi=1 wi � [Yi � (B0 +B1Xi;1 +B2Xi;2+ � � �+BkXi;k)]2 ;where wi is the weight for the i-th Y observation.The values for Bj 's to minimize LSw is to be found.Least squares theory states that the weights wi's areinversely proportional to the variances �2i 's of the er-ror terms. Thus an observation Yi that has a largevariance receives less weight than another observationthat has a smaller variance. The (weighted) variancesof error terms tend to be equalized.Unfortunately, one rarely has knowledge of the vari-ances �2i 's. To estimate the weights, we do the fol-lowing. The sample data is used to obtain the �t-ted regression function and residuals by ordinary leastsquares �rst. The cases are then placed into a smallnumber of groups according to level of the �tted value.The variance of the residuals is calculated for eachgroup. Every Y observation in a group receives aweight which is the reciprocal of the estimated vari-ance for that group.Moreover, we use the results of weighted leastsquares to re-estimate the weights and obtain a newweighted least squares �t. This procedure is contin-ued until no substantial changes in the �tted regres-sion function take place or too many iterations occur.In the latter case, the �tted regression function withthe smallest Spearman's rank correlation coe�cient ischosen. This procedure is called an iterative weightedleast squares procedure.5.4 Testing Signi�cance of RegressionModelAs mentioned previously, to evaluate the goodnessof the developed regression model, two descriptivemeasures are used: the standard error of estimationand the coe�cient of multiple determination. A goodregression model is evidenced by a small standard er-ror of estimation and a high coe�cient of multipledetermination.The signi�cance of the developed model can befurther tested by using the F -test[7; 9]. The F -testwas derived under the normality assumption. How-ever, there is some evidence that non-normality usu-ally does not distort the conclusions too seriously[12].In general, the F -test under the normality assump-tion is asymptotically (i.e., with su�ciently large sam-ples) valid when the error terms are not normally228



Class Characteristics of Queries in the Class Likely Access MethodGu1 unary queries whose quali�cations have at least one conjunct Ri:an = C index scan methodwhere Ri:an is indexed with a key valueGu2 unary queries that are not in Gu1 and whose quali�cations have at least one index scan methodconjunct Ri:an � C where Ri:an is indexed and � 2 f<;�; >;�; g with a rangeGu3 unary queries that are not in Gu1 or Gu2 sequential scan methodGj1 join queries whose quali�cations have at least one conjunct Ri:an = Rj :am index join methodwhere either Ri:an or Rj :am (or both) is indexedGj2 join queries that are not in Gj1 and whose quali�cations have at least one nested-loop join methodindex-usable conjunct for one or both operand tables with index reduction �rstGj3 join queries that are not in Gj1 or Gj2 sort-merge join methodTable 1: Considered Query Classesdistributed[1]. Therefore, F -test is adopted in our ap-plication to test the signi�cance of a regression modelalthough the error terms may not follow the normalityassumption.6 ExperimentsTo verify the feasibility of the presented statisticalprocedure, experiments were conducted within a mul-tidatabase system prototype, called CORDS-MDBS.Three commercial DBMSs, i.e., ORACLE 7.0, EM-PRESS 4.6 and DB2/6000 1.1.0, were used as localDBMSs in the experiments. All the local DBMSs wererun on IBM RS/6000 model 220 machines. Due to thelimitation of the paper length, only the experimentalresults on ORACLE 7.0 are reported in this paper.The experiments on the other systems demonstratedsimilar results.The experiments were conducted in a system envi-ronment where the contention factors were approx-imately stable. For example, they were performedduring midnights and weekends when there was noor little interference from other users in the systems.However, occasional interference from other users stillexisted since the systems were shared resources.Queries for each local database system were clas-si�ed according to the query sampling method. Theconsidered query classes7 are given in table 1. Sam-ple queries are then drawn from each query class andperformed on the three local database systems. Theirobserved costs are used to derive cost models for therelevant query classes by the statistical procedure in-troduced in the previous sections.Tables 2 and 3 show the derived cost models andthe relevant statistical measures. It can be seen that:� Most cost models capture over 90% variabilityin query cost, from observing the coe�cients oftotal determination. The only exception is for7Only equijoin queries were considered.

Gu1 when queries can be executed very fast, i.e.,small-cost queries, due to their e�cient accessmethods and small result tables.� The standard errors of estimation for the costmodels are acceptable, compared with the mag-nitudes of the relevant average observed costs ofthe sample queries.� The statistical F-tests at the signi�cance level� = 0:01 show that all derived cost models areuseful for estimating the costs of queries in therelevant query classes.� The statistical hypothesis tests for the Spear-man's rank correlation coe�cients at the signif-icance level � = 0:01 show that there is no strongevidence indicating the violation of equal vari-ances assumption for all derived cost models af-ter using the method of weighted least squares ifneeded.� Derivations of most8 cost models require themethod of weighted least squares, which impliesthat the error terms of the original regressionmodel (using the regular least squares) violate theassumption of equal variances in most cases.In summary, the statistical procedure derived usefulcost models. Figure 2 shows a typical comparison be-tween the observed costs and our estimated costs forsome test queries.As mentioned, the experimental results show thatsmall-cost queries often have worse estimated coststhan large-cost queries. This observation coincideswith Du et al.'s observation for their calibrationmethod. The reason for this phenomenon is that (1)a cost model is usually dominated by large costs usedto derive it, while the small costs may not follow the8Some unreported cost models for other local database sys-tems in the experiments did not require the method of weightedleast squares.229



queryclass Cost Estimation FormulaGu1 0.866475e-1 + 0.177483e-2 � TNU + 0.926299e-2 � RNU + 0.443237e-6 � ZUGu2 0.354301 + 0.105255e-2 � TNU + 0.32336e-2 � RNU + 0.852187e-4 � RZUGu3 0.16555 + 0.149208e-3 � NU + 0.307219e-2 � RNU + 0.105712e-3 � RZUGj1 0.192209 + 0.161011e-2 � TNJ2 + 0.573257e-7 � TNJ12 + 0.426256e-2 � RNJGj2 0.176158 + 0.951479e-3 � TNJ12Gj3 -0.236703e-1 + 0.143572e-3 � NJ2 + 0.61871e-3 � TNJ1 + 0.680628e-3 � TNJ2+ 0.399927e-6 � TNJ12 + 0.316129e-2 � RNJTable 2: Derived Cost Formulas for Query Classes on ORACLE 7.0query coe�cient standard average F-statistic Spearman's rank weightedof multiple error of cost (critical value correlation (critical leastclass determination estimation (sec.) at � = 0:01) value at � = 0:01) square?Gu1 0.65675 0.10578 0.20406 56.76 (> 3.97) 0.54266e-1 (< 0.24292) yesGu2 0.96751 0.27357e+1 0.11360e+2 1161.46 (> 4.29) 0.21032 (< 0.21270) yesGu3 0.99810 0.87345 0.13595e+2 15397.70 (> 3.97) 0.20930e-1 (< 0.24425) yesGj1 0.98992 0.14961e+1 0.60868e+1 3732.28 (> 4.28) 0.61343e-1 (< 0.21541) yesGj2 0.92457 0.51609e+3 0.75323e+3 1483.19 (> 7.06) 0.74099e-1 (< 0.21095) yesGj3 0.97670 0.15275e+1 0.71334e+1 980.69 (> 3.52) 0.13307 (< 0.21095) yesTable 3: Statistical Measures for Cost Formulas on ORACLE 7.0same model because di�erent bu�ering and processingstrategies may be used for the small-cost queries; (2) asmall cost can be greatly a�ected by some contentionfactors, such as available bu�er space and the numberof current processes; (3) initialization costs, distribu-tion of data over a disk space and some other factors,which may not be important for large-cost queries,could have major impact on the costs of small-costqueries.
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Figure 2: Observed and Estimated Costs for TestQueries in Gj3 on ORACLESince the causes of this problem are usually uncon-trollable and related to implementation details of theunderlying local database system, it is hard to com-pletely solve this problem at the global level in anMDBS. However, this problem could be mitigated by

(a) re�ning the query classi�cation according to thesizes of result tables; and/or (b) performing a samplequery multiple times and using the average of observedcosts to derive a cost model; and/or (c) including inthe cost model more explanatory variables if available,such as bu�er sizes, and distributions of data in a diskspace.Fortunately, estimating the costs of small-costqueries is not as important as estimating the costs oflarge-cost queries in query optimization because it ismore important to identify large-cost queries so that\bad" execution plans could be avoided.7 ConclusionToday's organizations have increasing requirementsfor tools that support global access to informationstored in distributed, heterogeneous, autonomous datarepositories. A multidatabase system is such a toolthat integrates information from multiple pre-existinglocal databases. To process a global query e�cientlyin an MDBS, global query optimization is required.A major challenge for performing global query opti-mization in an MDBS is that some desired local costinformation may not be available at the global level.Without knowing how e�ciently local queries can beexecuted, it is di�cult for the global query optimizerto choose a good decomposition for the given globalquery.To tackle this challenge, a feasible statistical proce-dure for deriving local cost models for a local databasesystem is presented in this paper. Local queries aregrouped into homogeneous classes. A cost model isdeveloped for each query class. The development of230



cost models are base on multiple regression analysis.Each cost model is divided into two parts: a basicmodel and a secondary part. The basic model is basedon some existing cost models in DBMSs and used tocapture the major performance behavior of queries.The secondary part is used to improve the basic model.Potential explanatory variables that can be includedin each part of a cost model are identi�ed. A backwardprocedure is used to eliminate insigni�cant variablesfrom the basic model for a cost model. A forwardprocedure is used to add signi�cant variables to thesecondary part of a cost model. Such a mixed forwardand backward procedure can select proper variablesfor a cost model e�ciently.During the regression analysis, outliers are removedfrom the sample data. Multicollinearity is discoveredby using the variance in
ation factor and preventedby excluding variables with larger variance in
ationfactors. Violation of the equal variance assumption isdetected by using Spearman's rank correlation coe�-cient and remedied by using an iterative weighted leastsquares procedure. The signi�cance of a cost model ischecked by the standard error of estimation, the co-e�cient of multiple determination, and F-test. Thesemeasures ensure that a developed cost model is useful.The experimental results demonstrated that thepresented statistical procedure can build useful costmodels for local database systems in an MDBS.The presented procedure introduces a promisingmethod to estimate local cost parameters in an MDBSor a distributed information system. We plan to inves-tigate the feasibility of this method for non-relationallocal database systems in an MDBS in the future.References[1] S. F. Arnold. The Theory of Linear Models andMultivariate Analysis. John Wiley & Sons, Inc.,1981.[2] S. Chatterjee and B. Price. Regression Analysis byExample, 2nd Ed. John Wiley & Sons, Inc., 1991.[3] W. Du, R. Krishnamurthy, and M. C. Shan. Queryoptimization in heterogeneous DBMS. In Proc. ofVLDB, pp 277{91, 1992.[4] M. Jarke and J. Koch. Query optimization indatabase systems. Computing Surveys, 16(2):111{152, June 1984.[5] R. J. Lipton and J. F. Naughton. Practical selec-tivity estimation through adaptive sampling. InProc. of SIGMOD, pp 1{11, 1990.
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