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Abstract

A major challenge for performing global query op-
timization in a multidatabase system (MDBS) is the
lack of cost models for local database systems at the
global level. In this paper we present a statistical proce-
dure based on multiple regression analysis for building
cost models for local database systems in an MDBS.
Ezplanatory variables that can be included in a re-
gression model are identified and a mized forward
and backward method for selecting significant explana-
tory variables is presented. Measures for developing
useful regression cost models, such as removing out-
liers, eliminating multicollinearity, validating regres-
sion model assumptions, and checking significance of
regression models, are discussed. FExperimental re-
sults demonstrate that the presented statistical proce-
dure can develop useful local cost models in an MDBS.

Keywords: multidatabase system, global query op-
timization, cost model, cost estimation, multiple re-
gression

1 Introduction

A multidatabase system (MDBS) integrates infor-
mation from pre-existing local databases managed by
heterogeneous database systems (DBS) such as ORA-
CLE, DB2 and EMPRESS. A key feature of an MDBS
is the local autonomy that each local database retains
to manage its data and serve its existing applications.
An MDBS can only interact with a local DBS at its
external user interface.

A user can issue a global query on an MDBS to
retrieve data from several local databases. The user
does not need to know where the data is stored and
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how the result is obtained. How to efficiently process
such a global query is the task of global query opti-
mization.

There are a number of new challenges for query
optimization in an MDBS, caused primarily by local
autonomy. Among these challenges, a crucial one is
that local information needed for global query opti-
mization, such as local cost formulas (models), typi-
cally are not available at the global level. To perform
global query optimization, methods to derive approx-
imate cost models for an autonomous local DBS are
required.

This issue has attracted a number of researchers
recently. In [3], Du et al. proposed a calibration
method to deduce necessary local cost parameters.
The idea is to construct a special local synthetic cali-
brating database and then run a set of special queries
against this database. Cost metrics for the queries are
used to deduce the coefficients in the cost formulas
for the access methods supported by the underlying
local database system. In [14], Zhu and Larson pre-
sented a query sampling method to tackle this issue.
The idea of this method will be reviewed below. In
[15, 16], Zhu and Larson proposed a fuzzy optimiza-
tion method to solve the problem. The idea is to build
a fuzzy cost model based on experts’ knowledge, ex-
perience and guesses about local DBSs and perform
query optimization based on the fuzzy cost model. In
[6, 13], Lu and Zhu discussed issues for employing dy-
namic (adaptive) query optimization techniques based
on information available at run time in an MDBS.

The idea of the query sampling method that we
proposed in [14] is as follows. The first step is to
group all possible queries for a local database' into
more homogeneous classes so that the costs of queries
in each class can be estimated by the same formula.
This can be done by classifying queries according to
their potential access methods. For example, unary

IWe assume that each local DBS has an MDBS agent that
provides a uniform relational interface to the MDBS global
server. Hence all local DBSs can be viewed as relational ones.



queries whose qualifications have at least one conjunc-
tive term? R.a = C, where R.a is an indexed column
in table R, can be put in one class because they are
usually executed by using an index scan in a local DBS
and, therefore, follow the same performance pattern.
Several such unary and join query?® classes can be ob-
tained. The second step of the query sampling method
is to draw a sample of queries from each query class.
A mixture of judgment sampling and simple random
sampling is adopted in this step. The sample queries
are then performed against the relevant local database
and their costs are recorded. The costs are used to de-
rive a cost formula for the queries in the query class
by multiple regression. The coefficients of the cost
formulas for the local database system are kept in the
multidatabase catalog and retrieved during query op-
timization. To estimate the cost of a query, the query
class to which the query belongs needs to be identified
first, and the corresponding cost formula is then used
to give an estimate for the cost of the query.

Although a number of sampling techniques
have been applied to query optimization in the
literaturel® & 11], all of them perform data sampling
(i.e., sampling data from databases) instead of query
sampling (i.e., sampling queries from a query class).
The query sampling method overcomes several short-
comings of Du et al.’s calibration method 14!,

However, the statistical procedure for deriving cost
estimation formulas in [14] was oversimplified. In this
paper, an improved statistical procedure is presented.
The formulas are automatically determined based on
observed sampling costs. More explanatory variables
in a formula are considered. A series of measures for
ensuring useful formulas are adopted.

The rest of this paper is organized as follows. Sec-
tion 2 reviews the general linear regression model and
the related terminology. Section 3 identifies potential
explanatory variables for a regression cost model. Sec-
tion 4 discusses how to determine a cost model for a
query class. Section 5 discusses the measures used to
ensure that the developed cost models are useful. Sec-
tion 6 presents some experimental results. Section 7
summarizes the conclusions.

2We assume that the qualification has been converted to con-
junctive normal form.

3A select that may or may not be followed by a project is
called a unary query. A (2-way) join that may or may not be
followed by a project is called a join query. Only unary and join
queries are considered in this paper since most common queries
can be expressed by a sequence of such queries.
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2 Multiple Linear Regression Model

Multiple regression allows us to establish a statis-
tical relationship between the costs of queries and the
relevant contributing (explanatory) variables. Such a
statistical relationship can be used as a cost estimation
formula for queries in a query class.

Let Xy, Xs, ---, X be k explanatory variables.
They do not have to represent different independent
variables. It is allowed, for example, that Xj
X1 x Xy. The response (dependent) variable Y tends
to vary in a systematic way with the explanatory vari-
ables X'’s. If the systematic way is a statistical linear
relationship between Y and X'’s, which we assume is
true in our application, a multiple linear regression
model is defined as

Yi=Bo+ Bi1Xi1+ BaXio+ -+ Bp Xy + &4,
(Z = 1:' "771)

where X; ; (j = 1,2,---, k) denotes the value of the
j-th explanatory variable X; in the i-th trial; Y; is
the i-th dependent random variable corresponding to
Xi1, X2, ---, Xi; €; denotes the random error
term; By, By, -+, By are regression coefficients. The
following assumptions are usually made in regression
analysis:

0. By, B, -, By are unknown constants, and
Xii1, Xia, -+, X; are known values.

1. Any two €;, and &;, (i1 # i2) are uncorrelated.

2. The expected value of every ¢; is 0, i.e., E(g;) =0,
and the variance of €; is a constant o2, for all i.

3. Every ¢; is normally distributed.

For n sample observations, we can get the values
of Y;', Xi,l; Xi’g, ey, Xi,k (Z = 1, s ,’Il). Applylng
the method of least squares, we can find the values
By, By, ---, By for By, By, ---, By that minimize

LS = Z[Yi —(Bo+ BiXi1 + By X »
i=1

+o ok BeXp)P =) el
i=1

The equation

?:§0+§1X1+§2X2+"'+§ka (1)

is called a fitted regression equation. For a given set of
values of X’s, (1) gives a fitted value Y for the response



variable Y. If we use a fitted regression equation as an
estimation formula for Y, a fitted value is an estimated
value for Y corresponding to the given X's.

To evaluate the goodness of estimates obtained by
using the developed regression model, the variance o>
of the error terms is usually estimated. A point esti-
mate of o2 is given by the following formula:

s? =SSE/[n— (k+1)]
1€ ; Yjisan
observed value; Y; is the corresponding fitted value;
and e; = Y; —Y;. The square root of s2, i.e., s, is called
the standard error of estimation. It is an indication
of the accuracy of estimation. The smaller s is, the
better the estimation formula.

Using s, the i-th standardized residual is defined as
follows:

where SSE = Y"1 [ (V; — V)2 =3" 2

n
e; = lei— Zez/n]/s .
i=1
A plot of (standardized) residuals against the fitted
values or the values of an explanatory variable is called
a residual plot.
In addition to s, another descriptive measure used
to judge the goodness of a developed model is the coef-
ficient of multiple determination R?, which is defined

as:
R? =1- SSE/SST

where SST = Y1, [Vi— (X0, V) /nl? . B2 (€ [0, 1))
is the proportion of variability in the response variable
Y explained by the explanatory variables X’s. The
larger R? is, the better the estimation formula.

The standard error of estimation measures the ab-
solute accuracy of estimation, while the coefficient of
multiple determination measures the relative strength
of the linear relationship between the response variable
Y and the explanatory variables X’s. A low standard
error of estimation s and a high coefficient of multiple
determination R? are evidence of a good regression
model.

3 Explanatory Variables

In our application, the response variable Y repre-
sents query cost, while the explanatory variables X’s
represent the factors that affect query cost. It is not
difficult to see that the following types of factors usu-
ally affect the cost of a query:

1. The cardinality of an operand table. The higher
the cardinality of an operand table is, the higher
the query (execution) cost. This is because the
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. The cardinality of the result table.

. The size of an intermediate result.

. The tuple length of the result table.

number of I/O’s required to scan the operand ta-
ble or its index(es) usually increases with the car-
dinality of the table.

A large re-
sult table implies that many tuples need to be
processed, buffered, stored and transferred dur-
ing query processing. Hence, the larger the result
table is, the higher the corresponding query cost.
Note that the cardinality of the result table is
determined by the selectivity of the query. This
factor can hence be considered as the same as the
selectivity of a query.

For a join
query, if its qualification contains one or more
conjunctive terms that refer to only one of
its operand tables, called separable conjunctive
terms, they can be used to reduce the relevant
operand table before further processing is per-
formed. The smaller the size of such an inter-
mediate table is, the more efficient the query pro-
cessing would be. For a unary query, if it can
be executed by an index scan method, the query
processing can be viewed as having two stages:
the first stage is to retrieve the tuples via an
index(es), the second stage is to check the re-
trieved tuples against the remaining conditions
in the qualification. The number of tuples that
are retrieved in the first stage can be considered
as the size of the intermediate result for such a
unary query.

. The tuple length of an operand table. This factor

affects data buffering and transferring cost during
query processing. However, this factor is usually
not as important as the above factors. It becomes
important when the tuple lengths of tables in a
database vary widely; for example, when multi-
media data is stored in the tables.

Similar to
the above factor, this factor affects data buffering
and transferring cost, but it is not as important
as the first three types of factors. It may become
important when it varies significantly from one
query to another, compared with other factors.

. The physical sizes (i.e., the numbers of used disk

blocks) of operand tables and result tables. Al-
though factors of this type are obviously con-
trolled by factors of types 1, 2, 4 and 5, they
may reflect additional information, such as the
percentage of free space assigned to an operand



table (or a result table) and a combined effect of
the previous factors.

7. Contention in the system environment. Factors
of this type include contention for CPU, I/0O,
buffers, data items, and servers, etc. Obviously,
these factors affect the performance of a query.
However, they are difficult to measure. The num-
ber of concurrent processes, the memory resident,
set sizes (RSS) of processes, and some other infor-
mation about processes that we could obtain can
only reflect part of all contention factors. This is
why contention factors are usually omitted from
existing cost models.

8. The characteristics of an index, such as index
clustering ratio, the height and number of leaves
of an index tree, the number of distinct values of
an indexed column, and so on. If all tuples with
the same index key value are physically stored
together, the index is called as a clustered index,
which has the highest index clustering ratio. For
a referenced index, how the tuples with the same
index key value are scattered in the physical stor-
age has an obvious effect on the performance of a
query. Other properties of an index, such as the
height of the index tree and the number of dis-
tinct key values, also affect the performance of a

query.

The variables representing the above factors are the
possible explanatory variables to be included in a cost
formula.

4 Regression Cost Models

4.1 Variables Inclusion Principle

In general, not all explanatory variables in the last
section are necessary in a cost model. Some variables
may not be significant for a particular model, while
some other variables may not be available at the global
level in an MDBS. Our general principle for including
variables in a cost model is to include important vari-
ables and omit insignificant or unavailable variables.

Among the factors discussed in Section 3, the first
three types of factors are often more important. The
variables representing them are usually included in a
cost model. Factors of types 4 and 5 are less impor-
tant since their variances are relatively small. Their
representing variables are included in a cost model
only if they are significant. Variables representing fac-
tors of type 6 are included in a cost model if they
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are not dominated by other included variables. Vari-
ables representing the last two types of factors will be
omitted from our cost models because they are usu-
ally not available at the global level in an MDBS. In
fact, we assume that contention factors in a consid-
ered environment are approximately stable. Under
this assumption, the contention factors are not very
important in a cost model. The variables representing
the characteristics of referenced indexes* can possibly
be included in a cost model if they are available and
significant.

How to apply this variable inclusion principle to
develop a cost model for a query class will be discussed
in more details in the following subsection. Let us first
give some notations for the variables.

Let R, be the operand table for a unary query; R,
and R;, be the two operand tables for a join query;
Ny, N,, and N,, be the cardinalities of R, R,, and
R,,, respectively; L,;, L;, and L, be the tuple lengths
of R;, R;;, and R;,, respectively; RL, and RL; be
the tuple lengths of the result tables for the unary
query and the join query, respectively. Let S, and
S, be the selectivities of the unary query and the join
query, respectively; S;; and S, be the selectivities of
the conjunctions of all separable conjunctive terms for
R;, and R;,, respectively; S;; be the selectivity of
a conjunctive term that is used to scan the operand
table via an index, if applicable, of the unary query.

4.2 Regression Models for Unary Query
Classes

Based on the inclusion principle, we divide a regres-
sion model for a unary query class into two parts:

model =

(2)
The basic model is the essential part of the regression
model, while the secondary part is used to improve
the model.

The set V,, of potential explanatory variables to
be included in the basic model contains the variables
representing factors of types 1 ~ 3. By the definition of
a selectivity, TN, = Ny %Sy, and RNy, = Ny xSy, are
the cardinalities of the intermediate table and result
table for a unary query, respectively. Therefore, V5 =
{ Ny, TN,, RN, }.

If all potential explanatory variables in V;, 5 are cho-
sen, the full basic model is

Y B0+B1*NU+B2*TNU+B3*RNU.

basic model + secondary part .

(3)

40nly local catalog information, such as the presence of an
index for a column, is assumed to be available at the global level.
Local implementation information, such as index tree structures
and index clustering ratio, is not available.




As it will be discussed later, some potential variable(s)
may be insignificant for a given query class and, there-
fore, is not included in the basic model.

The basic model captures the major performance
behavior of queries in a query class. In fact, the ba-
sic model is based on some existing cost models4 10]
for a DBMS. The parameters By, B;, B and Bz in
(3) can be interpreted as the initialization cost, the
cost of retrieving a tuple from the operand table, the
cost of an index loo-up and the cost of processing a
result tuple, respectively. In a traditional cost model,
a parameter may be split up into several parts (e.g.,
B; may consist of I/O cost and CPU cost) and can
be determined by analyzing the implementation de-
tails of the employed access method. However, in an
MDBS, the implementation details of access methods
are usually not known to the global query optimizer.
The parameters are, therefore, estimated by multiple
regression based on sample queries instead of an ana-
lytical method.

To further improve the basic model, some sec-
ondary explanatory variables may be included into
the model. The set V5 of potential explanatory vari-
ables for the secondary part of a model contains the
variables representing factors of types 4 ~ 6. The
real physical sizes of the operand table and result
table of a unary query may not be known exactly
in an MDBS. However, they can be estimated by
Zy = Ny % L, and RZ, = RN, * RL,,, respectively®.
We call Z,, and RZ, the operand table length and
result table length, respectively. Therefore, V,s =
{L,, RL,, Z,, RZ, }. Any other variables, if avail-
able, could also be included in V5.

If all potential variables in V, 4 are added to (3),
the full regression model is

Y B0+B1*NU+B2*TNU—|—B3*RNU

+ By* Ly + Bs x RLy;, + Bg x Zy, + By x RZ,;.

Note that, for some query class, a variable might
appear in its regression model in another form. For ex-
ample, if the access method for a query class sorts the
operand table of a query based on a column(s) before
further processing, some terms like Ny, xlog N, and/or
log Ny, could be included in its regression model. Let
a new variable represent such a term. This new vari-
able may replace an existing variable in V5 U V¢

5The physical size of an operand table can be more accu-
rately estimated by (Ny + d1) * Ly * d2, where the constants
d; and dy reflect some overhead such as page overhead and free
space. Since the constants di and d2 are applied to all sample
data, they can be omitted. Estimating the physical size of a
result table is similar.
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or be an additional secondary variable in V5. A re-
gression model can be adjusted according to available
information about the relevant access method.

4.3 Regression Models for Join Query
Classes

Similarly, the regression model for a join query class
consists of a basic model plus a possible secondary
part.

The set V,, of potential explanatory variables for
the basic model contains the variables representing
factors of types 1 ~ 3. By definition, RN, = N,; %
N;, x S; is the cardinality of the result table for
a join query; TN,, = N,, x S,, is the size of the
intermediate table obtained by performing the con-
junction of all separable conjunctive terms on R,
(1t =1,2). TN;,, = TN, «xTN,, is the size of the
Cartesian product of the intermediate tables. There-
fore, V,s = { N,,, N,,, TN,,, TN,,, TN,,,, RN, }.

If all potential explanatory variables in V,, are se-
lected, the full basic model is

Y

Bo+ B, %N, + By % N,y + Bs * TN,
+ By *TN,, + Bs * TN,,, + Bg * RN,.

Similar to a unary query class, the basic model is based
on some existing cost models for a DBMS. The pa-
rameters By, By, By, B3, Bs, Bs and Bg can be
interpreted as the initialization cost, the cost of pre-
processing a tuple in the first operand table, the cost of
pre-processing a tuple in the second operand table, the
cost of retrieving a tuple from the first intermediate
table, the cost of retrieving a tuple from the second
intermediate table, the cost of processing a tuple in
the Cartesian product of the two intermediate tables
and the cost of processing a result tuple, respectively.

The basic model may be further improved by in-
cluding some additional beneficial variables. The
set V,s of potential explanatory variables for the
secondary part of a model contains the variables
representing factors of types 4 ~ 6. Similar to
unary queries, the physical size of a table is esti-
mated by the table length. In other words, the
physical sizes of the first operand table, the second
operand table and the result table are estimated by
the variables: Z,, = Ny % L;;, Z;» = Nj, x Ly,
RZ; = RN; x RL,, respectively. Therefore, V,s =
{L;, L;,, RL;, Z;,, Z;,, RZ; }. Any other useful
variables, if available, could also be included in V.

If all potential explanatory variables in V,q are
added to (4), the full regression model is

Y

By+ By *N;; + Bs %« N;, + B3 x TN,



4+ By*TN,,+ Bs *TN,,, + Bg * RN,
+B7*L11+Bg*LJ2+Bg*RLJ
+B10*ZJ1+B11*ZJ2+B12*RZJ .

Similar to a unary query class, all variables in V5
and V,45 may not be necessary for a join query class.
A procedure to choose significant variables in a model
will be described in the following subsection. In addi-
tion, some additional variables may be included, and
some variables could be included in another form.

4.4 Selection of Variables for Regression
Models

To determine the variables for inclusion in a regres-
sion model, one approach is to evaluate all possible
subset models and choose the best one(s) among them
according to some criterion. However, evaluating all
possible models may not be practically feasible when
the number of variables is large.

To reduce the amount of computation, two types
of selection procedures have been proposed[2]: the
forward selection procedure and the backward elim-
ination procedure. The forward selection procedure
starts with a model containing no variables, i.e., only
a constant term, and introduces explanatory variables
into the regression model one at a time. The backward
elimination procedure starts with the full model and
successively drops one explanatory variable at a time.
Both procedures need a criterion for selecting the next
explanatory variable to be included in or removed from
the model and a condition for stopping the procedure.
With k variables, these procedures will involve eval-
uation of at most (k + 1) models as contrasted with
the evaluation of 2¥ models necessary for examining
all possible models.

To select a suitable regression model for a query
class, we use a mixed forward and backward procedure
described below (see Figure 1). We start with the full

@ Start Point @
Backward Elimination Forward Selection
- =
Y =B0O + B1*X1 + ... + Bn* Xn + o + Bm* Xm

Basic Model Secondary Part

Figure 1: Selection of Variables for Regression Model

basic model (3) or (4) for the query class and apply the
backward elimination procedure to drop some insignif-
icant terms (explanatory variables) from the model.
We then apply the forward selection procedure to find
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additional significant explanatory variables from the
set (Vys or V,s) of secondary explanatory variables
for the query class.

The next explanatory variable X to be removed
from the basic model during the first backward stage
is the one that (1) has the smallest simple correla-
tion coefficient® with the response variable Y and (2)
makes the reduced model (i.e., the model after X is
removed) have a smaller standard error of estimation
than the original model or the two standard errors
of estimation very close to each other, for instance,
within 1% relative error. If the next explanatory vari-
able satisfying (1) does not satisfy (2), or there are no
more explanatory variable, the backward elimination
procedure stops. Condition (1) chooses the variable
which usually contributes the least among other vari-
ables in predicting Y. Condition (2) guarantees that
removing the chosen variable results in an improved
model or affects the model only very little. Removing
the variables that affect the model very little can re-
duce the complexity and maintenance overhead of the
model.

The next explanatory variable X to be added into
the current model during the second forward stage is
the one that (a) is in the set of secondary explana-
tory variables; (b) has the largest simple correlation
coefficient with the response variable Y that has been
adjusted for the effect of the current model (i.e., the
largest simple correlation coefficient with the residuals
of the current model); and (c) makes the augmented
model (i.e., the model that includes X) have a smaller
standard error of estimation than the current model
and the two standard errors of estimation not very
close to each other, for instance, greater than 1% rel-
ative error. If the next explanatory variable satisfying
(a) and (b) does not satisfy (c), or no more explana-
tory variable exists, the forward selection procedure
stops. The reasons for using conditions (a) ~ (c) are
similar to the situation for removing a variable. In par-
ticular, a variable is not added into the model unless it
improves the standard error of estimation significantly
in order to reduce the complexity of the model.

A description of the whole mixed forward and back-

ward procedure is given below.
ALGORITHM 4.1 : Select Explanatory Variables for
a Regression Model

the set V5 of basic explanatory variables;
the set Vg of secondary explanatory
variables; observed data of sample
queries for a given query class.

Output: a regression model with selected

Input:

6The simple correlation coefficient of two variables indicates
the degree of the linear relationship between the two variables.



explanatory variables

2. Use observed data to fit the full basic model
for the query class;
Calculate the standard error of estimation s;
for each variable X in V; do
Calculate the simple correlation coefficient
between X and the response variable Y

backward := ‘true’;

while backward = ‘true’ and V; # 0 do

Let X' be the explanatory variable in V
with the smallest simple correlation

3
4
5
6. end;
7.
8
9

coefficient;

10. Ve =V —{ X'}

11. Use the observed data to fit the reduced
model with X' removed;

12. Calculate the standard error of estimation
s' for the reduced model;

13. if s > s’ or |(s — s')/s| very small then

14. begin

15. Set, the reduced model as the current

model;

16. s:= s';

17. end

18. else backward := ‘false’

19. end;

20. forward := ‘true’;

21. while forward = ‘true’ and Vs # 0 do

22. for each X in Vy do

23. Calculate the simple correlation

coefficient between X and the
residuals of the current model

24. end;

25. Let X' be the variable with the
largest simple correlation coefficient;

26. Use the observed data to fit the augmented
model with X' added;

27. Calculate the standard error of estimation
s' for the augmented model;

28. if s > s’ and |(s — s’)/s| not very small

then
29. begin
30. Set the augmented model as the
current model;

31. Ve =Vs—{ X"}

32. s:=s

33. end

34. else forward := ‘false’

35. end;

36. Return the current model as the

regression model
37. end.

Since we start with the basic model, which has a
high possibility to be the appropriate model for the
given query class, the backward elimination and for-
ward selection will most likely stop soon after they
are initiated. Therefore, our procedure is likely more
efficient than a pure forward or backward procedure.
However, in the worst case, the above procedure will
still check (k + 1) models for k potential explanatory
variables, which is the same as a pure forward or back-
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ward procedure.

5 Measures Ensuring Useful Models

To develop a useful regression model, measures
need to be taken during the analysis. Furthermore, a
developed regression model should be verified before
it is used. Improvements may be needed if the model
proves not, acceptable. In this section, based on the
characteristics of the cost models for query optimiza-
tion, we identify the appropriate statistical methods
and apply them to ensure the significance of our de-
veloped cost models.

5.1 Outliers

Outliers are extreme observations. In a residual
plot, outliers are the points that lie far beyond the
scatter of the majority of points. Under the method of
least squares, a fitted equation may be pulled dispro-
portionately towards an outlying observation because
the sum of the squared deviations is minimized.

There are two possibilities for the existence of out-
liers. Frequently, an outlier results from a mistake or
other extraneous causes. In our application, it may be
caused by an abnormal situation in the system during
the execution of a sample query. In this case, the
outlier should be discarded. Sometimes, however, an
outlier may convey significant information. For exam-
ple, in our application, an outlier may indicate that
the underlying DBMS uses a special strategy to pro-
cess the relevant sample query, which is different from
the one used for other queries. Since outliers represent
a few extreme cases and our objective is to derive a
cost estimation formula that is good for the majority
of queries in a query class, we simply discard the out-
liers and use the remaining observations to derive a
cost formula.

In a (standardized) residual plot, an outlier is usu-
ally four or more standard deviations from zerol”
Therefore, an observation whose residual exceeds a
certain amount of standard deviations D, such as
D = 4, can be considered as an outlier and be re-
moved. The residuals of query observations used here
are calculated based on the full basic model since such
a model usually captures the major behavior of the fi-
nal model.

5.2 Multicollinearity

When the explanatory variables are highly cor-
related among themselves, multicollinearity among



them is said to exist. The presence of multicollinear-
ity does not, in general, inhibit our ability to obtain
a good fit nor does it tend to affect predictions of
new observations, provided these predictions are made
within the region of observations. However, the esti-
mated regression coefficients tend to have large sam-
pling variability. To make reasonable predictions be-
yond the region of observations and obtain more pre-
cise information about the true regression coefficients,
it is better to avoid multicollinearity among explana-
tory variables.

A method to detect the presence of multicollinear-
ity that is widely used is by means of variance inflation
factors. These factors measure how much the vari-
ances of the estimated regression coefficients are in-
flated as compared to when the independent variables
are not linearly related. If Rf is the coefficient of to-
tal determination that results when the explanatory
variable X; is regressed against all the other explana-
tory variables, the variance inflation factor for X; is
defined as

VIF(X;)=1/(1-R}) .

It is clear that if X; has a strong linear relationship
with the other explanatory variables, R'j is close to 1
and VIF(X;) is large.

To avoid multicollinearity, we use the reciprocal of
a variance inflation factor to detect instances where
an explanatory variable should not be allowed into
the fitted regression model because of excessively high
interdependence between this variable and other ex-
planatory variables in the model.

More specifically, the set V; of basic explanatory
variables used by Algorithm 4.1 is formed as follows.
At the beginning, V,; only contains the basic explana-
tory variable which has the highest simple correlation
coefficient with the response variable Y. Then the
variable X; which has the next highest simple correla-
tion coefficient with Y is entered into V5 if 1/VIF(X})
is not too small. This procedure continues until all
possible basic explanatory variables are considered.
Similarly, when Algorithm 4.1 selects additional bene-
ficial variables from V for the model, any variable X
whose 1/VIF(X;) is too small is skipped.

5.3 Validation of Model Assumptions

Usually, three assumptions of a regression model (1)
need to be checked: 1. uncorrelation of error terms;
2. equal variance of error terms; and 4. normal dis-
tribution of error terms.

Note that the dependent random variables Y;’s
should satisfy the same assumptions as their error
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terms since the X;;’s in (1) are known values. In
general, regression analysis is not seriously affected by
slight to moderate departures from the assumptions.
The assumptions can be ranked in terms of the seri-
ousness of the failure of the assumption to hold from
the most serious to the least serious as follows: as-
sumptions 1, 2 and 3.

For our application, the observed costs of repeated
executions of a sample query have no inherent rela-
tionship with the observed costs of repeated execu-
tions of another sample query under the assumption
that the contention factors in the system are approx-
imately stable. Hence the first assumption should be
satisfied. This is a good property because the viola-
tion of assumption 1 is the most serious to a regression
model.

However, the variance of the observed costs of re-
peated executions of a sample query may increase
with the level (magnitude) of query cost. This is be-
cause the execution of a sample query with longer time
(larger cost) may suffer more disturbances in the sys-
tem than the execution of a sample query with shorter
time. Thus assumption 2 may be violated in our re-
gression models. Furthermore, the observed costs of
repeated executions of a sample query may not follow
the normal distribution; i.e., assumption 3 may not
hold either. The observed costs are usually skewed to
the right because the observed costs stay at a stable
level for most time and become larger from time to
time when disturbances occur in the system.

Since the uncorrelation assumption is rarely vio-
lated in our application, it is not checked by our regres-
sion analysis program. For the normality assumption,
many studies have shown that regression analysis is ro-
bust to it! "> 9]; that is, the technique will give usable
results even if this assumption is not satisfied. In fact,
the normality assumption is not required to obtain the
point estimates of B;’s, Y and s. This assumption is
required only when constructing confidence intervals
and hypothesis-testing decision rules. In our applica-
tion, we will not construct confidence intervals, and
the only hypothesis-test that needs the normality as-
sumption is the F-test which will be discussed later.
Like many other statistical applications, if only the
normality assumption is violated, we choose to ignore
this violation. Thus, the normality assumption is not
checked by our regression analysis program either.

When the assumption of equal variances is violated,
a correction measure is usually taken to eliminate or
reduce the violation. Before a correction measure is
given, let us first discuss how to test for the violation
of equal variances.



Assuming that a regression model is proper to fit
sample observations, the sampled residuals should re-
flect the assumptions on the error terms. We can,
therefore, use the sampled residuals to check the as-
sumptions. There are two ways in which the sampled
residuals can be used to check the assumptions[7’ 9,
residual plots and statistical tests. The former is sub-
jective, while the latter is objective. Since we try to
develop a program to test assumption 2 automatically,
we employ the latter.

As mentioned before, if the assumption of equal
variances is violated in our application, variances typ-
ically increase with the level of the response variable.
In this case, the absolute values of the residuals usu-
ally have a significant correlation with the fitted values
of the response variable. A simple test for the correla-
tion between two random variables u and w when the
bivariate distribution is unknown is to use Spearman’s
rank correlation coefficient!?: 12}, which is defined as

rs =1-— GZ[T(Ui) —r(w;)]/[n(n* = 1)],

where r(u;) and r(w;) are the ranks of the values u;
and w; of u and w, respectively. The null and alternate
hypotheses are as follows:

Hy : The values of u and w are uncorrelated.

H, : FEither there is a tendency for larger values of u
to be paired with the larger values of w, or there
is a tendency for smaller values of u to be paired
with larger values of w.

The decision rule at the significance level « is:
If pr_ws2 <15 < pay2, conclude Hy.
If rg < pr_qaj2 OF s > pay2, conclude Ha.

The critical values p, /2 = —p1_q/2 can be found in [9].
If H 4 is concluded for the absolute residuals and fitted
values, the assumption of equal variances is violated.

If the assumption of equal variances is violated, the
estimates given by the corresponding regression model
will not have the maximum precisionﬂ]. Since the es-
timation precision requirement is not high for query
optimization, the violation of this assumption can be
tolerated to a certain degree. However, if the assump-
tion of equal variances is severely violated, account
should be taken of this in fitting the model.

A useful tool to remedy the violation of the equal
variances assumption is the method of weighted least
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squares. The idea is to provide differing weights in
(1); that is,

LS, = Zwi *[Y; — (Bo + B1Xi1 + B2 X0
i=1

+o 4 BrXan)]?

where w; is the weight for the i-th Y observation.
The values for B;’s to minimize LS, is to be found.
Least squares theory states that the weights w;’s are
inversely proportional to the variances o?’s of the er-
ror terms. Thus an observation Y; that has a large
variance receives less weight than another observation
that has a smaller variance. The (weighted) variances
of error terms tend to be equalized.

Unfortunately, one rarely has knowledge of the vari-
ances 02’s. To estimate the weights, we do the fol-
lowing. The sample data is used to obtain the fit-
ted regression function and residuals by ordinary least
squares first. The cases are then placed into a small
number of groups according to level of the fitted value.
The variance of the residuals is calculated for each
group. Every Y observation in a group receives a
weight which is the reciprocal of the estimated vari-
ance for that group.

Moreover, we use the results of weighted least
squares to re-estimate the weights and obtain a new
weighted least squares fit. This procedure is contin-
ued until no substantial changes in the fitted regres-
sion function take place or too many iterations occur.
In the latter case, the fitted regression function with
the smallest Spearman’s rank correlation coefficient is
chosen. This procedure is called an iterative weighted
least squares procedure.

5.4 Testing Significance of Regression
Model

As mentioned previously, to evaluate the goodness
of the developed regression model, two descriptive
measures are used: the standard error of estimation
and the coefficient of multiple determination. A good
regression model is evidenced by a small standard er-
ror of estimation and a high coefficient of multiple
determination.

The significance of the developed model can be
further tested by using the Ftest/T 9. The F-test
was derived under the normality assumption. How-
ever, there is some evidence that non-normality usu-
ally does not distort the conclusions too seriously[m].
In general, the F-test under the normality assump-
tion is asymptotically (i.e., with sufficiently large sam-
ples) valid when the error terms are not normally



‘ Class Characteristics of Queries in the Class Likely Access Method

Gu1 unary queries whose qualifications have at least one conjunct R;.an, = C index scan method
where R;.a, is indexed with a key value

Gus unary queries that are not in G,,1 and whose qualifications have at least one index scan method
conjunct R;.a, § C where R;.a, is indexed and 0 € {<,<,>,>,} with a range

Gus unary queries that are not in G,1 or Gu2 sequential scan method

G join queries whose qualifications have at least one conjunct R;.a, = Rj.am index join method
where either R;.a, or Rj.a, (or both) is indexed

Gj2 join queries that are not in ;1 and whose qualifications have at least one nested-loop join method
index-usable conjunct for one or both operand tables with index reduction first

Gj3 join queries that are not in G ;1 or G2 sort-merge join method

Table 1: Considered Query Classes

distributed!1. Therefore, F-test is adopted in our ap-
plication to test the significance of a regression model
although the error terms may not follow the normality
assumption.

6 Experiments

To verify the feasibility of the presented statistical
procedure, experiments were conducted within a mul-
tidatabase system prototype, called CORDS-MDBS.
Three commercial DBMSs, i.e., ORACLE 7.0, EM-
PRESS 4.6 and DB2/6000 1.1.0, were used as local
DBMSs in the experiments. All the local DBMSs were
run on IBM RS/6000 model 220 machines. Due to the
limitation of the paper length, only the experimental
results on ORACLE 7.0 are reported in this paper.
The experiments on the other systems demonstrated
similar results.

The experiments were conducted in a system envi-
ronment where the contention factors were approx-
imately stable. For example, they were performed
during midnights and weekends when there was no
or little interference from other users in the systems.
However, occasional interference from other users still
existed since the systems were shared resources.

Queries for each local database system were clas-
sified according to the query sampling method. The
considered query classes” are given in table 1. Sam-
ple queries are then drawn from each query class and
performed on the three local database systems. Their
observed costs are used to derive cost models for the
relevant query classes by the statistical procedure in-
troduced in the previous sections.

Tables 2 and 3 show the derived cost models and
the relevant statistical measures. It can be seen that:

e Most cost models capture over 90% variability
in query cost, from observing the coefficients of
total determination. The only exception is for

7Only equijoin queries were considered.
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G,1 when queries can be executed very fast, i.e.,
small-cost queries, due to their efficient access
methods and small result tables.

e The standard errors of estimation for the cost
models are acceptable, compared with the mag-
nitudes of the relevant average observed costs of
the sample queries.

e The statistical F-tests at the significance level
a = 0.01 show that all derived cost models are
useful for estimating the costs of queries in the
relevant query classes.

e The statistical hypothesis tests for the Spear-
man’s rank correlation coefficients at the signif-
icance level a = 0.01 show that there is no strong
evidence indicating the violation of equal vari-
ances assumption for all derived cost models af-
ter using the method of weighted least squares if
needed.

e Derivations of most® cost models require the
method of weighted least squares, which implies
that the error terms of the original regression
model (using the regular least squares) violate the
assumption of equal variances in most cases.

In summary, the statistical procedure derived useful
cost models. Figure 2 shows a typical comparison be-
tween the observed costs and our estimated costs for
some test queries.

As mentioned, the experimental results show that
small-cost queries often have worse estimated costs
than large-cost queries. This observation coincides
with Du et al’s observation for their calibration
method. The reason for this phenomenon is that (1)
a cost model is usually dominated by large costs used
to derive it, while the small costs may not follow the

8Some unreported cost models for other local database sys-
tems in the experiments did not require the method of weighted

least squares.



class Cost Estimation Formula

Gu1 0.866475e-1 + 0.177483e-2 * TNy + 0.926299e-2 *+ RNy + 0.443237e-6 x Zy
G 0.354301 + 0.105255e-2 * TNy + 0.32336e-2 x RNy + 0.852187e-4 x RZy
Gus 0.16555 + 0.149208e-3 * Ny + 0.307219e-2 x RNy + 0.105712e-3 * RZy

G 0.192209 4 0.161011e-2 * T'N;> + 0.573257e-7 * T'N 12

+ 0.426256e-2 x RN,

G2 0.176158 4 0.951479e-3 * T'N 12

Gjs -0.236703e-1 + 0.143572e-3 * Ny + 0.61871e-3 * T'N 1
+ 0.399927e-6 * TNji12 + 0.316129e-2 *+ RN

+ 0.680628e-3 * T'N;y2

Table 2: Derived Cost Formulas for Query Classes on ORACLE 7.0

query coefficient standard average F-statistic Spearman’s rank weighted
of multiple error of cost (critical value correlation (critical least

class determination estimation (sec.) at a = 0.01) value at o = 0.01) square?

G 0.65675 0.10578 0.20406 56.76 (> 3.97) 0.54266e-1 (< 0.24292) yes

€D 0.96751 0.27357e+1 | 0.11360e+2 | 1161.46 (> 4.29) 0.21032 (< 0.21270) yes

Gus 0.99810 0.87345 0.13595e+2 15397.70 (> 3.97) 0.20930e-1 (< 0.24425) yes

Gt 0.98992 0.14961e+41 0.60868e+1 3732.28 (> 4.28) 0.61343e-1 (< 0.21541) yes

G jo 0.92457 0.51609e4-3 0.75323e+4-3 1483.19 (> 7.06) 0.74099e-1 (< 0.21095) yes

G 3 0.97670 0.15275e+41 0.71334e+41 980.69 (> 3.52) 0.13307 (< 0.21095) yes

Table 3: Statistical Measures for Cost Formulas on ORACLE 7.0

same model because different buffering and processing
strategies may be used for the small-cost queries; (2) a
small cost can be greatly affected by some contention
factors, such as available buffer space and the number
of current processes; (3) initialization costs, distribu-
tion of data over a disk space and some other factors,
which may not be important for large-cost queries,
could have major impact on the costs of small-cost
queries.
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Figure 2: Observed and Estimated Costs for Test

Queries in Gj3 on ORACLE

Since the causes of this problem are usually uncon-
trollable and related to implementation details of the
underlying local database system, it is hard to com-
pletely solve this problem at the global level in an
MDBS. However, this problem could be mitigated by

(a) refining the query classification according to the
sizes of result tables; and/or (b) performing a sample
query multiple times and using the average of observed
costs to derive a cost model; and/or (c) including in
the cost model more explanatory variables if available,
such as buffer sizes, and distributions of data in a disk
space.

Fortunately, estimating the costs of small-cost
queries is not as important as estimating the costs of
large-cost queries in query optimization because it is
more important to identify large-cost queries so that
“bad” execution plans could be avoided.

7 Conclusion

Today’s organizations have increasing requirements
for tools that support global access to information
stored in distributed, heterogeneous, autonomous data
repositories. A multidatabase system is such a tool
that integrates information from multiple pre-existing
local databases. To process a global query efficiently
in an MDBS, global query optimization is required.
A major challenge for performing global query opti-
mization in an MDBS is that some desired local cost
information may not be available at the global level.
Without knowing how efficiently local queries can be
executed, it is difficult for the global query optimizer
to choose a good decomposition for the given global
query.

To tackle this challenge, a feasible statistical proce-
dure for deriving local cost models for a local database
system is presented in this paper. Local queries are
grouped into homogeneous classes. A cost model is
developed for each query class. The development of
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cost models are base on multiple regression analysis.

Each cost model is divided into two parts: a basic
model and a secondary part. The basic model is based
on some existing cost models in DBMSs and used to
capture the major performance behavior of queries.
The secondary part is used to improve the basic model.
Potential explanatory variables that can be included
in each part of a cost model are identified. A backward
procedure is used to eliminate insignificant variables
from the basic model for a cost model. A forward
procedure is used to add significant variables to the
secondary part of a cost model. Such a mixed forward
and backward procedure can select proper variables
for a cost model efficiently.

During the regression analysis, outliers are removed
from the sample data. Multicollinearity is discovered
by using the variance inflation factor and prevented
by excluding variables with larger variance inflation
factors. Violation of the equal variance assumption is
detected by using Spearman’s rank correlation coeffi-
cient and remedied by using an iterative weighted least
squares procedure. The significance of a cost model is
checked by the standard error of estimation, the co-
efficient of multiple determination, and F-test. These
measures ensure that a developed cost model is useful.

The experimental results demonstrated that the
presented statistical procedure can build useful cost
models for local database systems in an MDBS.

The presented procedure introduces a promising
method to estimate local cost parameters in an MDBS
or a distributed information system. We plan to inves-
tigate the feasibility of this method for non-relational
local database systems in an MDBS in the future.
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