HW \#5

1) An analog filter specified by an $H(s)$ has the frequency response shown below. A digital filter $\mathbf{H}(\mathrm{z})$ is formed by replacing s by $\frac{4\left(1-\mathrm{z}^{-1}\right)}{\left(1+\mathrm{z}^{-1}\right)}$. Roughly draw the 20 log magnitude (magnitude in dB) of the frequency response of the filter $\mathbf{H}(\mathrm{z})$.

Bilinear transformation equation: $\quad \mathrm{H}_{(\mathrm{z})}=\left.\mathrm{H}_{\mathrm{a}(\mathrm{S})}\right|_{\mathrm{S}=\frac{2\left(1-\mathrm{z}^{-1}\right)}{\mathrm{T}\left(1+\mathrm{z}^{-1}\right)}}$

$$
\begin{aligned}
& \text { if } \mathrm{s}=\frac{4\left(1-\mathrm{z}^{-1}\right)}{\left(1+\mathrm{z}^{-1}\right)} \rightarrow \quad \text { then } 4=\frac{2}{\mathrm{~T}} \quad \rightarrow \quad \therefore \mathrm{~T}=\frac{1}{2} \\
& \Omega=\text { ANALOG FREQUENCY } \quad \Omega=\frac{2}{\mathrm{~T}} \mathrm{TAN}\left(\frac{\omega}{2}\right) \\
& \omega=\text { DIGITAL FREQUENCY } \quad \omega=2 \mathrm{TAN}^{-1}\left(\frac{\Omega \mathrm{~T}}{2}\right)
\end{aligned}
$$

Calculate the first 5 points using the equations above and plot out the $20 \log$ magnitude of the frequency response.

Ω	0	1	2	3	4	5
ω	0	0.15π	0.3π	0.41π	0.5π	0.57π
$\mathrm{H}\left(\mathrm{e}^{\mathrm{j} \omega}\right)$	1	1	1	0.7	0.2	0.1
$20 \log \mid \mathrm{H}\left(\mathrm{e}^{\mathrm{j} \omega}\right)$	0	0	0	-3.1	-14	-20

2) Using the bilinear transformation $s=\frac{1-z^{-1}}{1+z^{-1}}$, what is the image of $\mathrm{s}=\mathrm{e}^{\mathrm{j} \frac{\pi}{2}}$ in the z -plane?

Bilinear transformation equation: $\quad H_{(z)}=\left.H_{a(s)}\right|_{S=\frac{2\left(1-z^{-1}\right)}{T\left(1+z^{-1}\right)}}$ $\mathrm{s}=\frac{\left(1-\mathrm{z}^{-1}\right)}{\left(1+\mathrm{z}^{-1}\right)}$ or $\mathrm{z}=\frac{(1+\mathrm{s})}{(1-\mathrm{s})}$, where $T=2$
if $S=e^{j \frac{\pi}{2}}=j \quad$ then $z=\frac{1+j}{1-j}=\frac{(1+j)^{2}}{(1-j)(1+j)}=\frac{(1+j)^{2}}{2}=j$

This is a coincidence, i.e. $s=z$.

3) Design a digital filter $\mathbf{H}(\mathrm{z})$, using the bilinear transformation

 method to be used in an A/D-H(z)-D/A structure to satisfy the following analog specifications (use Chebyshev prototype).a) Sampling rate of $60,000 \mathrm{samples} / \mathrm{sec}$
b) Low-Pass filter with -2 dB cutoff at $15,000 \mathrm{~Hz}$
c) Stop-Band attenuation of 10 dB at $30,000 \mathrm{~Hz}$ and greater

$f_{p}=15 \mathrm{kHz}, \quad \mathrm{f}_{\mathrm{s}}=30 \mathrm{kHz}, \quad \mathrm{f}_{\text {samp }}=60 \mathrm{kHz}$
$\mathrm{T}=\frac{1}{\mathrm{f}_{\text {samp }}}=\frac{1}{60 \cdot 10^{3}}$
The equivalent digital specifications will be:
$\omega_{\mathrm{p}}=2 \pi \mathrm{f}_{\mathrm{p}} \mathrm{T}=0.5 \pi \mathrm{rad} / \mathrm{sec}$
$\omega_{\mathrm{s}}=2 \pi \mathrm{f}_{\mathrm{s}} \mathrm{T}=\pi \mathrm{rad} / \mathrm{sec}$
Next prewarp the above frequencies to prepare for the bilinear transformation:

Take $\mathrm{T}=1 \mathrm{sec}$

$$
\begin{aligned}
& \Omega_{\mathrm{p}}^{\prime}=\frac{2}{\mathrm{~T}} \mathrm{TAN}\left(\frac{\omega_{\mathrm{p}}}{2}\right)=2.0 \mathrm{rad} / \mathrm{sec} \\
& \Omega_{\mathrm{s}}^{\prime}=\frac{2}{\mathrm{~T}} \operatorname{TAN}\left(\frac{\omega_{\mathrm{s}}}{2}\right)=\infty
\end{aligned}
$$

Assuming a Chebyshev approximation (Ch I) and $\mathrm{n}=1$ (first order system).

$$
\mathrm{H}_{\mathrm{a}}(\mathrm{~s})=\frac{2.6151}{\mathrm{~s}+2.6151}
$$

Applying the bilinear transform:

$$
\begin{aligned}
& \mathrm{H}(\mathrm{z})=\left.\mathrm{H}_{\mathrm{a}}(\mathrm{~s})\right|_{\mathrm{s}=\frac{1-\mathrm{z}^{-1}}{1+\mathrm{z}^{-1}}} ^{\mathrm{H}(\mathrm{z})=\frac{\mathrm{Y}(\mathrm{z})}{\mathrm{X}(\mathrm{z})}=\frac{0.567\left(1+\mathrm{z}^{-1}\right)}{1+0.133 \mathrm{z}^{-1}}} \\
& \therefore \mathrm{y}(\mathrm{n})+0.133 \mathrm{y}(\mathrm{n}-1)=0.567 \mathrm{x}(\mathrm{n})+0.567 \mathrm{x}(\mathrm{n}-1)
\end{aligned}
$$

4) Design a digital high-pass filter $H(z)$, using the bilinear

 transformation method to be used in an A/D-H(z)-D/A structure to satisfy the following analog specifications, and a sampling rate of $\mathbf{1 , 0 0 0}$ samples/sec.$\Omega_{\mathrm{s}}=199.34 \mathrm{rad} / \mathrm{sec}$
$\Omega_{\mathrm{p}}=927.3 \mathrm{rad} / \mathrm{sec}$
$\alpha_{\mathrm{s}}=20 \mathrm{~dB}$
$\alpha_{\mathrm{p}}=3 \mathrm{~dB}$
a) Find $H(z)$ and plot $-20 \log \left|H\left(e^{j \omega}\right)\right|$ and $\arg H\left(e^{j \omega}\right)$.

Analog to digital conversion:

$$
\omega_{\mathrm{s}}=\Omega_{\mathrm{s}} * \mathrm{~T}_{\mathrm{s}}=\frac{199.34}{1000}=0.19934 \mathrm{rad} / \mathrm{sec} \quad \omega_{\mathrm{p}}=\Omega_{\mathrm{p}} * \mathrm{~T}_{\mathrm{s}}=\frac{927.3}{1000}=0.9273 \mathrm{rad} / \mathrm{sec}
$$

Designing the digital filter: Assume $\mathrm{T}=1$, and prewarp the frequencies to obtain the analog requirements.

$$
\begin{aligned}
& \Omega_{\mathrm{p}}^{\prime}=\frac{2}{\mathrm{~T}} \mathrm{TAN}\left(\frac{\omega_{\mathrm{p}}}{2}\right)=1 \mathrm{rad} / \mathrm{sec} \\
& \Omega_{\mathrm{s}}^{\prime}=\frac{2}{\mathrm{~T}} \mathrm{TAN}\left(\frac{\omega_{\mathrm{s}}}{2}\right)=0.2 \mathrm{rad} / \mathrm{sec}
\end{aligned}
$$

The filter designed above requires a $2^{\text {nd }}$ order Chebyshev I filter.
$\mathrm{n}=2$
$\mathrm{H}_{\mathrm{a}}(\mathrm{s})=\frac{0.501189 \mathrm{~s}^{2}}{0.7079 \mathrm{~s}^{2}+0.645 \mathrm{~s}+1}$ can also be written as $H_{a}(s)=\frac{0.7079 s^{2}}{s^{2}+0.9109 s+1.4126}$
Apply the bilinear equation:
$H(z)=\left.H_{a}(s)\right|_{s=\frac{1-z^{-1}}{1+z^{-1}}}=\frac{0.3914\left(1-2 z^{-1}+z^{-2}\right)}{1-0.7153 z^{-1}+0.496 z^{-2}}$

c) What limitations must be placed on the input signals so that the A/D-H(z)-D/A structure truly acts like a high-pass filter?

The signal must be smaller than the sampling frequency. In most $A / D-H(z)-D / A$ structures filters it is wise to keep the maximum input frequency less than half of the sampling frequency.

5)

a) Design a low-pass digital filter that will operate on sampled data such that the analog cutoff frequency is $200 \mathrm{~Hz}(1 \mathrm{~dB}$ acceptable ripple) and at 400 Hz the attenuation is at least 20 dB with monotonic shape past 400 Hz . The sample rate is 2000 samples/sec.

$$
\begin{array}{ll}
\alpha_{\mathrm{p}}=1 \mathrm{~dB} & \mathrm{f}_{\mathrm{p}}=200 \mathrm{~Hz} \\
\alpha_{\mathrm{s}}=20 \mathrm{~dB} & \mathrm{f}_{\mathrm{s}}=400 \mathrm{~Hz} \\
\mathrm{~T}_{\mathrm{s}}=\frac{1}{2000}=0.5 \mathrm{msec}
\end{array}
$$

Digital filter specifications:
$\omega_{\mathrm{p}}=\Omega_{\mathrm{p}} * \mathrm{~T}_{\mathrm{s}}=\frac{2 * \pi * 200}{2000}=0.2 \pi \mathrm{rad} / \mathrm{sec}$
$\omega_{\mathrm{s}}=\Omega_{\mathrm{s}} * \mathrm{~T}_{\mathrm{s}}=\frac{2 * \pi^{*} 400}{2000}=0.4 \pi \mathrm{rad} / \mathrm{sec}$

Prewarping ($\mathrm{T}=1$):

$$
\begin{aligned}
& \Omega_{\mathrm{p}}^{\prime}=\frac{2}{\mathrm{~T}} \mathrm{TAN}\left(\frac{\omega_{\mathrm{p}}}{2}\right)=0.6498 \mathrm{rad} / \mathrm{sec} \\
& \Omega_{\mathrm{s}}^{\prime}=\frac{2}{\mathrm{~T}} \mathrm{TAN}\left(\frac{\omega_{\mathrm{s}}}{2}\right)=1.4531 \mathrm{rad} / \mathrm{sec}
\end{aligned}
$$

Design of analog filter:
Use Matlab:
» [N,Wn]=cheb $1 \operatorname{ord}(0.6498,1.4531,1,20$, 's')
$\mathrm{N}=$
3
$\mathrm{Wn}=$
0.6498
» $[\mathrm{B}, \mathrm{A}]=\mathrm{cheby} 1\left(\mathrm{~N}, 1, \mathrm{Wn},{ }^{\prime} \mathrm{s}\right)$;
» Has=tf(B,A)
Transfer function:
0.1348
$\mathrm{s}^{\wedge} 3+0.6423 \mathrm{~s}^{\wedge} 2+0.523 \mathrm{~s}+0.1348$
Now apply the Bilinear transformation:
If $\mathrm{T}=1 \rightarrow \mathrm{f}_{\mathrm{s}}=1$
\%\% [Bdigital,Adigital]=bilinear(Banalog,Aanalog,fs);
» [Bdigital,Adigital]=bilinear(B,A,1);
» $\mathrm{Hz}=\mathrm{tf}($ Bdigital,Adigital, 1)
Transfer function:
$0.01147 z^{\wedge} 3+0.03442 z^{\wedge} 2+0.03442 z+0.01147$

$$
z^{\wedge} 3-2.138 z^{\wedge} 2+1.769 z-0.5398
$$

b) For the designed filter in part (a), plot the $-20 \log \left|H\left(\mathrm{e}^{\mathrm{j} \omega}\right)\right| \operatorname{and} \arg \mathbf{H}\left(\mathrm{e}^{\mathrm{j} \omega}\right)$

c) Give the difference equation realization for your filter.

Matlab gives us:
Bdigital $=$

$$
\begin{array}{llll}
0.01147 & 0.03442 & 0.03442 & 0.01147
\end{array}
$$

» Adigital
Adigital $=$
$\begin{array}{llll}1.0000 & -2.138 & 1.769 & -0.5398\end{array}$

Therefore:

$$
\begin{aligned}
& y(n)-2.138 y(n-1)+1.769 y(n-2)-0.5398 y(n-3)= \\
& 0.011147 x(n)+0.03442 x(n-1)+0.03442 x(n-2)+0.01147 x(n-3)
\end{aligned}
$$

e) How many real multiplications and additions are required for the implementation of this form?

We need 5 multiplications for this formula since some of the coefficients are repeated, and we need 6 additions for this formula.

