ECE 480

Fall 2012

Prof. S. Awad

Final Project

"Write out and sign the Honor Pledge"

- 1) It is required to design an equivalent analog filter using a digital filter and other appropriate components. The sampling frequency is $f_{samp} = 20$ kHz and the attenuation (α) specifications of the filter are as follows:
 - $\alpha \le 1$ dB for for the freq. range $0 \le f \le 2000$ Hz
 - $\alpha \ge 60$ dB for the freq. range $f \ge 2650$ Hz.
 - a) Determine the equivalent requirements of the digital filter.
 - b) Design a filter to meet the requirements specified in part a) with the minimum possible order. Give the transfer function and hence the difference equation.
 - c) Determine the poles and zeros.
 - d) Give the direct (canonical) and cascade (product of first and second order systems) structures for implementing the digital filter.
 - e) Investigate the effect of coefficient quantization on the stability and frequency response (magnitude, phase and group delay) for the two structures.
 - f) Determine the minimum number of bits needed to meet the given requirements (attenution) within a tolerance of 1 dB.

Verify your results through simulation.