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Abstract perature for processors without violating timing consttsi

for real-time tasks. For uniprocessor systems, thermakraw
As the power density of modern electronic circuits in-scheduling has been explored to optimize the performance
creases dramatically, systems are prone to overheatindoy exploiting the DTM [9], [16], [26] to prevent the system
Thermal management has become a prominent issue in syBem overheating by adopting Dynamic \oltage Scaling
tem design. This paper explores thermal-aware schedulingDVS) [18], [32]. Wang et al. [27]-[29] developed reactive
for sporadic real-time tasks to minimize the peak temperspeed control with schedulability tests and delay analysis
ature in a homogeneous multicore system, in which heaivhile Chen et al. [12] developed proactive speed control
might transfer among some cores. By deriving an ideallyto improve the schedulability. Bansal et al. [4] developed
preferredspeed for each core, we propose global schedulingan algorithm to maximize the workload that can complete
algorithms which can exploit the flexibility of multicoreapl  in a specified time window without violating the thermal
forms at low temperature. Compared with load-balancingconstraints. Zhang and Chatha [33] provided approximation
strategies, the proposed algorithms can significantly cedu algorithms to minimize the completion time, while each task
the peak temperature by up 80 °C to 70 °C for simulated s restricted to execute at one speed. Chen et al. [11] showed
platforms. that the schedule with the minimum energy consumption is
Keywords: Thermal-aware scheduling, Dynamic voltage an e-approximation algorithm in terms of peak temperature
scaling, Global real-time scheduling, Multicore systems. minimization for periodic real-time tasks. Bansal et al} [5
show that Yao’s algorithm [32] for real-time jobs is24-
1. Introduction approximation algorithm for peak temperature minimizatio
Thermal-aware multiprocessor scheduling has also been
As the power density of modern electronic circuits in- explored recently, e.g., [17], [19], [23], [24]. For mul-
creases dramatically, systems are prone to overheatigf. Hi tiprocessor real-time scheduling, there are typically two
temperature also reduces system reliability and increasashoices of scheduling paradigigiobal or partitioned In the
timing errors [30]. Thermal management has become @lobal scheduling paradigm, a real-time job is permitted to
prominent issue in system design. Techniques for thermigrate between the processors on the processing platform.
mal management have been explored both at design tim@ partitioned scheduling, a job is statically assigned to
through appropriate packaging and active heat dissipatioa single processor in the platform and migration is not
mechanisms, and at run time through various forms ofpermitted. A significant portion of prior research in thelma
Dynamic Thermal Management (DTM). The packaging costaware multiprocessor systems has focused on the partitione
of cooling systems grows exponentially [5]. Recent estgmat scheduling paradigm. For multiprocessor systems without
have placed the packaging cost at $1 to $3 per watt of hedteat transfer among the processors, Chen et al. [11] proved
dissipated [26]. The techniques to reduce the packagirg cothat the largest-task-first strategy (also called worstiéit
of cooling systems (e.g., the amount of cooling hardware ircreasing [2]) has a constant approximation factor for the
the system) or reduce the temperature in architecturalsleveminimization of peak temperature. If heat transfer between
have been studied in [9], [16], [26], [30]. As an alternativetwo cores is taken into account, thermal-aware scheduling
solution, the DTM [9], [16], [26] has been proposed to of real-time tasks has only limited results. Chantem et al.
control the temperature at run time by adjusting the systenfil0] provided a mixed integer linear programming (MILP)
power consumption. Many modern computer architectureormulation for peak temperature reduction by assuming tha
provide system designers with such flexibility. the power consumption of a task on a processor is fixed and
In real-time systems, thermal-aware scheduling aims tdhe heat transfer can be estimated by accumulating the power
maintain safe temperature levels or minimize the peak temeonsumption of the other cores. However, the above thermal-



aware scheduling algorithms focus on partitioned schaduli 2 heat sinks. Heating or cooling is a complicated dynamic

of periodic real-time tasks or a set of job instances withouprocess depending on the physical system. We could ap-

periodicity. Applying partitioned scheduling for reatrte  proximately model this process by applying Fourier’s Law

tasks in a multicore environment is often too conservative[4], [5], [10], [17], [23], [25], [27]-[29], [33], in which he

The focus of this paper is obtaining results for thermalv@va thermal coefficients can be obtained by using the RC thermal

scheduling under the global paradigm. model, such as the approaches in [10], [17], [23], [24]. The
This paper explores thermal-aware scheduling for sporadithermal model adopted in this paper is similar to the recent

real-time tasks to minimize the peak temperature in aapproaches in [10], [17], [24].

homogeneous multicore system. As heat can transfer amongwe define M = {1,2,3,...,M} as the set of the\/

cores and heat sinks, the cooling and heating phenomefgres in the multicore system. Suppose that the thermal
is modeled by applying the Fourier's cooling model in conductance between Corgsand / in M is G;,, where

the literature [10], [17], [23], [24], in which the thermal ¢, , = G, ;. Note that if Coregi and/ have no intersection
parameters can be calculated by the RC thermal modejor heat transfer, thed; , = 0. We assume?; ; be 0 for
Although heat transfer is a dynamic process, it is not difficu any j in M. We assume that the capacitance of Cgiia

to see that the temperature on a core is non-decreasing if they is Cj.

execution speed on a core is fixed. Moreover, it will end up \ye defineH = {1,2,3,..., 1} as the set of thé sinks in

with a steady state, in which the temperatures on all corege myiticore system. Suppose that the thermal conductance
become steady. We show how to approximately minimize the ¢ 5 heat sink dissipating heat to the environmentis
peak temperature at the steady state. This paper proposegg gefine; as the set of heat sinks connected to Core
two-stage approach. In the first stage, we derivepteéerred . g nh0se that the vertical thermal conductance between
speeds for execution to minimize the peak temperature und%forej and Sink% in M, is H; ,, which depends on the
the necessary schedulability conditions of global schiedul  yistance and the Iinkinjg mat'grial. For Sinksand g in
Then, in the second stage, we derive a proper speedug " he horizontal thermal conductance between the sinks
factor to satisfy the sufficient schedulability conditioos is G, 4 WhereG), , = Gy.p. If there is no heat dissipation

global scheduling. The proposed approach is quite generaj, Corej to Sink &, then H,, = 0. We assume the
and can be adopted for global scheduling algorithms tha{apacitance of Sink in M is Ch-.’

have both a necessary condition and a sufficient condition ! .
for the global schedulability of sporadic tasks, such as We define®;(t) and ©,(¢) as the temperature at time

. L . . instantt on Corej and Sinkh, respectively. We assume that
the global earliest-deadline-firse®F) scheduling policy ) I, )
and the global deadline-monotonionf) scheduling policy. the ambient temperatu®, is fixed. We also defin@& ;(¢) as

Furthermore, in our approach, we permit each core to have tge power consumption on Coyeat time'. Informally, the

potentially different speed than the other cores. To evalua [at;ahgf (Z)r\]/\?:rg&lr?s:hrﬁ tt?g:]p;r:]a;:rtehgn Sa(r::t)i:e :)Sf ?r:gpr?égggal
the effectiveness of the proposed algorithms, we use threg P P d y 9

multicore benchmarks with x 1, 2 x 2, 3 x 2, and layouts coefficient minus the cooling coefficients times the qugntit

for simulations. Compared with load-balancing strategiesOf the temperature gradients among the core, its neighgporin

the proposed algorithms can significantly reduce the peaﬁgﬁisérgnfa\l,tvscgﬁages:cglfriugg dh;Satlng/coollng process by

temperature by up t80 °C to 70 °C for simulated platforms.
The rest of this paper is organized as follows: Section 2~ de;(t) =W, (t) — ZhEH H;n(0,(t) — O4(1))

shows the system model and problem definition. Section 3 Todt

presents how to derive the preferred speeds of cores for min- - ZEGM Gj.0(0;(t) — Op(t)), (1a)
imizing the peak temperature under the necessary schedu- Aoy (1)
lability conditions of global scheduling. Section 4 desve Ch =— G (O4(t) — 0,)
. i dt
the feasible speed scheduling based on the preferred speeds
Section 5 presents performance evaluation over simulated B ZjeM Hijn (On(t) = ©;(2))
multicore platforms. — quH Gyn(On(t) — O4(t),  (1b)
2. System Model and Problem Statement where 29 and 99:() are the derivatives of the temper-

atures on Corg and the heat sink, respectively. All these

. . ; ., parameters can be derived by applying the RC thermal model
Thermal model We consider a multicore system, in which for a given platform, e.g., [10], [17], [24].

each core is a discrete thermal element. In the system,
there is a set of heat sinks on top of the cores. Thos®ower consumption model We explore thermal-aware
heat sinks generate no power, and are used only for heatheduling on cores, each with an independent DVS capa-
dissipation. Figure 1 is an example layout fbcores with  bilities (referred to as DVS cores). As shown in the literatu



The utilization of taskr; is denoted byu; « e;/p;. The total

system utilization iSugum (T) = ZneT u;. The densityof

def

7; is denoted by); = e;/ (min ((d;, p;)). The max density
(among the first tasks ofT) are respectively defined as:

5max(T7 k) d:ef mglx{(;z} (3)
The demand-bound functiodbf(r;, ¢) quantifies the maxi-
mum cumulative execution cycles ef that must execute
Figure 1: An example fo# cores. over any interval of length. More specificallydbf(r;,¢) is
the maximum cumulative execution of jobs gfthat have
both arrival times and absolute deadlines in any interval of
[1], [10], [18], the power consumptio’; on Corej is  lengtht. In [8], it has been shown that for a sporadic tagk

contributed by: the demand-bound function may be computed as follows:
» The dynamic power consumptiohg,, ; mainly re- o t—d;
sulting from the charging and discharging of gates on  dbf(7;, ) = max (0, ({ o J + 1) ei) : (4)

the circuits, which can be modeled Ny, ; = as;-y, ) _
wheres; is the execution speed of Cojeand bothy Using the demand-bound function, we may compute the

(< 3) and« are constant. maximum “load” that firstk tasks of T places upon the
« The static power consumptioh,,, ; mainly resulting ~ Processing platform:

from the leakage current. The static power consumption Zz_c dbf(ri, )

function is a constanf2 when the leakage power load(T, k) = t>a§<{ =1 " > } (5)

consumption is irrelevant to the temperature [11], [31]. =

When the leakage power consumption is related tqn generaljoad(r, k) may be determined exactly in pseudo-
the temperature, it is a super linear function of thepolynomial time or approximated to within an arbitrary

temperature [20]. As shown in [10], [21], the static additive error in polynomial time [14].
power consumption could be approximately modeled

by a linear function of the temperature with roughly Scheduling algorithms Each DVS core on our platform
5% error. Hence, the static power consumption in thisM is permitted to execute at a potentially different speed
paper is as follows®¥ ., ; = 60; +Q, where®; is the  than the other cores. Thmiform multiprocessor modét.g.,
absolute temperature on Cojeand boths and () are ~ see [15]) is a machine-scheduling abstraction which appro-
non-negative constants. priately characterizes DVS multicore processors exegw@in
As a result, the following formula is used as the overallqifferent speeds. In the “’?‘form multiprocessor model,eg:or
power consumption on Corgof speeds; with temperature 7 executes at a ratg;. Any.jol_a (regardiess of the generating
0. ' task) executing upon Corewill completes; x ¢t cycles over
j U= Wy + oy = as] 4 Q450 2 v time interval of length.
For our current work, we consider two priority-driven
Task model In this paper, we consider jobs generated byglobal scheduling algorithmsbprF and bm. Upon uniform
a sporadic task systerfe2], T & {m1,7,...,7n}. Each  multiprocessor platforms, priority-driven scheduling rk®
sporadic taskr;, is characterized bye;, d;, p;) wheree; is by assigning each job a priority and executing, at any
the required execution cycles, is the relative deadling, is  time instant, the (at most)/ highest-priority active jobs.
the minimum inter-arrival separation parameter (hisedlyc  Furthermore, among the set of at mddt highest-priority
called the period). The interpretation of sporadic tasks  active jobs, higher-priority jobs are favored over lower-
that the first job a task; may arrive at any time; however, priority jobs, by executing the highest-priority jobs upon
subsequent job arrivals are separated by at jgdstne units.  the fastest processors. Note that, if there&re M) active
After every job arrival for task; the processor must execute jobs at timet, then only the: fastest processors execute jobs
e; cycles of the job withind; time units. If, at any given at timet; the M — a slowest processors are idled at time
time ¢, a job has execution remaining, the job is said tot. The (global)EDF scheduling algorithm assigns priority
be active at time¢. For this paper, we assume tHEtis a to jobs in inverse proportion to their absolute deadline:
constrained-deadlingask system; that isd; < p; for all  the earlier a job’s deadline the greater its priority. The
7, € T. Furthermore, we will also assume that tasks argglobal) bm scheduling algorithm assigns priority to each
indexed in non-decreasing order of their relative deadlinejob proportional to the inverse of its relative deadlinee th
d; <d;gq forall 1 <i< N. smaller a job’s relative deadline the greater its priority.
We define the following metrics on task system workload.We will summarize some current results concerning global



scheduling of sporadic tasks upon uniform multiprocessorsiotations: for anyl < j # /< M and1 < h # g < h,

in Section 3.2.

L . . Ay = 6=  Hin—Y_ G,
Problem definition Given a systenil' of sporadic real- 4 _ c henr teM
time tasks, thehermal-aware global schedulingroblem is e = Ml
to find an assignment of execution speeds on the multicore  Ajm+n =  Amtn,j = Hjn,
system such t_hat all the ta_sks may complete by their Ay pn = Gt — Z Hjp — Z Gyh,
spective deadlines by applying the global scheduling golic JEM geH
(eithereDF or bM) and the peak temperature is minimized. “*M+h,M+g = Gouh-

This paper obtains an execution-speed assignment approxhen, we know that
mation algorithm that runs in polynomial time. Without loss

* 24
of generality, we assume that the initial temperature isaéqu A At @1 O‘S; +§
to the ambient temperature. Az e Aoy 03 asy +
3. Deriving Preferred Speeds Ama o Ay Oy | =—| esut+Q |,
Avt11 0 AMyig Ohi1 Gfe,
This section presents how to derive the preferred spee(k : : ; .
of each core so that the peak temperature is minimized\ A;. Any oy Gto,

while the necessary schedulability conditions are satisfie where i is M + h. For notational brevity, let A] be

B o e ule et 1+ -imensional mar o, i which il e
P Y Pe o ments in matrix fl] are constants. Le® be the vector

tempe_:rature of a speed asagnmg_nt. The'?’. in Section 3'gf the peak temperatures of the cores and the sinks in the
we will summarize the schedulability conditions of global

scheduling in uniform multiprocessor systems, following above equation. Lef be the transportation of the\/ + h)-

M h
the derivation of preferred speeds based on the necessary

- 0. 0at t p
schedulability conditions for global scheduling of spdcad dimensional vectof(2, €, ..., G10,,...,G'0,). Let P
real-time tasks in Section 3.3. be the transportation of théM + h)-dimensional vector

of dynamic power consumption on these cores, where the
_ power consumption of thel{ + h)-th element inP is 0 for
3.1. Thermal Parameters Reformulation 1<h<h.
With these notations, the above equation can be simplified

Suppose that Corgis assigned with a constant speed ~ a8s[A]© = —P — B. Therefore, we have
for its execu_tion (and also for i_dl_ing) all the time. If each 6 — _[A]—l(ﬁ+ g)’ (6)
core runs at its constant speed, it is clear that the temperat
is non-decreasing on each core. Moreover, it will end upvhere[A]~! is the inverse of matrixA]. Since matrix.A] is
with a steady state, in which the temperatures on all coreenly related to the hardware implementation of the mulécor
become steady. Therefore, the peak temperature of Coreplatform, we can calculate its inverggl|~! off-line. For
is no more than the temperatu@, which is the solution notational brevity, lefV] be the inverse matrix ofA]. For

to Equation % — 0. Similarly, we can obtain the peak VectorB, B, is the value at thei-th row. For matrix V],

temperatureéd? of Sink h. By reformulating (1), we know Vi is its element at thej-th row and the/-th column.
that at the steady state, for gl Hence, after assigning the execution speed of thésmres,

the peak temperature can be easily obtained with the above
0 = ¥; - Z H;n(©F —©3) — Z Gj. (0] —07) formula.
heH tem We now provide an example to show why speed scaling
as] +Q+ (0 - Zhe?—t H;p— ZéeM Gj0)O; matters f(_)r minimizing the pe_ak temperature. Consider a
system with4 cores as shown in Figure 1 with matrix{|

* *
+ ZheH Hjn®) + deM Gj.Op defined as follows:
and, for the heat sink, ~0.261  0.009  0.004 0.000 0.200  0.050
0 oo —6 (o — 6 0.009 —0.121 0.000  0.004  0.050  0.060
= ~G(0i =) - ZjeM in (O} — ©3) 0.004  0.000 —0.261 0.009  0.200  0.050
-y _, Gon(6 - ©;). 0.000  0.004 0.009 —0.121 0.050  0.060
g

0.200 0.050 0.200 0.050 —1.725  0.300
We can simplify the above equations by the following 0.050  0.060 0.050  0.060 0.300 —1.445



Moreover, suppose that vector B is and
[0.1,0.1,0.1,0.1,280.4,280.4]7 and o is 1. The peak Omax(T, 1) < s7(1)- (23)
temperatures reached on these four cores by executing o

at speed1.8 for all cores are73.1,102.6,73.1,102.6
°C. Assigning the speed of the four cores 2, 1.5,
2.1, and 1.5 leads to a solution with peak temperatures

87.5,83.5,87.5,83.5 °C on these four cores. The above  pqr the rest of this section, we present how to derive the
speed assignments provide the same computation capabilifgyer hound of the peak temperature among all cores and
but are Wlth different peak temperatures. As a resu“preferred speeds by solving non-linear programming opti-
speed assignment must be done carefully so that the pegka|ly to minimize the peak temperature while the necessary
temperature can be reduced. schedulability conditions are satisfied. However, as the-ma
imum density constraint in (13) is a non-linear constrairg,

will first derive the peak temperature of the platform for a
specified Core such that,,.x(T, N) < s, < s.(1). Then,

In this subsection, we summarize some recent results okgmong thesel/ solutions by setting' = 1,2, ..., M, the
tained by Baruah and Goossens [6], [7] for global schedulingorresponding speeds with the minimum peak temperature
upon uniform multiprocessor platforms, in which we will are returned as the preferred speeds.
develop our approach based on their results (et denote Based on the necessary conditions of schedulability in
thei'th fastest processor (ties broken arbitrarily) of multieo | emma 2 and the peak temperature formula in Section
platform M; that is, sx(1), Sr(2), - - - Sr(n) are the speeds 3.1, the lower boundd?, for a specifiedr, of the peak
of the processors ofM, in non-increasing order. Some temperature can be obtained by solving the following non-

important metrics [15] on uniform multiprocessor platfam Jinear programming (denote8YSTEM([A], B, P, T, r)):
are:

3.3. Optimization for Preferred Speeds

3.2. Preliminary Results for Global Scheduling

‘ v [ 0 S0
SAM>f§j%@,Mwofn?x{—tii—i}.(n

j=1 87"(5)

We will use the convention thei (M) equals zero.

Sufficient conditions for global scheduling of sporadic
task systems upon uniform multiprocessors are known:

mnimi def M+h
minimize ®* = max Vilas) + B
" 1<j<M+h {Ze—l Ge(as) + By)

. M
subject toload(T, N) < 24:1 e,
5max(Ta N) S Sr,

$¢>0,1<0<M+h. (14)

Lemma 1 ( [6], [7]): A constrained-deadline sporadic Obviously, an optimal solution to (14) will set,; to zero

task systenI' is globally S-schedulable § is either EDF
or DM) upon a processing platforovt, if

mmmwséwmuwwWMmmmmmm,
(8)
fori=Nif S=€eprFandforalli (1 <i < N)if S =DM,
where
p(M,T,0) = Spy(M) = A(M)dmax(T,0),  (9)
v(M,T,i) = max{l:S¢(M) < (M, T,i)},(10)

wherej = 1,..., k. Thus, we do not specify the constraints
of the sinks in the above system.

To our best knowledge, there is no explicit form for an
optimal solution of SYSTEM([A], B, P, T,r). Here, we
adopt the approach proposed by Dutta and Vidyasagar [13]
by solving the above constrained non-linear programming
with a transformation to unconstrained non-linear program
ming. Due to space limitation, we will only summarize the
procedure as shown in the appendix, while the proof of
optimality can be found in [13]. Moreover, for a given et
of tasks, thdoad(T, N) is irrelevant to the speed settings.

and For the rest of this section, we assume tlad(T, N)
o 1, if S=EDF is known a priori by applying the exact or approximated
¢s = 9 if S— DM (1) methods in [14]. o
’ Then the minimum amongSYSTEM([A], B, P, T, r) :
U r=1,...,M} is the lower bound?, of the peak tem-
Additionally, necessary conditions for global schedulingperature. Denote,,;, & argmin{©* : r = 1,..., M} and
of sporadic task systems can be obtained usiagl(T, ) * ®9r Let My be the system corresponding to
and dmax (T, 1): 7, With the derived speeds, s, .. ., sas. The following
Lemma 2 ( [6]): If a task systenl is globally schedula-  theorem shows thad?,,, is the lower bound of the peak

ble (eithereDF or bM) upon a processing platforiv, then
foralli (1 <i<N),

load (T, i) < Sy (M), (12)

temperature for feasible speed schedufing

1. All proofs of the lemmas and the theorems and the corefiaare put
in Appendix (unless otherwise stated).



Theorem 1:0; . is a lower-bound on the peak tempera- 4.2. Deriving a Better Feasible Speed Scheduling
ture for task systerT schedulable (by any algorithm) upon

platform M with thermal characteristics expressed by matrix The above analysis did not specify the task workload. For

[A] and vectorsB and P. Ll specific task workload, we can further improve the feasible
speed scheduling. LeM,,;, again be the “preferred-speed”
4. Feasible Speed Scheduling processor determined from the previous section. We will

now describe an algorithm for more precisely determining

Given M, determined by the preferred-speed calcu-& Processop - M, such that3 is minimized. The next
lation of Section 3.3, we now describe the next phase ofwo lemmas give upper and lower bounds on the vaiue
deriving feasible speed scheduling. In this phase, we wilmust satisfy in order fofl' to be global schedulable upon
obtain a constant multiplicative factor by which procegsin 5 - Mmin-
platform M ,i,'s speed would need to increase to guarantee Lemma 4:Given T, M, and3 > 1, if v(8 - M, T,1)
that T is globally schedulable. equals? wherel € {0,1,...,M — 1}, then

Let - M denotg the pla}tform where each #fl’'s M T(M, T, (,i) < B <T(M,T,0+1,i) (16)
processors has their speed increase by a constant factor
1; i.e. the speed of each procesgdn 3- M is 3-s,. The  where

following lemma states some properties®fM (the proof AMM)-Eimax (T _

) X ) et | T A S ) 0<l<M-1

is straightforward and omitted for space): (M, T, ¢i)=< "M ¢ . a7)
Lemma 3:5(3-M) = 3-S¢(M) andA(8-M) = A(M), 00, otherwise.

forall /=1,..., M. O m

With the above notation, our objective for the feasible Gjven the input task workload, by Lemma 3 we may
speed scheduling is to obtain a constant 1 such that  simply solve (8) in Lemma 1 as shown in the following

T is globally schedulable (bgDF or bM) upon3 - Mumin-  lemma (the proof is straightforward and omitted for space):
We propose two methods to compute sucli.aThe first Lemma 5:For global schedule$ (either EDF or bm), if
method derives a pessimistic bound on the speed-up requirel satisfies (8), then there exigts {0,1,...,M—1}, equal

for bothEDF andbM. The second method gives an iterative 4, (B - M,T,i), such that
algorithm which improves upon this pessimistic bound. T

B> T(8, M, T, L,i), (18)
4.1. Deriving a Pessimistic Feasible Speed Schedul- for ; = N if S = epFand for alli (1 <i < N) if S = bm,
ing where
N N def 1 .
A pessimistic bound o8 for global EDF and bM may (S, M T, 48) = Sy (M) (9s - load(T, i)

be achieved by simply deriving /@ that satisfies Lemma 1. +(AM) + 0)bmax (T, 1)), (19)
The following theorem (which follows a similar argument

to Lemma 5 in [6]) obtains such a bound. and¢s is defined in (11). -
Theorem 2:For sporadic task systef and My, T is Next we aim to find the minimur that satisfy Lemmas 4
globally S-schedulable § is either EDF or bm) upon 3s - @nd 5 upon a processer Muiu. Sincel’() is an increasing
Mumin WhereBs is defined as function with respects td, then we only need to find the
minimum ¢ satisfying both lemmas, which is defined as
[SM(M)(SW(I) + ¢s5r(ar)) — MM)sx(1)Sr(ar) loini 2 min{f e {0,1,..., M — 1} :

+( (Sar(M)(521) + bs52a1)) — AM)sx(1)sxan))” (15) ['(Muin, T, ) <T'(S, Muin, T, £, )
1 -1 .

_4SM(M))\(M)S72T(1)S7T(M)) 2} (2SM(M)S72T(1\,{)) = F(Muin, T4 1)} (20)

Then the minimumg can be obtained as the following

where¢s is defined in (11). O  theorem (the proof is straightforward based on the above
Using the above theorem, we can obtain an approximatioanalysis and omitted for space):

ratio (in terms of the ideal-processor speeds) for the peak Theorem 4:For sporadic task systeM and M, T is

temperature of the system, using the speed factor in (15): globally EDF-schedulable upoWepr - Mmin Where Sepg
Theorem 3:The peak temperature @fs - My, (Where is defined as

S is eithereDF or DM) is at most a factor of; greater than ot

the peak temperature of the optimaf-processor platform Pepr = I'(EDF, Muin, T, imin, v, N); (21)

on which T is globally schedulable. O Tis globallypm-schedulable upofipy - Mmin WhereSpm



is defined as For each task set, we evaluate the peak temperatures of
det . ) the resulting speed assignments of AlgorithmLBNCED
Pom = ie{LI%?fN}{F(DM’Mmi”’T’émi“’i’Z)}’ (22)  and Algorithm PTO. For a specified platform, we conduct
A ] ) ) ) ) the peak temperature for two different settings, based en th
whereI'() is defined in (19) andi,; is defined in (20).  humbers of tasks of the input task set and the values of
Hl workload load(T, N). For each configuration in a setting,
the average value of the peak temperatures is reported.
5. Performance Evaluation Figure 2 presents the average peak temperatures of the
evaluated algorithms for the platforms under differentkvor

This section provides performance evaluations of thd®@d Settings. As shown in Figure 2, the average peak

proposed algorithm for speed assignments under global redf MPerature ?‘enerﬁlly |nckr|easae§ \1vhen the \l/vorkltg]gﬁdemand
time scheduling. Due to space limitation, we will only 'ncreases. When the workload is low, e.g., less Z

present the simulation results by adopting the glabak the difference between the evaluated_ algorithms is not too
scheduling policy for task scheduling. The results foun much becguse the power consumptions on Fhe cores are
scheduling are similar. In the simulations, we evaluate twd'ot very high. H.owever, when .thg_workload is_higher, a
different algorithms defined as follows: good speed aSS|gnment. can significantly reduce the pe_ak
) ] ] ] temperature, as shown in Figure 2 when the workload is
. Algor{thm Balanced first derives spged assignment BY more thant.5 GHz. By applying the algorithm proposed in
applying the necessary schedulability condition so that,ig paper, we can reduce the average peak temperature by
the speeds are as balanced as pc_>ssible, and then appli@Smost30°C for benchmarke x 2 in Figure 2(a), at most
Theorem 4 for speed determination. _ 70°C for benchmarkt x 1 in Figure 2(b), and at mo$5°C
. Algorlthm PTO: f|r§t_ applle_s sequent_lal quadratic pro- for benchmark3 x 2 in Figure 2(c).
gramming for deriving optimal solutions of (14), and  gjgyre 3 jllustrates the results by varying the number of
then applies Theorem 4 for determining the resultingiaqks. For a specified workload, the less the number of tasks
speeds. of the input task set, the larger the density/workload of
We evaluate the performance in terms of peak temperaturgae given tasks is. Therefore, according to the generator of
of the resulting task partition on three different hardwaretask sets, when the task number is fewer, the average peak
platforms, in which their layouts arg2x 2, 4 x 1, and3 x temperature is higher in both evaluated algorithms forhel t
2 with 4, 4, and 6 cores, respectively. The correspondingplatform benchmarks. Compared to AlgorithBalanced
thermal parameters are determined based on the layout. Thplying Algorithm PTO proposed in this paper can reduce
ambient temperature in the simulations is assume@0as the average peak temperature by at nigstC for a fixed
°C. The power consumption functioh(s,, ©;) is s; +0.1+ number of tasks.
0.0020, Watt, where©, is the absolute temperature of Core
£ and s, is with unit of GHz. 6. Conclusion
We use synthetic sporadic real-time tasks for evaluating
the performance, in which the deadline of a task is earlier Thermal constraints are becoming increasingly severe for
than its period. The task set generator is based on thmany systems as chip density increases and the size of the
approach developed by Baker [3]: An initidl + 1 tasks system decreases. Heat dissipation in multicore platforms
are pseudo-randomly generated and added to the collectidarther complicates satisfying thermal constraints duthto
of tasks. Subsequent task systems add tasks to this initislansfer of heat between cores on the same chip. In order
set until the task system is no longer feasible updn to respect these constraints, system designers may scale-
unit speed processors, at which time a new seflbf- 1 back the power-consumption to reduce the peak tempera-
tasks is randomly generated. Each tashn synthetic task ture of the system. However, in real-time, thermal-aware
system had its period parametgruniformly chosen from systems the system designer must simultaneously ensure
[1,1000]. A utilization parameter;; was generated for each that temporal constraints are still satisfied. The focuswf o
task drawn from the inverse exponential distribution fromcurrent research is to address the challenge of minimizing
0.0 to 1.0. A task’s deadline is chosen uniformly from thethe peak-temperature for a multicore platform scheduled by
interval [e;, p;]. In our experiments, we generat800 task  a multiprocessor real-time scheduling algorithm.
sets with different numbers of tasks and different values of In this paper, we focused upon global scheduling of
load(T, N). Moreover, for deriving the preferred speeds, sporadic task systems according to either o or DM
we ignore the known parametkrad(T, N) and apply the scheduling algorithms. Under this setting, we proposed an
approximated calculation proposed in [14] to efficiently approach which first derives the preferred speeds of thescore
derive the upper bound dbad(T, N) with less thanl% by using necessary conditions for multiprocessor schedu-
error. lability. The resulting platform executing at the prefetre
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Next, starting fron@ro, we approach the optimal solution ¢sl0ad(T, N) = < (53 - Mumin, T, N)

of SYSTEM([A], B, P, T,r) step by step. That is, for the - %&TMW - 1) Smax (T, N)
k-th step, we will derive a new lower boung; ; based < (since for alla, [a] — 1 < «)
on 9’;7,€_1..Specifically, gt thek-th st_ep, we first minimize psload(T, N) < (B - Mumin, T, N)
the following unconstrained non-linear programming by b M TN ) 5o
applying the sequential quadratic programming method: - ( B-s(m) ) max (T, N)
9 =
Zﬁth [max{o ZM+h Vie(as] + Be) — 9:,;@71}} psload(T,N) < pu(B- Mmin, T, N) (1 _ W)
+é€1 [max {0, dmax (T, N) — 57} (24) e

(by the definition ofy)

d)sload(T, N) [SIVI (/8 : Mmin) - A(/8 ) Mmin)(smax(T7 N)]
wheree; ande; are def|ned positive constants related to the 1 — Smax(T,N)

rate of convergence fro@; , , to ©; ;. In general, the con- % ( B )
stantse; ande, should be set as Iarge numbers for deriving (by Lemmas 3

precise results. Suppose that the optlmal solutlon of (4) i #sload(T, N) z (8- Sar(Mumin) — MM min)dmax (T, N))
T, k. Then, we can sed; ; as©;, +( ) . The above a ’

+ea [load(T, N) — 37 342,

IA

B-Sx (M)

Smax (T,N)
procedure repeats un(HT—)2 is a small number. As shown x (1 T Bsaqan )
in [13], the resulting speed assignment with the converged _
©r ,, is the optimal solution oSYSTEM([A], B, P, T,r), = (CO“Stra'”tS('oad(T’N) < Sy (Mmin))
when €1 ande, are large numbers. A (5max(T,N) < $x(1) O SYSTEM))

6sSv(Mmin) < (ﬂ - Sy (Mmin) — )\(Mmin)sw(l))

Proof of Theorem 1 % (1 _ ﬁ«#)

S (M)

Let M be the platform de_fineq by processor §peeds sﬂM)SM(Mmin)ﬁz = [(sx(1) + ¢55r(ar)) S (Mumin)
s1,82,...,8m. By Lemma 2, if T Is schedulable (either FAMunin) $x(1) 52008 + A(Mumin)s2 (1) > 0.
EDF or bMm) upon M thenload(T,i) < load(T,N) <
Z%l se = Syu(M) and dumax(T,i) < Gmax(T,N) < Using standard techniques for solving quadratic equations
ma;?il{sﬂ(z)} forall i =1,...,N. Thus, by the first and We obtaings equal to the solution of the final inequality
second constraints @YSTEM([A], B, P, T, r), the set above.

{M|s1,82,...,5m Proof of Theorem 3

are feasible values @YSTEM([A], B, P, T, r)} .
According to Theorem 1, a lower-bound on the peak

must contain the set of all processafel with s, >  temperature of such ak/-core system that can scheddle
dmax(T,N) where T is globally schedulable upooM.  Observe that in (14)--V;, is a positive constant. Thus, by

Thus, the union of all feasible values @f,s2,...,snm  increasing any; by s will increase the peak temperature
for SYSTEM([A], B, P, T,r) overr = 1,...,M must by at most a factor Oﬁg

contain the set of allM/-processor platforms upon which
T is globally schedulable. It follows thab? . is a lower Proof of Lemma 4
bound on the peak temperature.
GivenT, M, andg > 1, let ¢ equalv (5 - M, T,i). We
will consider two cases:

Proof of Theorem 2 If 0<¢< M — 1, then the definition of implies,
X . . , . be A Se(B- M) <p(B- M, T,i) < Sea (8- M)

The satisfaction of Lemma 1 is sufficient far to be A- . Sy (M St (M) = AM) o (T, 3) < 8- Sort (M
schedulable upon platformi - M,,;,. That is, we will show - ﬂA(MiE , )(;i)ﬂ ml )MM)(E )(T 5 (T,9) <5 Sera (M)
the following condition holds: = Su—so <8 S 5 =5, (A

¢sload(T,N) < p(B- Mmin, T,N) The final implication implies the lemma by substitutiiig
—v(B + Mumin, T, N)dmax (T, N) into the right-hand side of both inequalities above.
. (Mo TN If £= M — 1, then the definition of implies Sxa;—1 (6 -
= (S'”Ce Pﬁ#w -1 M) < u(B- M, T,i). By the same implications above, we

Omax (T3
have 3 > % Thus,I'(M, T, M — 1,i) <

v(B- Mmian7N)) B3 < oo, and the lemma follows.



