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Abstract

As the power density of modern electronic circuits in-
creases dramatically, systems are prone to overheating.
Thermal management has become a prominent issue in sys-
tem design. This paper explores thermal-aware scheduling
for sporadic real-time tasks to minimize the peak temper-
ature in a homogeneous multicore system, in which heat
might transfer among some cores. By deriving an ideally
preferredspeed for each core, we propose global scheduling
algorithms which can exploit the flexibility of multicore plat-
forms at low temperature. Compared with load-balancing
strategies, the proposed algorithms can significantly reduce
the peak temperature by up to30 ◦C to 70 ◦C for simulated
platforms.

Keywords: Thermal-aware scheduling, Dynamic voltage
scaling, Global real-time scheduling, Multicore systems.

1. Introduction

As the power density of modern electronic circuits in-
creases dramatically, systems are prone to overheating. High
temperature also reduces system reliability and increases
timing errors [30]. Thermal management has become a
prominent issue in system design. Techniques for ther-
mal management have been explored both at design time
through appropriate packaging and active heat dissipation
mechanisms, and at run time through various forms of
Dynamic Thermal Management (DTM). The packaging cost
of cooling systems grows exponentially [5]. Recent estimates
have placed the packaging cost at $1 to $3 per watt of heat
dissipated [26]. The techniques to reduce the packaging cost
of cooling systems (e.g., the amount of cooling hardware in
the system) or reduce the temperature in architectural levels
have been studied in [9], [16], [26], [30]. As an alternative
solution, the DTM [9], [16], [26] has been proposed to
control the temperature at run time by adjusting the system
power consumption. Many modern computer architectures
provide system designers with such flexibility.

In real-time systems, thermal-aware scheduling aims to
maintain safe temperature levels or minimize the peak tem-

perature for processors without violating timing constraints
for real-time tasks. For uniprocessor systems, thermal-aware
scheduling has been explored to optimize the performance
by exploiting the DTM [9], [16], [26] to prevent the system
from overheating by adopting Dynamic Voltage Scaling
(DVS) [18], [32]. Wang et al. [27]–[29] developed reactive
speed control with schedulability tests and delay analysis,
while Chen et al. [12] developed proactive speed control
to improve the schedulability. Bansal et al. [4] developed
an algorithm to maximize the workload that can complete
in a specified time window without violating the thermal
constraints. Zhang and Chatha [33] provided approximation
algorithms to minimize the completion time, while each task
is restricted to execute at one speed. Chen et al. [11] showed
that the schedule with the minimum energy consumption is
an e-approximation algorithm in terms of peak temperature
minimization for periodic real-time tasks. Bansal et al. [5]
show that Yao’s algorithm [32] for real-time jobs is a20-
approximation algorithm for peak temperature minimization.

Thermal-aware multiprocessor scheduling has also been
explored recently, e.g., [17], [19], [23], [24]. For mul-
tiprocessor real-time scheduling, there are typically two
choices of scheduling paradigm:globalor partitioned. In the
global scheduling paradigm, a real-time job is permitted to
migrate between the processors on the processing platform.
In partitioned scheduling, a job is statically assigned to
a single processor in the platform and migration is not
permitted. A significant portion of prior research in thermal-
aware multiprocessor systems has focused on the partitioned
scheduling paradigm. For multiprocessor systems without
heat transfer among the processors, Chen et al. [11] proved
that the largest-task-first strategy (also called worst-fitde-
creasing [2]) has a constant approximation factor for the
minimization of peak temperature. If heat transfer between
two cores is taken into account, thermal-aware scheduling
of real-time tasks has only limited results. Chantem et al.
[10] provided a mixed integer linear programming (MILP)
formulation for peak temperature reduction by assuming that
the power consumption of a task on a processor is fixed and
the heat transfer can be estimated by accumulating the power
consumption of the other cores. However, the above thermal-



aware scheduling algorithms focus on partitioned scheduling
of periodic real-time tasks or a set of job instances without
periodicity. Applying partitioned scheduling for real-time
tasks in a multicore environment is often too conservative.
The focus of this paper is obtaining results for thermal-aware
scheduling under the global paradigm.

This paper explores thermal-aware scheduling for sporadic
real-time tasks to minimize the peak temperature in a
homogeneous multicore system. As heat can transfer among
cores and heat sinks, the cooling and heating phenomena
is modeled by applying the Fourier’s cooling model in
the literature [10], [17], [23], [24], in which the thermal
parameters can be calculated by the RC thermal model.
Although heat transfer is a dynamic process, it is not difficult
to see that the temperature on a core is non-decreasing if the
execution speed on a core is fixed. Moreover, it will end up
with a steady state, in which the temperatures on all cores
become steady. We show how to approximately minimize the
peak temperature at the steady state. This paper proposes a
two-stage approach. In the first stage, we derive thepreferred
speeds for execution to minimize the peak temperature under
the necessary schedulability conditions of global scheduling.
Then, in the second stage, we derive a proper speedup
factor to satisfy the sufficient schedulability conditionsof
global scheduling. The proposed approach is quite general,
and can be adopted for global scheduling algorithms that
have both a necessary condition and a sufficient condition
for the global schedulability of sporadic tasks, such as
the global earliest-deadline-first (EDF) scheduling policy
and the global deadline-monotonic (DM) scheduling policy.
Furthermore, in our approach, we permit each core to have a
potentially different speed than the other cores. To evaluate
the effectiveness of the proposed algorithms, we use three
multicore benchmarks with4× 1, 2× 2, 3× 2, and layouts
for simulations. Compared with load-balancing strategies,
the proposed algorithms can significantly reduce the peak
temperature by up to30 ◦C to70 ◦C for simulated platforms.

The rest of this paper is organized as follows: Section 2
shows the system model and problem definition. Section 3
presents how to derive the preferred speeds of cores for min-
imizing the peak temperature under the necessary schedu-
lability conditions of global scheduling. Section 4 derives
the feasible speed scheduling based on the preferred speeds.
Section 5 presents performance evaluation over simulated
multicore platforms.

2. System Model and Problem Statement

Thermal model We consider a multicore system, in which
each core is a discrete thermal element. In the system,
there is a set of heat sinks on top of the cores. Those
heat sinks generate no power, and are used only for heat
dissipation. Figure 1 is an example layout for4 cores with

2 heat sinks. Heating or cooling is a complicated dynamic
process depending on the physical system. We could ap-
proximately model this process by applying Fourier’s Law
[4], [5], [10], [17], [23], [25], [27]–[29], [33], in which the
thermal coefficients can be obtained by using the RC thermal
model, such as the approaches in [10], [17], [23], [24]. The
thermal model adopted in this paper is similar to the recent
approaches in [10], [17], [24].

We defineM = {1, 2, 3, . . . , M} as the set of theM
cores in the multicore system. Suppose that the thermal
conductance between Coresj and ℓ in M is Gj,ℓ, where
Gj,ℓ = Gℓ,j . Note that if Coresj andℓ have no intersection
for heat transfer, thenGj,ℓ = 0. We assumeGj,j be 0 for
any j in M. We assume that the capacitance of Corej in
M is Cj .

We defineH = {1, 2, 3, . . . , ~} as the set of the~ sinks in
the multicore system. Suppose that the thermal conductance
of a heat sink dissipating heat to the environment isG†.
We defineHj as the set of heat sinks connected to Core
j. Suppose that the vertical thermal conductance between
Core j and Sinkh in Hj is Hj,h, which depends on the
distance and the linking material. For Sinksh and g in
Hj , the horizontal thermal conductance between the sinks
is Gh,g, whereGh,g = Gg,h. If there is no heat dissipation
from Core j to Sink h, then Hj,h = 0. We assume the
capacitance of Sinkh in H is Ch.

We defineΘj(t) and Θh(t) as the temperature at time
instantt on Corej and Sinkh, respectively. We assume that
the ambient temperatureΘa is fixed. We also defineΨj(t) as
the power consumption on Corej at timet. Informally, the
rate of change in the temperature on a core is proportional
to the power consumption times the quantity of the heating
coefficient minus the cooling coefficients times the quantity
of the temperature gradients among the core, its neighboring
cores, and its heat sinks. The heating/cooling process by
Fourier’s Law can be formulated as

Cj

dΘj(t)

dt
=Ψj(t) −

∑

h∈H
Hj,h(Θj(t) − Θh(t))

−
∑

ℓ∈M
Gj,ℓ(Θj(t) − Θℓ(t)), (1a)

Ch

dΘh(t)

dt
= − G†(Θh(t) − Θa)

−
∑

j∈M
Hj,h (Θh(t) − Θj(t))

−
∑

g∈H
Gg,h(Θh(t) − Θg(t)), (1b)

where dΘj(t)
dt

and dΘh(t)
dt

are the derivatives of the temper-
atures on Corej and the heat sink, respectively. All these
parameters can be derived by applying the RC thermal model
for a given platform, e.g., [10], [17], [24].

Power consumption model We explore thermal-aware
scheduling on cores, each with an independent DVS capa-
bilities (referred to as DVS cores). As shown in the literature
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Figure 1: An example for4 cores.

[1], [10], [18], the power consumptionΨj on Core j is
contributed by:

• The dynamic power consumptionΨdyn,j mainly re-
sulting from the charging and discharging of gates on
the circuits, which can be modeled byΨdyn,j = αsγ

j ,
wheresj is the execution speed of Corej and bothγ
(≤ 3) andα are constant.

• The static power consumptionΨsta,j mainly resulting
from the leakage current. The static power consumption
function is a constantΩ when the leakage power
consumption is irrelevant to the temperature [11], [31].
When the leakage power consumption is related to
the temperature, it is a super linear function of the
temperature [20]. As shown in [10], [21], the static
power consumption could be approximately modeled
by a linear function of the temperature with roughly
5% error. Hence, the static power consumption in this
paper is as follows:Ψsta,j = δΘj +Ω, whereΘj is the
absolute temperature on Corej and bothδ andΩ are
non-negative constants.

As a result, the following formula is used as the overall
power consumption on Corej of speedsj with temperature
Θj :

Ψ = Ψdyn,j + Ψsta,j = αsγ
j + Ω + δΘj . (2)

Task model In this paper, we consider jobs generated by
a sporadic task system[22], T

def
= {τ1, τ2, . . . , τN}. Each

sporadic task,τi, is characterized by(ei, di, pi) whereei is
the required execution cycles,di is the relative deadline,pi is
the minimum inter-arrival separation parameter (historically,
called the period). The interpretation of sporadic taskτi is
that the first job a taskτi may arrive at any time; however,
subsequent job arrivals are separated by at leastpi time units.
After every job arrival for taskτi the processor must execute
ei cycles of the job withindi time units. If, at any given
time t, a job has execution remaining, the job is said to
be active at time t. For this paper, we assume thatT is a
constrained-deadlinetask system; that is,di ≤ pi for all
τi ∈ T. Furthermore, we will also assume that tasks are
indexed in non-decreasing order of their relative deadline:
di ≤ di+1 for all 1 ≤ i < N .

We define the following metrics on task system workload.

Theutilization of taskτi is denoted byui
def
= ei/pi. The total

system utilization isusum(T)
def
=

∑

τi∈T
ui. The densityof

τi is denoted byδi
def
= ei/ (min ((di, pi)). The max density

(among the firstk tasks ofT) are respectively defined as:

δmax(T, k)
def
=

k
max
i=1

{δi}. (3)

The demand-bound functiondbf(τi, t) quantifies the maxi-
mum cumulative execution cycles ofτi that must execute
over any interval of lengtht. More specifically,dbf(τi, t) is
the maximum cumulative execution of jobs ofτi that have
both arrival times and absolute deadlines in any interval of
lengtht. In [8], it has been shown that for a sporadic taskτi,
the demand-bound function may be computed as follows:

dbf(τi, t)
def
= max

(

0,

(⌊
t − di

pi

⌋

+ 1

)

ei

)

. (4)

Using the demand-bound function, we may compute the
maximum “load” that firstk tasks ofT places upon the
processing platform:

load(T, k) = max
t≥0

{∑k
i=1 dbf(τi, t)

t

}

. (5)

In general,load(τ, k) may be determined exactly in pseudo-
polynomial time or approximated to within an arbitrary
additive error in polynomial time [14].

Scheduling algorithms Each DVS core on our platform
M is permitted to execute at a potentially different speed
than the other cores. Theuniform multiprocessor model(e.g.,
see [15]) is a machine-scheduling abstraction which appro-
priately characterizes DVS multicore processors executing at
different speeds. In the uniform multiprocessor model, Core
j executes at a ratesj . Any job (regardless of the generating
task) executing upon Corej will completesj×t cycles over
any time interval of lengtht.

For our current work, we consider two priority-driven
global scheduling algorithms:EDF and DM. Upon uniform
multiprocessor platforms, priority-driven scheduling works
by assigning each job a priority and executing, at any
time instant, the (at most)M highest-priority active jobs.
Furthermore, among the set of at mostM highest-priority
active jobs, higher-priority jobs are favored over lower-
priority jobs, by executing the highest-priority jobs upon
the fastest processors. Note that, if there area(< M) active
jobs at timet, then only thea fastest processors execute jobs
at time t; the M − a slowest processors are idled at time
t. The (global)EDF scheduling algorithm assigns priority
to jobs in inverse proportion to their absolute deadline:
the earlier a job’s deadline the greater its priority. The
(global) DM scheduling algorithm assigns priority to each
job proportional to the inverse of its relative deadline: the
smaller a job’s relative deadline the greater its priority.
We will summarize some current results concerning global



scheduling of sporadic tasks upon uniform multiprocessors
in Section 3.2.

Problem definition Given a systemT of sporadic real-
time tasks, thethermal-aware global schedulingproblem is
to find an assignment of execution speeds on the multicore
system such that all the tasks may complete by their re-
spective deadlines by applying the global scheduling policy
(either EDF or DM) and the peak temperature is minimized.
This paper obtains an execution-speed assignment approxi-
mation algorithm that runs in polynomial time. Without loss
of generality, we assume that the initial temperature is equal
to the ambient temperature.

3. Deriving Preferred Speeds

This section presents how to derive the preferred speed
of each core so that the peak temperature is minimized
while the necessary schedulability conditions are satisfied.
First, in Section 3.1, we will present how to reformulate the
thermal parameters so that we can easily calculate the peak
temperature of a speed assignment. Then, in Section 3.2,
we will summarize the schedulability conditions of global
scheduling in uniform multiprocessor systems, following
the derivation of preferred speeds based on the necessary
schedulability conditions for global scheduling of sporadic
real-time tasks in Section 3.3.

3.1. Thermal Parameters Reformulation

Suppose that Corej is assigned with a constant speedsj

for its execution (and also for idling) all the time. If each
core runs at its constant speed, it is clear that the temperature
is non-decreasing on each core. Moreover, it will end up
with a steady state, in which the temperatures on all cores
become steady. Therefore, the peak temperature of Corej
is no more than the temperatureΘ∗

j , which is the solution

to Equation dΘj

dt
= 0. Similarly, we can obtain the peak

temperatureΘ∗
h of Sink h. By reformulating (1), we know

that at the steady state, for allj,

0 = Ψj −
∑

h∈H

Hj,h(Θ∗
j − Θ∗

h) −
∑

ℓ∈M

Gj,ℓ(Θ
∗
j − Θ∗

ℓ)

= αsγ
j + Ω + (δ −

∑

h∈H
Hj,h −

∑

ℓ∈M
Gj,ℓ)Θ

∗
j

+
∑

h∈H
Hj,hΘ∗

h +
∑

ℓ∈M
Gj,ℓΘ

∗
ℓ

and, for the heat sinkh,

0 = −G† (Θ∗
h − Θa) −

∑

j∈M
Hj,h

(
Θ∗

h − Θ∗
j

)

−
∑

g∈H
Gg,h(Θ∗

h − Θ∗
g).

We can simplify the above equations by the following

notations: for any1 ≤ j 6= ℓ ≤ M and1 ≤ h 6= g ≤ ~,

Aj,j = δ −
∑

h∈H
Hj,h −

∑

ℓ∈M
Gj,ℓ,

Aj,ℓ = Gj,ℓ,

Aj,M+h = AM+h,j = Hj,h,

AM+h,M+h = −G† −
∑

j∈M
Hj,h −

∑

g∈H
Gg,h,

AM+h,M+g = Gg,h.

Then, we know that














A1,1 · · · A1,η

A2,1 · · · A2,η

...
...

...

AM,1 · · · AM,η

AM+1,1 · · · AM+1,η

...
...

...

Aη,1 · · · Aη,η





























Θ∗
1

Θ∗
2

...

Θ∗
M

Θ∗
M+1

...

Θ∗
η















= −
















αs
γ
1 + Ω

αs
γ
2 + Ω

...

αs
γ
M

+ Ω

G†Θa

...

G†Θa
















,

where η is M + ~. For notational brevity, let [A] be
the (M + ~)-dimensional matrix ofAj,ℓ, in which all the
elements in matrix [A] are constants. Let~Θ be the vector
of the peak temperatures of the cores and the sinks in the
above equation. Let~B be the transportation of the(M +~)-

dimensional vector(

M
︷ ︸︸ ︷

Ω, Ω, . . . , Ω,

~

︷ ︸︸ ︷

G†Θa, . . . , G
†Θa). Let ~P

be the transportation of the(M + ~)-dimensional vector
of dynamic power consumption on these cores, where the
power consumption of the (M +h)-th element in~P is 0 for
1 ≤ h ≤ ~.

With these notations, the above equation can be simplified
as [A]~Θ = −~P − ~B. Therefore, we have

~Θ = −[A]−1(~P + ~B), (6)

where[A]−1 is the inverse of matrix[A]. Since matrix[A] is
only related to the hardware implementation of the multicore
platform, we can calculate its inverse[A]−1 off-line. For
notational brevity, let[V ] be the inverse matrix of[A]. For
vector ~B, Bn is the value at then-th row. For matrix [V ],
Vj,ℓ is its element at thej-th row and theℓ-th column.
Hence, after assigning the execution speed of theseM cores,
the peak temperature can be easily obtained with the above
formula.

We now provide an example to show why speed scaling
matters for minimizing the peak temperature. Consider a
system with4 cores as shown in Figure 1 with matrix[A]
defined as follows:










−0.261 0.009 0.004 0.000 0.200 0.050

0.009 −0.121 0.000 0.004 0.050 0.060

0.004 0.000 −0.261 0.009 0.200 0.050

0.000 0.004 0.009 −0.121 0.050 0.060

0.200 0.050 0.200 0.050 −1.725 0.300

0.050 0.060 0.050 0.060 0.300 −1.445













Moreover, suppose that vector ~B is
[0.1, 0.1, 0.1, 0.1, 280.4, 280.4]T and α is 1. The peak
temperatures reached on these four cores by executing
at speed 1.8 for all cores are 73.1, 102.6, 73.1, 102.6
◦C. Assigning the speed of the four cores as2.1, 1.5,
2.1, and 1.5 leads to a solution with peak temperatures
87.5, 83.5, 87.5, 83.5 ◦C on these four cores. The above
speed assignments provide the same computation capability,
but are with different peak temperatures. As a result,
speed assignment must be done carefully so that the peak
temperature can be reduced.

3.2. Preliminary Results for Global Scheduling

In this subsection, we summarize some recent results ob-
tained by Baruah and Goossens [6], [7] for global scheduling
upon uniform multiprocessor platforms, in which we will
develop our approach based on their results. Letπ(i) denote
thei’th fastest processor (ties broken arbitrarily) of multicore
platform M; that is, sπ(1), sπ(2), . . . sπ(M) are the speeds
of the processors ofM, in non-increasing order. Some
important metrics [15] on uniform multiprocessor platforms
are:

Sℓ(M)
def
=

ℓ∑

j=1

sπ(j), λ(M)
def
=

M
max
ℓ=1

{∑M
j=ℓ+1 sπ(j)

sπ(ℓ)

}

. (7)

We will use the convention thatSπ(0)(M) equals zero.
Sufficient conditions for global scheduling of sporadic

task systems upon uniform multiprocessors are known:
Lemma 1 ( [6], [7]): A constrained-deadline sporadic

task systemT is globally S-schedulable (S is either EDF

or DM) upon a processing platformM, if

load(T, i) ≤
1

φS
(µ(M,T, i) − ν(M,T, i)δmax(T, i)) ,

(8)
for i = N if S = EDF and for alli (1 ≤ i ≤ N ) if S = DM,
where

µ(M,T, i)
def
= SM (M) − λ(M)δmax(T, i), (9)

ν(M,T, i)
def
= max{ℓ : Sℓ(M) < µ(M,T, i)}, (10)

and

φS
def
=

{

1, if S = EDF

2, if S = DM
(11)

Additionally, necessary conditions for global scheduling
of sporadic task systems can be obtained usingload(T, i)
andδmax(T, i):

Lemma 2 ( [6]): If a task systemT is globally schedula-
ble (eitherEDF or DM) upon a processing platformM, then
for all i (1 ≤ i ≤ N ),

load(T, i) ≤ SM (M), (12)

and
δmax(T, i) ≤ sπ(1). (13)

3.3. Optimization for Preferred Speeds

For the rest of this section, we present how to derive the
lower bound of the peak temperature among all cores and
preferred speeds by solving non-linear programming opti-
mally to minimize the peak temperature while the necessary
schedulability conditions are satisfied. However, as the max-
imum density constraint in (13) is a non-linear constraint,we
will first derive the peak temperature of the platform for a
specified Corer such thatδmax(T, N) ≤ sr ≤ sπ(1). Then,
among theseM solutions by settingr = 1, 2, . . . , M , the
corresponding speeds with the minimum peak temperature
are returned as the preferred speeds.

Based on the necessary conditions of schedulability in
Lemma 2 and the peak temperature formula in Section
3.1, the lower boundΘ∗

r , for a specifiedr, of the peak
temperature can be obtained by solving the following non-
linear programming (denotedSYSTEM([A], ~B, ~P ,T, r)):

minimize Θ∗
r

def
= max

1≤j≤M+~

{
∑M+~

ℓ=1
−Vj,ℓ(αsγ

ℓ + Bℓ)

}

subject toload(T, N) ≤
∑M

ℓ=1
sℓ,

δmax(T, N) ≤ sr,

sℓ ≥ 0, 1 ≤ ℓ ≤ M + ~. (14)

Obviously, an optimal solution to (14) will setsM+j to zero
wherej = 1, . . . , ~. Thus, we do not specify the constraints
of the sinks in the above system.

To our best knowledge, there is no explicit form for an
optimal solution of SYSTEM([A], ~B, ~P ,T, r). Here, we
adopt the approach proposed by Dutta and Vidyasagar [13]
by solving the above constrained non-linear programming
with a transformation to unconstrained non-linear program-
ming. Due to space limitation, we will only summarize the
procedure as shown in the appendix, while the proof of
optimality can be found in [13]. Moreover, for a given setT

of tasks, theload(T, N) is irrelevant to the speed settings.
For the rest of this section, we assume thatload(T, N)
is known a priori by applying the exact or approximated
methods in [14].

Then the minimum among{SYSTEM([A], ~B, ~P ,T, r) :
r = 1, . . . , M} is the lower boundΘ∗

min of the peak tem-
perature. Denotermin

def
= arg min{Θ∗

r : r = 1, . . . , M} and
Θ∗

min
def
= Θ∗

rmin
. Let Mmin be the system corresponding to

Θ∗
min with the derived speedss1, s2, . . . , sM . The following

theorem shows thatΘ∗
min is the lower bound of the peak

temperature for feasible speed scheduling1:

1. All proofs of the lemmas and the theorems and the corollaries are put
in Appendix (unless otherwise stated).



Theorem 1:Θ∗
min is a lower-bound on the peak tempera-

ture for task systemT schedulable (by any algorithm) upon
platformM with thermal characteristics expressed by matrix
[A] and vectors~B and ~P .

4. Feasible Speed Scheduling

Given Mmin determined by the preferred-speed calcu-
lation of Section 3.3, we now describe the next phase of
deriving feasible speed scheduling. In this phase, we will
obtain a constant multiplicative factor by which processing
platformMmin’s speed would need to increase to guarantee
that T is globally schedulable.

Let β · M denote the platform where each ofM’s M
processors has their speed increase by a constant factorβ ≥
1; i.e. the speed of each processorℓ in β ·M is β · sℓ. The
following lemma states some properties ofβ ·M (the proof
is straightforward and omitted for space):

Lemma 3:Sℓ(β·M) = β·Sℓ(M) andλ(β·M) = λ(M),
for all ℓ = 1, . . . , M .

With the above notation, our objective for the feasible
speed scheduling is to obtain a constantβ ≥ 1 such that
T is globally schedulable (byEDF or DM) uponβ ·Mmin.
We propose two methods to compute such aβ. The first
method derives a pessimistic bound on the speed-up required
for both EDF andDM. The second method gives an iterative
algorithm which improves upon this pessimistic bound.

4.1. Deriving a Pessimistic Feasible Speed Schedul-
ing

A pessimistic bound onβ for global EDF and DM may
be achieved by simply deriving aβ that satisfies Lemma 1.
The following theorem (which follows a similar argument
to Lemma 5 in [6]) obtains such a bound.

Theorem 2:For sporadic task systemT andMmin, T is
globally S-schedulable (S is eitherEDF or DM) upon βS ·
Mmin whereβS is defined as
[

SM (M)(sπ(1) + φSsπ(M)) − λ(M)sπ(1)sπ(M)

+
( (

SM (M)(sπ(1) + φSsπ(M)) − λ(M)sπ(1)sπ(M)

)2

−4SM(M)λ(M)s2
π(1)sπ(M)

) 1
2

] (

2SM (M)s2
π(M)

)−1

(15)

whereφS is defined in (11).
Using the above theorem, we can obtain an approximation

ratio (in terms of the ideal-processor speeds) for the peak
temperature of the system, using the speed factor in (15):

Theorem 3:The peak temperature ofβS · Mmin (where
S is eitherEDF or DM) is at most a factor ofβγ

S greater than
the peak temperature of the optimalM -processor platform
on whichT is globally schedulable.

4.2. Deriving a Better Feasible Speed Scheduling

The above analysis did not specify the task workload. For
specific task workload, we can further improve the feasible
speed scheduling. LetMmin again be the “preferred-speed”
processor determined from the previous section. We will
now describe an algorithm for more precisely determining
a processorβ · Mmin such thatβ is minimized. The next
two lemmas give upper and lower bounds on the valueβ
must satisfy in order forT to be global schedulable upon
β ·Mmin.

Lemma 4:Given T, M, and β ≥ 1, if ν(β · M,T, i)
equalsℓ whereℓ ∈ {0, 1, . . . , M − 1}, then

Γ(M,T, ℓ, i) < β ≤ Γ(M,T, ℓ + 1, i) (16)

where

Γ(M,T, ℓ, i)
def
=

{
λ(M)·δmax(T,i)
SM (M)−Sℓ(M) , 0 ≤ ℓ < M − 1

∞, otherwise.
(17)

Given the input task workload, by Lemma 3 we may
simply solve (8) in Lemma 1 as shown in the following
lemma (the proof is straightforward and omitted for space):

Lemma 5:For global schedulerS (either EDF or DM), if
T satisfies (8), then there existsℓ ∈ {0, 1, . . . , M−1}, equal
to ν(β · M,T, i), such that

β ≥ Γ̂(S,M,T, ℓ, i), (18)

for i = N if S = EDF and for alli (1 ≤ i ≤ N ) if S = DM,
where

Γ̂(S,M,T, ℓ, i)
def
=

1

SM (M)
(φS · load(T, i)

+(λ(M) + ℓ)δmax(T, i)), (19)

andφS is defined in (11).
Next we aim to find the minimumβ that satisfy Lemmas 4

and 5 upon a processorβ ·Mmin. SinceΓ̂() is an increasing
function with respects toℓ, then we only need to find the
minimum ℓ satisfying both lemmas, which is defined as

ℓmin,i
def
= min{ℓ ∈ {0, 1, . . . , M − 1} :

Γ(Mmin,T, ℓ) < Γ̂(S,Mmin,T, ℓ, i)

≤ Γ(Mmin,T, ℓ + 1)}. (20)

Then the minimumβ can be obtained as the following
theorem (the proof is straightforward based on the above
analysis and omitted for space):

Theorem 4:For sporadic task systemT andMmin, T is
globally EDF-schedulable uponβEDF · Mmin whereβEDF
is defined as

βEDF
def
= Γ̂(EDF,Mmin,T, ℓmin,N , N); (21)

T is globallyDM-schedulable uponβDM ·Mmin whereβDM



is defined as

βDM
def
= max

i∈{1,2,...,N}
{Γ̂(DM,Mmin,T, ℓmin,i, i)}, (22)

where Γ̂() is defined in (19) andℓmin,i is defined in (20).

5. Performance Evaluation

This section provides performance evaluations of the
proposed algorithm for speed assignments under global real-
time scheduling. Due to space limitation, we will only
present the simulation results by adopting the globalEDF

scheduling policy for task scheduling. The results forDM

scheduling are similar. In the simulations, we evaluate two
different algorithms defined as follows:

• Algorithm Balanced: first derives speed assignment by
applying the necessary schedulability condition so that
the speeds are as balanced as possible, and then applies
Theorem 4 for speed determination.

• Algorithm PTO: first applies sequential quadratic pro-
gramming for deriving optimal solutions of (14), and
then applies Theorem 4 for determining the resulting
speeds.

We evaluate the performance in terms of peak temperature
of the resulting task partition on three different hardware
platforms, in which their layouts are2 × 2, 4 × 1, and3 ×
2 with 4, 4, and 6 cores, respectively. The corresponding
thermal parameters are determined based on the layout. The
ambient temperature in the simulations is assumed as30
◦C. The power consumption functionΨ(sℓ, Θℓ) is s3

ℓ +0.1+
0.002Θℓ Watt, whereΘℓ is the absolute temperature of Core
ℓ andsℓ is with unit of GHz.

We use synthetic sporadic real-time tasks for evaluating
the performance, in which the deadline of a task is earlier
than its period. The task set generator is based on the
approach developed by Baker [3]: An initialM + 1 tasks
are pseudo-randomly generated and added to the collection
of tasks. Subsequent task systems add tasks to this initial
set until the task system is no longer feasible uponM
unit speed processors, at which time a new set ofM + 1
tasks is randomly generated. Each taskτi in synthetic task
system had its period parameterpi uniformly chosen from
[1, 1000]. A utilization parameterui was generated for each
task drawn from the inverse exponential distribution from
0.0 to 1.0. A task’s deadline is chosen uniformly from the
interval [ei, pi]. In our experiments, we generate1000 task
sets with different numbers of tasks and different values of
load(T, N). Moreover, for deriving the preferred speeds,
we ignore the known parameterload(T, N) and apply the
approximated calculation proposed in [14] to efficiently
derive the upper bound ofload(T, N) with less than1%
error.

For each task set, we evaluate the peak temperatures of
the resulting speed assignments of Algorithm BALANCED

and Algorithm PTO. For a specified platform, we conduct
the peak temperature for two different settings, based on the
numbers of tasks of the input task set and the values of
workload load(T, N). For each configuration in a setting,
the average value of the peak temperatures is reported.

Figure 2 presents the average peak temperatures of the
evaluated algorithms for the platforms under different work-
load settings. As shown in Figure 2, the average peak
temperature generally increases when the workload demand
increases. When the workload is low, e.g., less than3 GHz,
the difference between the evaluated algorithms is not too
much because the power consumptions on the cores are
not very high. However, when the workload is higher, a
good speed assignment can significantly reduce the peak
temperature, as shown in Figure 2 when the workload is
more than4.5 GHz. By applying the algorithm proposed in
this paper, we can reduce the average peak temperature by
at most30◦C for benchmark2 × 2 in Figure 2(a), at most
70◦C for benchmark4×1 in Figure 2(b), and at most35◦C
for benchmark3 × 2 in Figure 2(c).

Figure 3 illustrates the results by varying the number of
tasks. For a specified workload, the less the number of tasks
of the input task set, the larger the density/workload of
the given tasks is. Therefore, according to the generator of
task sets, when the task number is fewer, the average peak
temperature is higher in both evaluated algorithms for all the
platform benchmarks. Compared to AlgorithmBalanced,
Applying Algorithm PTO proposed in this paper can reduce
the average peak temperature by at most50◦C for a fixed
number of tasks.

6. Conclusion

Thermal constraints are becoming increasingly severe for
many systems as chip density increases and the size of the
system decreases. Heat dissipation in multicore platforms
further complicates satisfying thermal constraints due tothe
transfer of heat between cores on the same chip. In order
to respect these constraints, system designers may scale-
back the power-consumption to reduce the peak tempera-
ture of the system. However, in real-time, thermal-aware
systems the system designer must simultaneously ensure
that temporal constraints are still satisfied. The focus of our
current research is to address the challenge of minimizing
the peak-temperature for a multicore platform scheduled by
a multiprocessor real-time scheduling algorithm.

In this paper, we focused upon global scheduling of
sporadic task systems according to either theEDF or DM

scheduling algorithms. Under this setting, we proposed an
approach which first derives the preferred speeds of the cores
by using necessary conditions for multiprocessor schedu-
lability. The resulting platform executing at the preferred
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Figure 2: Simulation results of different demand functionsload(T, N) for systems with different layouts.
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Figure 3: Simulation results of different number of tasks for systems with different layouts.

speeds may be viewed as a uniform multiprocessor platform.
We applied known schedulability tests to correctly scale the
speed of the preferred speeds to ensure the schedulability of
the task system. We showed that our approach is effective
in reducing peak temperature by comparing its performance
(via simulations over synthetically generated task systems)
against an approach which attempts to balance the speed of
the processors. The reduction in peak temperature may be as
much as70◦C for some multicore platform configurations.
Our current approach statically determines the speed of each
processor prior to system execution. Future research will
investigate whether further temperature reduction is possible
in multicore platforms when each core may vary its speed
over time.
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Solving SYSTEM([A], ~B, ~P ,T, r)

By ignoring the constraintδmax(T, N) ≤ sr and assum-
ing Core q has the highest temperature among all cores,
the following relaxation will result in a lower bound of the
original optimization:

minimize
∑M+~

ℓ=1 −Vq,ℓ(αsγ
ℓ + Bℓ)

subject to load(T, N) ≤
∑M

ℓ=1 sℓ,

sℓ ≥ 0, 1 ≤ ℓ ≤ M + ~.

(23)

Then, the above equation can be solved by applying the
Lagrange Multiplier Method inO(M), i.e.,

−αVq,1s
γ−1
1 = −αVq,ℓs

γ−1
ℓ .

Hence,

sq,1 =
U

∑M
ℓ=1(

Vq,1

Vq,ℓ
)

1
γ−1

, sq,ℓ = sq,1(
Vq,1

Vq,ℓ

)
1

γ−1 ,

where sq,ℓ is the speed of Coreℓ under the assumption
that Coreq is with the highest temperature among all cores,
which might not be true. Therefore,

Θ∗
r,0 = max

q=1,2,...,M

{
∑M+~

ℓ=1
−Vq,ℓ(αsγ

q,ℓ + Bℓ)

}

is a lower bound ofSYSTEM([A], ~B, ~P ,T, r).



Next, starting fromΘ∗
r,0, we approach the optimal solution

of SYSTEM([A], ~B, ~P ,T, r) step by step. That is, for the
k-th step, we will derive a new lower boundΘ∗

r,k based
on Θ∗

r,k−1. Specifically, at thek-th step, we first minimize
the following unconstrained non-linear programming by
applying the sequential quadratic programming method:

∑M+~

j=1

[

max
{

0,
∑M+~

ℓ=1
−Vj,ℓ(αs

γ
ℓ + Bℓ) − Θ∗

r,k−1

}]2

+ǫ1 [max {0, δmax(T, N) − sr}]
2

+ǫ2
[
load(T,N) −

∑M

ℓ=1
sℓ

]2
,

(24)

whereǫ1 andǫ2 are defined positive constants related to the
rate of convergence fromΘ∗

r,k−1 to Θ∗
r,k. In general, the con-

stantsǫ1 andǫ2 should be set as large numbers for deriving
precise results. Suppose that the optimal solution of (24) is
Υr,k. Then, we can setΘ∗

r,k asΘ∗
r,k−1+(

Υr,k

M
)

1
2 . The above

procedure repeats until(
Υr,k

M
)

1
2 is a small number. As shown

in [13], the resulting speed assignment with the converged
Θ∗

r,k is the optimal solution ofSYSTEM([A], ~B, ~P ,T, r),
whenǫ1 andǫ2 are large numbers.

Proof of Theorem 1

Let M be the platform defined by processor speeds
s1, s2, . . . , sM . By Lemma 2, if T is schedulable (either
EDF or DM) upon M then load(T, i) ≤ load(T, N) ≤
∑M

ℓ=1 sℓ = SM (M) and δmax(T, i) ≤ δmax(T, N) ≤
maxM

ℓ=1{sπ(ℓ)} for all i = 1, . . . , N . Thus, by the first and
second constraints ofSYSTEM([A], ~B, ~P ,T, r), the set

{M|s1, s2, . . . , sM

are feasible values ofSYSTEM([A], ~B, ~P ,T, r)}

must contain the set of all processorsM with sr ≥
δmax(T, N) where T is globally schedulable uponM.
Thus, the union of all feasible values ofs1, s2, . . . , sM

for SYSTEM([A], ~B, ~P ,T, r) over r = 1, . . . , M must
contain the set of allM -processor platforms upon which
T is globally schedulable. It follows thatΘ∗

min is a lower
bound on the peak temperature.

Proof of Theorem 2

The satisfaction of Lemma 1 is sufficient forT to beA-
schedulable upon platformβ ·Mmin. That is, we will show
the following condition holds:

φS load(T,N) ≤ µ(β · Mmin,T,N)

−ν(β ·Mmin,T, N)δmax(T,N)

⇐

(

since
⌈

µ(β·Mmin,T,N)
β·sπ(M)

⌉

− 1

≥ ν(β ·Mmin, T,N)

)

φS load(T,N) ≤ µ(β ·Mmin,T, N)

−
(⌈

µ(β·Mmin,T,N)
β·sπ(M)

⌉

− 1
)

δmax(T, N)

⇐ (since for allα, ⌈α⌉ − 1 ≤ α)

φS load(T,N) ≤ µ(β ·Mmin,T, N)

−
(

µ(β·Mmin,T,N)
β·sπ(M)

)

δmax(T, N)

≡

φS load(T,N) ≤ µ(β ·Mmin,T, N)
(

1 − δmax(T,N)
β·sπ(M)

)

≡ (by the definition ofµ)

φS load(T, N) ≤ [SM (β ·Mmin) − λ(β ·Mmin)δmax(T,N)]

×
(

1 − δmax(T,N)
β·sπ(M)

)

≡ (by Lemmas 3)

φS load(T, N) ≤ (β · SM (Mmin) − λ(Mmin)δmax(T,N))

×
(

1 − δmax(T,N)
β·sπ(M)

)

⇐
(

constraints(load(T, N) ≤ SM (Mmin))

∧
(
δmax(T,N) ≤ sπ(1) of SYSTEM

))

φSSM (Mmin) ≤
(
β · SM (Mmin) − λ(Mmin)sπ(1)

)

×
(

1 −
sπ(1)

β·sπ(M)

)

≡

sπ(M)SM (Mmin)β
2 − [(sπ(1) + φSsπ(M))SM (Mmin)

+λ(Mmin)sπ(1)sπ(M)]β + λ(Mmin)s
2
π(1) ≥ 0.

Using standard techniques for solving quadratic equations,
we obtainβS equal to the solution of the final inequality
above.

Proof of Theorem 3

According to Theorem 1, a lower-bound on the peak
temperature of such anM -core system that can scheduleT.
Observe that in (14),−Vj,ℓ is a positive constant. Thus, by
increasing anysj by βS will increase the peak temperature
by at most a factor ofβγ

S .

Proof of Lemma 4

Given T, M, andβ ≥ 1, let ℓ equalν(β · M,T, i). We
will consider two cases:

If 0 ≤ ℓ < M − 1, then the definition ofν implies,

Sℓ(β · M) < µ(β · M,T, i) ≤ Sℓ+1(β ·M)

⇒ β · Sℓ(M) < β · SM (M) − λ(M)δmax(T, i) ≤ β · Sℓ+1(M)

⇒ λ(M)δmax(T,i)
SM (M)−Sℓ(M)

< β ≤ λ(M)δmax(T,i)
SM (M)−Sℓ+1(M)

The final implication implies the lemma by substitutingΓ
into the right-hand side of both inequalities above.

If ℓ = M − 1, then the definition ofν implies SM−1(β ·
M) < µ(β ·M,T, i). By the same implications above, we
haveβ > λ(M)δmax(T,i)

SM (M)−SM−1(M) . Thus,Γ(M,T, M − 1, i) <
β ≤ ∞, and the lemma follows.


