Some Characteristic Morphisms of Triadic Monoid Subactions

Recall: If A is a subobject of X, its characteristic morphism $\chi_{A}: X \longrightarrow \Omega$ is defined by

$$
\chi_{A}(x):=\{h \in \mathcal{T} \mid h x \in A\} .
$$

$j_{\mathcal{P}}, j_{\mathcal{L}}, j_{\mathcal{R}}: \Omega \longrightarrow \Omega$ are the characteristic morphisms of the respective subobjects $\{\mathcal{P}, \mathcal{T}\},\{\mathcal{L}, \mathcal{P}, \mathcal{T}\},\{\mathcal{R}, \mathcal{P}, \mathcal{T}\}$ of Ω.

x	$j_{\mathcal{P}}(x)$	$j_{\mathcal{L}}(x)$	$j_{\mathcal{R}}(x)$
\mathcal{F}	\mathcal{F}	\mathcal{F}	\mathcal{F}
\mathcal{C}	\mathcal{C}	\mathcal{R}	\mathcal{L}
\mathcal{L}	\mathcal{L}	\mathcal{T}	\mathcal{L}
\mathcal{R}	\mathcal{R}	\mathcal{R}	\mathcal{T}
\mathcal{P}	\mathcal{T}	\mathcal{T}	\mathcal{T}
\mathcal{T}	\mathcal{T}	\mathcal{T}	\mathcal{T}

x	$\chi_{\{0,1,4\}}(x)$
0	\mathcal{T}
1	\mathcal{T}
2	\mathcal{C}
3	\mathcal{R}
4	\mathcal{T}
5	\mathcal{L}
6	\mathcal{R}
7	\mathcal{R}
8	\mathcal{L}
9	\mathcal{P}
10	\mathcal{R}
11	\mathcal{C}

$\chi_{\{0,1,4\}}: \mathbb{Z}_{12} \longrightarrow \Omega$ is the characteristic morphism of the subobject $\{0,1,4\}$ of $\mu[1,4]: \mathcal{T} \times \mathbb{Z}_{12} \longrightarrow \mathbb{Z}_{12}$.

More Characteristic Morphisms

Proposition 1 Recall that $\mu[m, n]$ denotes the action of \mathcal{T} on \mathbb{Z}_{12} where the generators f and g act as ${ }^{m} 3$ and ${ }^{n} 8$ respectively. Then the action $T_{k} \circ \mu[m, n]$ is the same as $\mu[m-2 k, n-7 k]$. Further, if A is a subobject of \mathbb{Z}_{12} under the action $\mu[m, n]$, then $T_{k} A$ is a subobject of \mathbb{Z}_{12} under the action $T_{k} \circ \mu[m, n]$ and $\chi_{T_{k} A \subseteq T_{k} \circ \mu[m, n]}=\chi_{A \subseteq \mu[m, n]} \circ T_{-k}$.
$\chi_{\{0,10,4\}}: \mathbb{Z}_{12 \longrightarrow} \longrightarrow \Omega$ is the characteristic morphism of the subobject $\{0,4,10\}$ of $\mu[10,4]: \mathcal{T} \times \mathbb{Z}_{12} \longrightarrow \mathbb{Z}_{12}$.

x	$\chi_{\{0,10,4\}}(x)$	$\chi_{\{1,11,5\}}(x)$	$\chi_{\{3,1,7\}}(x)$
$0=C$	\mathcal{T}	\mathcal{C}	\mathcal{R}
$1=G$	\mathcal{R}	\mathcal{T}	\mathcal{T}
$2=D$	\mathcal{L}	\mathcal{R}	\mathcal{C}
$3=A$	\mathcal{R}	\mathcal{L}	\mathcal{T}
$4=E$	\mathcal{T}	\mathcal{R}	\mathcal{R}
$5=B$	\mathcal{C}	\mathcal{T}	\mathcal{L}
$6=F \sharp$	\mathcal{P}	\mathcal{C}	\mathcal{R}
$7=C \sharp$	\mathcal{R}	\mathcal{P}	\mathcal{T}
$8=G \sharp$	\mathcal{L}	\mathcal{R}	\mathcal{C}
$9=E b$	\mathcal{R}	\mathcal{L}	\mathcal{P}
$10=B b$	\mathcal{T}	\mathcal{R}	\mathcal{R}
$11=F$	\mathcal{C}	\mathcal{T}	\mathcal{L}

Interesting Morphisms $\mathbb{Z}_{12} \boldsymbol{}$, the Subobjects They Classify

$\{0,1,4\}=\{C, G, E\}$

$j_{\mathcal{P}} \circ \chi_{\{0,1,4\}}$	$\{0,1,4,9\}$	major-minor mix
$j_{\mathcal{L}} \circ \chi_{\{0,1,4\}}$	$\{0,1,4,5,8,9\}$	hexatonic system
$j_{\mathcal{R}} \circ \chi_{\{0,1,4\}}$	$\{0,1,3,4,6,7,9,10\}$	octatonic system

$\{0,10,4\}=\{C, B b, E\}$

$j_{\mathcal{P}} \circ \chi_{\{0,10,4\}}$	$\{0,4,6,10\}$	french augmented sixth
$j_{\mathcal{L}} \circ \chi_{\{0,10,4\}}$	$\{0,2,4,6,8,10\}$	even wholetone system
$j_{\mathcal{R}} \circ \chi_{\{0,10,4\}}$	$\{0,1,3,4,6,7,9,10\}$	octatonic system

$$
T_{3}\{0,10,4\}=\{3,1,7\}=\{A, G, D b\}
$$

$j_{\mathcal{P}} \circ \chi_{\{3,1,7\}}$	$\{3,7,9,1\}$	french augmented sixth
$j_{\mathcal{L}} \circ \chi_{\{3,1,7\}}$	$\{3,5,7,9,11,1\}$	odd wholetone system
$j_{\mathcal{R}} \circ \chi_{\{3,1,7\}}$	$\{3,4,6,7,9,10,0,1\}$	octatonic system

The respective triad is considered to be "locally present" if any of the three respective sets is present.

