Some Characteristic Morphisms of Triadic Monoid Subactions

Recall: If A is a subobject of X, its characteristic morphism $\chi_A : X \longrightarrow \Omega$ is defined by

 $\chi_A(x) := \{h \in \mathcal{T} | hx \in A\}.$

 $j_{\mathcal{P}}, j_{\mathcal{L}}, j_{\mathcal{R}} : \Omega \longrightarrow \Omega$ are the characteristic morphisms of the respective subobjects $\{\mathcal{P}, \mathcal{T}\}, \{\mathcal{L}, \mathcal{P}, \mathcal{T}\}, \{\mathcal{R}, \mathcal{P}, \mathcal{T}\}$ of Ω .

x	$j_{\mathcal{P}}(x)$	$j_{\mathcal{L}}(x)$	$j_{\mathcal{R}}(x)$
\mathcal{F}	${\mathcal F}$	${\cal F}$	${\cal F}$
\mathcal{C}	\mathcal{C}	\mathcal{R}	\mathcal{L}
\mathcal{L}	\mathcal{L}	\mathcal{T}	\mathcal{L}
\mathcal{R}	\mathcal{R}	\mathcal{R}	\mathcal{T}
\mathcal{P}	\mathcal{T}	\mathcal{T}	\mathcal{T}
T	\mathcal{T}	\mathcal{T}	\mathcal{T}

x	$rac{\chi_{\{0,1,4\}}(x)}{\mathcal{T}}$
0	\mathcal{T}
1	\mathcal{T}
2 3	\mathcal{C}
3	\mathcal{R}
4	\mathcal{T}
5	\mathcal{L}
6	\mathcal{R}
7	\mathcal{R}
8	\mathcal{L}
9	\mathcal{P}
10	\mathcal{R}
11	\mathcal{C}

 $\chi_{\{0,1,4\}}: \mathbb{Z}_{12} \longrightarrow \Omega$ is the characteristic morphism of the subobject $\{0,1,4\}$ of $\mu[1,4]: \mathcal{T} \times \mathbb{Z}_{12} \longrightarrow \mathbb{Z}_{12}$.

More Characteristic Morphisms

Proposition 1 Recall that $\mu[m, n]$ denotes the action of T on \mathbb{Z}_{12} where the generators f and g act as m3 and n8 respectively. Then the action $T_k \circ \mu[m, n]$ is the same as $\mu[m-2k, n-7k]$. Further, if A is a subobject of \mathbb{Z}_{12} under the action $\mu[m, n]$, then T_kA is a subobject of \mathbb{Z}_{12} under the action $T_k \circ \mu[m, n]$ and $\chi_{T_kA \subseteq T_k \circ \mu[m, n]} = \chi_{A \subseteq \mu[m, n]} \circ T_{-k}$.

 $\chi_{\{0,10,4\}}$: $\mathbb{Z}_{12} \longrightarrow \Omega$ is the characteristic morphism of the subobject $\{0,4,10\}$ of $\mu[10,4]$: $\mathcal{T} \times \mathbb{Z}_{12} \longrightarrow \mathbb{Z}_{12}$.

x	$\chi_{\{0,10,4\}}(x)$	$\chi_{\{1,11,5\}}(x)$	$\chi_{\{3,1,7\}}(x)$
0=C	T	\mathcal{C}	\mathcal{R}
1=G	\mathcal{R}	\mathcal{T}	\mathcal{T}
2=D	\mathcal{L}	\mathcal{R}	\mathcal{C}
3=A	\mathcal{R}	\mathcal{L}	\mathcal{T}
4= <i>E</i>	T	\mathcal{R}	\mathcal{R}
5 = <i>B</i>	\mathcal{C}	\mathcal{T}	\mathcal{L}
$6=F\sharp$	\mathcal{P}	\mathcal{C}	\mathcal{R}
7=C	\mathcal{R}	\mathcal{P}	\mathcal{T}
8= <i>G</i> \$	\mathcal{L}	\mathcal{R}	\mathcal{C}
$9=E\flat$	\mathcal{R}	\mathcal{L}	\mathcal{P}
$10=B\flat$	T	\mathcal{R}	\mathcal{R}
11=F	C	\mathcal{T}	\mathcal{L}

Interesting Morphisms $\mathbb{Z}_{12} {\rightarrow} \Omega$ and the Subobjects They Classify

 $\{0, 1, 4\} = \{C, G, E\}$

$j_{\mathcal{P}} \circ \chi_{\{0,1,4\}}$	$\{0, 1, 4, 9\}$	major-minor mix
$j_{\mathcal{L}} \circ \chi_{\{0,1,4\}}$	$\{0, 1, 4, 5, 8, 9\}$	hexatonic system
$j_{\mathcal{R}} \circ \chi_{\{0,1,4\}}$	$\{0, 1, 3, 4, 6, 7, 9, 10\}$	octatonic system

 $\{0, 10, 4\} = \{C, B\flat, E\}$

$j_{\mathcal{P}} \circ \chi_{\{0,10,4\}}$	$\{0, 4, 6, 10\}$	french augmented sixth
$j_{\mathcal{L}} \circ \chi_{\{0,10,4\}}$	$\{0, 2, 4, 6, 8, 10\}$	even wholetone system
$j_{\mathcal{R}} \circ \chi_{\{0,10,4\}}$	$\{0, 1, 3, 4, 6, 7, 9, 10\}$	octatonic system

 $T_3\{0, 10, 4\} = \{3, 1, 7\} = \{A, G, D\flat\}$

$j_{\mathcal{P}}\circ\chi_{\{3,1,7\}}$	$\{3, 7, 9, 1\}$	french augmented sixth
$j_{\mathcal{L}} \circ \chi_{\{3,1,7\}}$	$\{3, 5, 7, 9, 11, 1\}$	odd wholetone system
$j_{\mathcal{R}} \circ \chi_{\{3,1,7\}}$	$\{3,4,6,7,9,10,0,1\}$	octatonic system

The respective triad is considered to be "locally present" if any of the three respective sets is present.