THE GROUP-THEORETICAL APPROACH

1.1 Interval preservation under conjugation as a result of commutativity

\[\alpha^\beta = (\beta \alpha)\beta^{-1} \]
\[= (\alpha \beta)^{-1} \quad \text{(by the commutative property)} \]
\[= \alpha (\beta^{-1}) \quad \text{(by the associative property)} \]
\[= \alpha \quad \text{(by cancellation)} \]

1.2 Centralizer of \(H \) in \(G \)

\[C_G H = \{ \alpha \in G \mid \alpha \beta = \beta \alpha, \text{ for all } \beta \in H \} \]

1.3 Normalizer of \(H \) in \(G \)

\[N_G H = \{ \alpha \in G \mid H^\alpha = H \} \]

1.4 Center of \(H \)

\[Z(H) = \{ \alpha \in H \mid \alpha \beta = \beta \alpha, \text{ for all } \beta \in H \} \]

1.5 Point stabilizer of \(x \in S \) in \(H \)

\[H_x = \{ \alpha \in H \mid \alpha(x) = x \} \]

1.6 Transitive action

For any \(x, y \in S \), there exists \(\alpha \in H \), such that \(\alpha(x) = y \).

1.7 Structure of a centralizer of a group \(H \) with a transitive action

\[C_{\text{Sym}(S)} H \cong N_H H_x / H_x \]

1.8 Semiregular action

\[H_x = 1, \text{ for all } x \in S \]

1.9 Structure of a centralizer of a group \(H \) with a simply transitive action

\[C_{\text{Sym}(S)} H \cong N_H H_x / H_x = H / 1 = H \]
1.10 Orbit restriction

Let

\[\pi : H \rightarrow Sym(S) \]

be a permutation representation of \(H \), where \(\pi(h) = h^* \). Next, let \(P \subseteq S \) be a union of some number of \(H \)-orbits in \(S \). Given that \(H \) has an action on \(P \), we may define a function

\[h^*|_P : P \rightarrow P \]

on \(P \) that agrees with \(h^* \), which we call the restriction of \(h \) to \(P \). Then, we may define the representation map

\[\pi|_P : H \rightarrow Sym(P), \]

where \(\pi|_P(h) = h^*|_P \), for all \(h \in H \). In this way, we may discuss the restriction of \(H \) to any (union) of its orbits.

1.11 Diagonal subgroup

\(D \) is a diagonal subgroup of \(G \) iff

1) for any \(\alpha(R_1) \in D(R_1) \), there exists a unique \(\alpha(R_i) \in D(R_i) \) for each \(R_i \) in the set of \(n \) orbits, such that \(\alpha(R_1) \cdots \alpha(R_n) \in D \).

2) \(D(R_i) \) is permutation isomorphic to \(D(R) \) for all \(R_i \in R \).

1.12 Wreath product \(W = L \wr_\pi F \)

1) \(W \) is a semidirect product of \(B \) by \(F \) where \(B = L_1 \times \cdots \times L_n \) is a direct product of \(n \) copies of \(L \).

2) \(F \) permutes \(Q = \{ L_i : 1 \leq i \leq n \} \) via conjugation, and the permutation representation of \(F \) on \(Q \) is equivalent to \(\pi \).

1.13 Structure of a centralizer for a group \(D \) with a diagonal action

\[C_{Sym(S)}D = C_{Sym(R)}D(R_i) \triangleleft Sym(R) \]

1.14 Structure of a centralizer of a single orbit restriction for a group \(D \) with a semiregular intransitive action

\[C_{Sym(R)}D(R_i) \cong D \]

1.15 Maximally embedded diagonal subgroup

Let \(P_j \) be a union of \(D \)-orbits. \(D(P_j) \) is a maximally embedded diagonal subgroup of \(G \) iff \(m \) is the greatest possible number of orbits \(R_i \) satisfying the diagonal subgroup condition for \(R_i \subseteq P_j \).

1.16 Structure of a centralizer for a group \(D \) with a nonsemiregular intransitive action

\[C_{Sym(S)}D = C_{Sym(P_1)}D(P_1) \times \cdots \times C_{Sym(P_n)}D(P_n). \]
Table. Partition of the universe of non-empty pitch-class sets into unions of set-classes over which the action of T/I has a maximally diagonal embedding

<table>
<thead>
<tr>
<th>Label</th>
<th>$(x, y) = \text{number of } T_n \text{ and } I_n \text{ operators that hold a member of } P_j \text{ invariant; } I_n \text{ parity}$</th>
<th>Representative inclusive set-class</th>
<th>Number of set-classes</th>
</tr>
</thead>
<tbody>
<tr>
<td>P_1</td>
<td>$(1, 0)$ [0, 3, 7]</td>
<td>127</td>
<td></td>
</tr>
<tr>
<td>P_2</td>
<td>$(1, 1)$ even parity for $I_n \text{ index}$ [0]</td>
<td>56</td>
<td></td>
</tr>
<tr>
<td>P_3</td>
<td>$(1, 1)$ odd parity for $I_n \text{ index}$ [0, 1]</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>P_4</td>
<td>$(2, 0)$ [0, 1, 3, 6, 7, 9]</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>P_5</td>
<td>$(2, 2)$ even parity for $I_n \text{ indices}$ [0, 2, 6, 8]</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>P_6</td>
<td>$(2, 2)$ odd parity for $I_n \text{ indices}$ [0, 1, 6, 7]</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>P_7</td>
<td>$(3, 3)$ even parity for $I_n \text{ indices}$ [0, 4, 8]</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>P_8</td>
<td>$(3, 3)$ odd parity for $I_n \text{ indices}$ [0, 1, 4, 5, 8, 9]</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>P_9</td>
<td>$(4, 4)$ even and odd parity for $I_n \text{ indices}$ [0, 3, 6, 9]</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>P_{10}</td>
<td>$(6, 6)$ even parity for $I_n \text{ indices}$ [0, 2, 4, 6, 8, 10]</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>P_{11}</td>
<td>$(12, 12)$ even and odd parity for $I_n \text{ indices}$ [0, 1, 2, …, 11]</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

1.17.1 Structure of $C_{\text{Sym}(S)}T/I$, where $S = \{\text{universe of non-empty pcsets}\}$

$$(D_{24} \text{ wr } S_{127}) \times (C_2 \text{ wr } S_{56}) \times (C_2 \text{ wr } S_{25}) \times (D_{12} \text{ wr } S_1) \times (C_2 \text{ wr } S_5) \times (C_2 \text{ wr } S_2) \times (C_2 \text{ wr } S_1) \times (1 \text{ wr } S_2) \times (C_2 \text{ wr } S_1) \times (1 \text{ wr } S_1)$$

1.17.2 Size of $C_{\text{Sym}(S)}T/I$, where $S = \{\text{universe of non-empty pcsets}\}$

$$(24^{127} \cdot 127!) \cdot (2^{56} \cdot 56!) \cdot (2^{25} \cdot 25!) \cdot (12^1 \cdot 1!) \cdot (2^5 \cdot 5!) \cdot (2^2 \cdot 2!) \cdot (2^2 \cdot 2!) \cdot (2^1 \cdot 1!) \cdot (1^2 \cdot 2!) \cdot (2^1 \cdot 1!) \cdot (1^1 \cdot 1!)$$

THE GRAPH-THEORETICAL APPROACH

Figure 1. Arrow preservation for network N_1 (“book diagram”)
Figure 2. Arrow preservation in a T/I network

(a) N_1

(b) N_2

(c) N_3

Figure 3. An unconnected graph

2.1 Number of networks that preserve arrow labels for groups G with semiregular actions

$(n = \text{number of orbits}, m = \text{number of connected components}; p = \text{size of orbit})$

\[v = \left(\frac{n!}{n-m!}\right) \cdot p^m \] (visible on the network)

Example 1. Voice exchanges (and quasi voice exchanges) in *Tristan* Prelude

a) mm. 2-3

b) mm. 6-7

(cont.)
Example 1. Voice exchanges (and quasi voice exchanges) in Tristan Prelude, (cont.)

c) mm. 10-11

d) mm. 60-61

e) mm. 66-67

2.2.1 \(S = (3\mathbb{Z}_{12} + 2) \times \mathbb{Z}_{12} \)

2.2.2 \(\tau : (a, b) \in S \rightarrow (b - (b - a + 3 \text{ mod } 6), a + (b - a + 3 \text{ mod } 6)) \)

2.2.3 \(T_3 : (a, b) \in S \rightarrow (a + 3, b + 3) \)

2.2.4 \(\chi : (a, b) \in S \rightarrow (a, b + 1) \)

Figure 4. Arrow preservation in intransitive semiregular networks

a) unconnected network of voice exchanges in Tristan

b) connected network
Example 2. Three trichords from Schoenberg’s Op. 19, No. 6

![Example 2 Diagram]

Figure 5. Three strongly isographic K-nets for Example 2 (from Lambert’s 2002 analysis)

![Figure 5 Diagram]

Example 3. Ran, String Quartet No. 1, Mov. II, mm. 121-125

![Example 3 Score]
Figure 6. T/MI-inclusive networks for Examples 3 and 4

Example 4. Ran, String Quartet No. 1, Mov. II, mm. 1-3
Figure 7. S/W networks with arrow preservation

b) S/W-inclusive network for m. 12

\[\begin{align*}
W'_5 & \quad W'_{11} & \quad S'_2 \\
S'_6 & \quad W'_9 & \quad 8 \\
2 & \quad W'_3 & \quad 5
\end{align*} \]

b) S/W-inclusive network for m. 124

\[\begin{align*}
W'_5 & \quad W'_{11} & \quad S'_2 \\
S'_6 & \quad W'_9 & \quad 10 \\
4 & \quad W'_3 & \quad 7
\end{align*} \]

c) S/W-inclusive network for m. 3

\[\begin{align*}
W'_5 & \quad W'_{11} & \quad S'_2 \\
S'_6 & \quad W'_9 & \quad 7 \\
1 & \quad W'_3 & \quad 4
\end{align*} \]
SAMPLE HOMEWORK PROBLEMS

1) Determine generators for the commuting group in the symmetric group on the set of integers mod 6 for the group generated by (0,2,4)(1,3,5). How does the fact of this group’s being abelian impact the commuting group?

2) Determine the size and structure of the commuting group in symmetric group on 12 pitch-classes for the group generated by the inversion operator $I_1 := (0,1)(2,11)(3,10)(4,9)(5,8)(6,7)$. How does this structure contrast with the commuting group (in the same symmetric group) for the group generated by the inversion operator $I_0 := (1,11)(2,10)(3,9)(4,8)(5,7)$?

3) What is the kernel of the action of the (dihedral) musical transposition (translation) and inversion group’s action on the set class of octatonic collections (i.e., all pitch-class sets that are translations and translated reflections of the pitch-class set $\{0,1,3,4,6,7,9,10\}$)? How does this kernel function in determining the commuting group for the action of the musical transposition and inversion group on this set class?

4) Provide generators as operations on pitch-classes for a group whose commuting group is isomorphic to the wreath product $2^2 \rtimes S_3$ (Klein four-group by symmetric group of degree 3).

5) How many networks with nodes populated by pitch-classes have the same arrow labels as the network below? Is this the same as the size of the commuting group in symmetric group on 12 pitch-classes for the musical transposition (translation) group?

![Diagram](image-url)
REFERENCE LIST

